
Simple, Robust and Highly Concurrent

B-trees with Node Deletion
David Lomet

Microsoft Research

One Microsoft Way, Redmond, WA
lomet@microsoft.com

Abstract

Why might B-tree concurrency control still be
interesting? For two reasons: (i) currently

exploited “real world” approaches are

complicated; (ii) simpler proposals are not used
because they are not sufficiently robust. In the

“real world”, systems need to deal robustly with

node deletion, and this is an important reason
why the currently exploited techniques are

complicated. In our effort to simplify the world

of robust and highly concurrent B-tree methods,
we focus on exactly where b-tree concurrency

control needs information about node deletes,

and describe mechanisms that provide that
information. We exploit the Blink-tree property of

being “well-formed” even when index term

posting for a node split has not been completed
to greatly simplify our algorithms. Our goal is to

describe a very simple but nonetheless robust

method.

1. Introduction

1.1. Early Techniques

The importance of only holding short

duration locks on B-tree nodes was recognized

very early [1,9,16,17]. However, none of the

early methods can be applied directly to real

database systems because they cannot recover

the B-tree correctly should the system crash

during a structure modification (node split or

node delete).

1.2. Techniques Supporting Recovery

A paper by Mohan and Levine [15] in

SIGMOD’92, based on an earlier tech report, is

the earliest paper detailing B-tree concurrency

with recovery.1 Their method, which exploits

the ARIES recovery method [14], globally

serializes structure modifications (B-tree splits

and node deletions). It has a structure

1 The analyses in [6,7] deal briefly with the impact of

recovery on B-tree concurrency, but do not describe a

complete method.

modification bit in each page to guard a sub-tree

whose structure is being modified. And it has a

“delete” bit in each page that needs to be tested

to handle deletes correctly. These bits and

latches are encountered during normal operations

on the B-tree, with the result that these

operations are made substantially more complex.

Unwinding of B-tree traversals can result, with

the need for subsequent re-traversals.

Furthermore, serialized structure modifications

reduce concurrency.

Concurrency is higher when using a method

based on Blink-trees [6,7,18]. Lomet and

Salzberg derive their method [12,13] from Blink-

trees. Their method has two variants, one

without node deletion and another with it. In

both cases, concurrency is very high. Further,

when node deletes are not supported, the

algorithms are quite simple. Unfortunately, node

deletes add substantial complexity.

Blink-tree complexity arises with node

deletes because there are periods when no latches

are held on the tree. Hence, a program may

acquire a valid node reference, release its latch,

and when it accesses the node, this node has

been deleted during the unlatched period. Two

problems arise because of this:

1. Node splits propagate from data leaf upward

toward the root. This upward traversal

cannot latch couple since latch coupling is

used in the downward traversal. So there is

a period in which no latches are held. If

node deletes are supported, it is uncertain

whether the remembered parent of a node

being split exists. Guarding against this

previously entailed a tree re-traversal.

2. When posting a new index term for a split

node, it is uncertain whether the new node

resulting from the split continues to exist. It

may have been deleted, again in a period

when no latches are held. To guard against

this previously required that the existence of

the node be verified. This meant re-visiting

the old node and checking whether its side

pointer still referenced the new node.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Dealing with these problems leads to

decreased performance, decreased concurrency,

and increased complexity, including the re-

traversal of the tree and the re-visiting of split

nodes.

1.3. Simpler Proposal for Node Delete

With node delete, nodes can disappear

unexpectedly. We want to use node addresses

from the remembered path down the tree to post

index terms for splits to the parents of the

splitting nodes. However, with node deletes, our

remembered path node pointers may be dangling.

One way to deal with this is to require that

the node being deleted “live” until no pointers to

it exist [16], called the “drain approach” in [19].

It entails waiting for the page to be empty,

waiting for pointers to the page to be discarded,

and only then deleting the page.

There are, we believe serious reasons why

this approach, while “simple”, is not robust.

1. It requires waiting until a node is empty

before deleting it. This can sometimes be

acceptable, e.g., if it is known that most

deletes are part of a modify involving a

delete followed by an insert, as would occur

when an indexed field of a base tuple is

updated [5]. But this becomes unacceptable

when deletes occur with any regularity, and

especially if their distribution is skewed.

This may be caused, e.g., by purging out-of-

date information, or dropping a set of

products from an inventory database. Then

many under-utilized pages may exist for

extended periods, compromising utilization.

The method of [15] also requires pages to be

empty.

2. It can require that we update a page to mark

it as empty prior to finally deleting it. Extra

updates lead to extra logging, and potentially

extra writes of the page back to disk.

However, we need not worry about dangling

references across crashes since B-tree node

references don’t span crashes. Thus, in effect, a

system crash does drain any delete state that we

need to track whether references are dangling.

1.4. Our Contribution

Unlike prior approaches, we do not focus on

revalidating references via tree re-traversal to

check whether nodes have been deleted.2

Instead, we remember how many nodes have

been deleted, this number being maintained as

“delete state”. When we want to directly access

a node of the tree in a structure modification

action, we check whether delete state has

changed since we discovered the need for the

action. If not (the high frequency case), we use

the remembered node reference since no node

has been deleted in the interval of interest.

We use latch coupling to ensure that

ordinary B-tree traversals do not need to check

delete state. Thus, delete state is checked only

during B-tree structure modifications. Since a

characteristic of Blink-trees is that the tree is

search correct even when such structure

modifications are deferred, we choose to

abandon the modifications if we discover that

delete state has changed. This avoids re-

traversals even in this case.

We describe this new approach in the

remainder of the paper. In section 2, we provide

an overview of the approach. Section 3

describes in some detail the specifics of the

operations that the Blink-tree needs to support,

and how the “delete state” approach simplifies

these operations. In section 4, we describe how

we separately track leaf level deletes and internal

node deletes, and explain why this is

advantageous. We very briefly discuss how this

technique generalizes to handle multi-attribute

indexing in section 5. Finally, an appendix

provides pseudo-code for some of operations that

index trees need to support.

2. Overview of Our Approach

2.1. Our Starting Point: B
link

-Trees

We want to deal with node deletion robustly,

while preserving the simplicity and high

concurrency of the Blink-tree approach. The

problem with node deletion as a general

operation is that we need to know when nodes

2 Previous methods [12,13,15] optimize the re-

traversal by remembering node LSN’s. But the

complexity of re-traversal is not avoided. Further,

performance and concurrency are impacted since each

node on the remembered path has to be re-latched and

re-accessed. Extra accesses involve extra memory

fetches that are likely to be cache misses, which are

very expensive on modern processors.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

whose addresses we remember continue to exist,

even when we have permitted the possibility that

they may be deleted.

There are additional issues to deal with.

Any method has to permit the desired locking so

as to serialize transactions correctly. Sorting out

transactional locking is not trivial, but can be

made largely independent of Blink-tree latching.

We will discuss briefly how transactional

locking interacts with tree maintenance.

We must also ensure that Blink-tree

mechanisms do not interfere with transactional

operations during crash recovery. This problem

was solved in [13] using multi-level recovery

[11], and we assume multi-level recovery is used

here. Thus, we needn’t worry about partially

completed structure modifications resulting from

system crashes. Structure modifications are

recovered first, restoring the Blink-tree to a well-

formed state prior to the recovery of

transactional operations that require a well-

formed Blink-tree.

We want to support a framework that

provides concurrency control and recovery,

leaving the details of search and update within

the nodes of the index tree to be determined by

the specific data being indexed. This

independence of Blink-tree support mechanisms

from the index operations for specific forms of

data is essential for a general indexing

framework [8,13].

2.1. B
link

-tree Fundamentals

A big plus for the Blink-tree is that it is well

formed after a “half split” [19]. A half split

allocates a new node and divides the full node’s

data between the full node and a new node. This

half split must be done to accommodate the

addition of data to the Blink-tree.

Figures 1, 2 and 3 show the node splitting

process in a Blink-tree. Figure 1 shows the tree,

with its side pointers, prior to the splitting of

node F. Figure 2 shows the tree after the new

node G is allocated and the contents of node F

are divided between F and G. Note that node G

is not referenced by an index term in Parent.

Data in node G is found by means of a side

traversal from node F. Finally, in Figure 3, the

index term for G is posted to the parent. The

important essential characteristic of the Blink-tree

is that data in G is accessible even when it is not

referenced by an index term in Parent.

Figure 1: Blink-tree before split. Node F is
full.

Figure 2: First “half split”: contents of
node F are divided between F and G.

Figure 3: Second “half split”: new index
term for G is posted to parent.

With side traversals, we know both the node

address and the key space description for an

index term because side links contain this

information, exactly as with a child link (see

Figure 3). Thus, our Blink-tree is what was called

a Pi-tree in [12,13]. We use the term “Blink-tree”

in the sequel because it is more widely

recognized, but the reader should not forget that

the sibling links contain space descriptions as

well as node addresses. The key space

Parent

Node P Node F Node S

Node G

Parent

Node P Node F Node S

Node G

Parent

Node P Node F Node S

Sibling link is

<key space, ptr>

Sibling link is

<key space, ptr>

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

descriptions are exploited below to enable our

lazy structure modification approach.

2.2. Tracking Deletes

We track “delete state” so that we can be

sure when a node has not been deleted. We

introduce two delete states to deal separately

with the two complications resulting from node

deletes: (i) a parent to which we want to post an

index term may have been deleted; (ii) a new leaf

node for which we want to post an index term

may have been deleted.

Index delete state (DX) indicates whether it is

safe to directly access a parent node (hence an

index (internal) node, not a data (leaf) node)

without re-traversing the B-tree. Index nodes are

deleted in less than 1% of the node deletes. DX

has to answer for all nodes above the leaf level;

and it must be maintained outside of the tree

since any index node may be deleted. Testing

DX will return “yes” if an index node may have

been deleted and “no if an index node cannot

have been deleted.

Data delete state (DD) indicates whether it is

safe to post an index term for a new data node

that resulted from a data node split. Since we

access the parent of the new data node in any

event, keeping DD state tightly associated with

the parent causes no extra page accesses.

Further, data node deletes are much more

common than index node deletes, and so there is

real value to localizing data node deletes to a

sub-tree. Hence we maintained DD state in each

parent of a leaf. Testing DD(nodeA) returns

“yes” if data nodeA may have been deleted, and

“no” if data nodeA cannot have been deleted.

Higher up in the tree, DX is used for this

verification.

For both delete state tests, we can be

conservative, returning “yes” even when the

node we are asking about has not been deleted.

Our algorithms will still work correctly, simply

triggering a delay in propagating index terms up

the tree. Because we are using a Blink-tree, the

tree remains search correct even when index

terms are missing. Since we only need to check

delete state during structure modifications,

normal Blink-tree operations can be almost

completely unaffected.

2.3. Exploiting Laziness for Simplicity

Our goal is simplicity, including for

structure modifications. When we know that

nodes have not been deleted, we have a very

simple structure modification mechanism. We

simply promptly post the index term for a node

split, and promptly delete under-utilized nodes.

However, what happens if an index term has not

been posted or a node has not been deleted?

The Blink-tree enables correct search when

index terms are not posted, and when under-

utilized nodes continue to exist. There is thus

never a case where index posting or node

deletion changes to the Blink-tree are required for

continued operation of the tree. Normal reading

and updating of indexed data can continue as the

Blink-tree is always well-formed, even after a half

split with an index term that has not been posted.

Search is slower, however, because the side-

traversal adds an extra node access to the search

path. Hence, we want to make these structure

changes as soon as it is “convenient”.

Blink-trees thus enable lazy structure

modification to be our strategy. Whenever we

need to access a node further up the tree, e.g. as

we would to post an index term, this access will

start a new atomic action. We exploit a volatile

to-do queue of structure modification actions that

can be acted upon independently of mainline

processing. This queue does not survive system

failures.

1. We enqueue an index posting action on the

to-do queue whenever we split a node. We

do the first half-split “in line” because this

must be done to accommodate the newly

entered data.

2. We enqueue a node delete action on the to-do
queue whenever we encounter an under-

utilized node. The node does not need to be

empty. We can set any utilization lower

bound that we wish.

We abort enqueued actions should we detect

a node delete that might impact the action. Such

a node delete can lead to a substantial

complication in what the action needs to do. This

abort can result, e.g., in index terms not being

posted. When a structure modification is

aborted, we eventually re-discover the need for it

and re-enqueue the action. We exploit this

mechanism as well to deal with lost structure

modifications that result from system crashes.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

We re-discover the need for an index term

posting during a Blink–tree side traversal; such a

side traversal can only occur if we were directed

to a predecessor page because an index term was

not posted for the target page. Because our

sibling links contain the key space description as

well as the sibling’s node address, we have the

complete index term and so can fully describe

the index term to be posted.

2.4. Latches and Locks

Latches are light-weight “locks” which

provide exclusion without the need to go to the

lock manager. Hence, the overhead for setting

and releasing a latch is an order of magnitude

smaller than for locks. “Real” B-tree

implementations all use latches because of this

performance gain. All users of latches are,

however, required to acquire latches in the same

consistent partial order so that deadlocks among

latches are impossible.3

Like locks, latches come in multiple modes,

share, exclusive, and update [3]. We do not need

multi-granularity modes as the resource being

latched is almost always a single node, and in

any event does not impose a resource hierarchy.

Share latches are compatible with each other and

with update latches. Update latches are not

compatible with each other. Exclusive latches

are not compatible with any other latches.

Downward traversals of the tree exploit

“latch coupling” in which, from a latched

precursor node n1, a node n2 referenced by n1 is

latched prior to the latch on n1 being released.

This ensures that n2 cannot have been deleted

between acquiring its reference and accessing it.

Note that latch coupling does not increase the

number of latches acquired, though it does

increase the time that they are held. Usually this

will be minimal as most internal nodes are in the

database’s main memory cache.

The use of latch coupling in downward

traversals imposes the partial order on latches, an

ordering that is down the tree and to the right

following side pointers. Thus, upward

traversals, e.g. to post index terms, cannot use

latch coupling because of the risk of undetected

deadlocks with downward traversals.

The lock manager knows nothing about

latches. Thus, a lock wait while holding a latch

can produce undetected deadlocks. This is a

3 The lock manager detects deadlocks among locks.

Users are required to order latching to avoid deadlock.

problem whenever latches are used, including in

other data organizations. The usual solution is to

ask for the lock in “no wait” mode [15]. Almost

always this request succeeds and normal

program execution continues since lock conflicts

are the exception. Otherwise, if the lock is held,

the request returns immediately with an

indication that the lock was not granted, instead

of blocking and waiting for the lock,

When a lock is denied, the program gives up

its latch, and re-requests the lock, this time

blocking until the lock is granted. Once the lock

is acquired, the latch is re-requested. It is here

that the B-tree complication occurs, because the

node that needs to be latched may have changed

as a result of a structure modification. That is,

the data that a program wants to access may no

longer be in the original node. Hence, we need to

once again find the node that contains the data

that we wish to access. This is a problem for all

B-tree methods that use latches. And it requires

that we re-traverse the tree (to some extent) to

find the node that needs to be latched.

A re-traversal is required in our method as

well. We can optimize the re-traversal however.

During the original downward tree traversal, we

remember the path. There are two cases. Both

check DX to see if an index node delete has

occurred. If it has not, then:

1. Re-latching a non-leaf node: we re-latch the

original node, and traverse to a sibling if a

node split has occurred, using latch

coupling.

2. Re-latching a leaf node: we re-latch the

parent of our leaf node and traverse to the

leaf node currently containing the data that

we just locked, using latch coupling.

Finding the correct leaf can be immediate if

DD indicates that the remembered leaf node

still exists.

In either case, if DX indicates a node delete

has occurred, we can abort the transaction. Such

aborts are rare. The “no-wait” lock request will

almost always succeed because lock conflicts are

few. So re-traversals are rare. Furthermore, DX

changes are extremely rare. So, re-traversals are

very fast, accessing only one or two nodes. We

can bury the complexity of the re-traversal inside

a re-latch procedure, which we call should our

“no-wait” lock request fail. We provide re-latch
with a path, the level of the desired page to latch,

and a key.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

3. Operations on the B
link

-tree

In this section, we give an overview

description of how our Blink-tree approach

supports the operations a database index needs to

provide.

3.1. Normal Operations

B-trees support a number of operations, not

all of which we will fully explore here. The

principal operations are:

1. Read a record: tree traverse followed by an

access to the found page to read node the

record requested.

2. Range read: a tree traverse followed by the

accessing of potentially multiple pages to

return records in the range. This is done via

a series of fetch operations.

3. Insert, update, or delete a record: tree

traverse followed by an access to the found

node, and an update, insert, or delete of the

record in an update node operation.

Below, we provide an overview of the

preceding operations. The step by step

descriptions of these operations are more fully

described in the appendix.

3.1.1. Traverse Tree. Given a key, a node of the

B-tree, and the level of the node that is desired in

the tree, traverse returns the address of the node

containing the key at the level desired. Latch

coupling is performed both down the tree and for

sibling traversals. The latch ordering is a partial

order proceeding down the tree and to the

“right”, hence preventing deadlocks.

Latch coupling prevents a node deleter from

accessing and deleting node n2 in the tree

traversal between the time the index term for n2

is found in node n1 and n2 is accessed. We do

not have to check delete state as n2 cannot have

been deleted without a prior access to n1, which

latch coupling prevents. Latch coupling isn’t

required if node deletes cannot occur. Tree

traversal via latch coupling is one of two places

outside of access parent (see below) in which

support for node deletes has an impact.

Tree traversal latches differ depending upon

the type of operation using them. But this

difference only manifests itself when we reach

the level of the tree that has been requested.

Nodes higher in the tree than the requested level

are latched in share mode. Latches for nodes at

the level requested are share mode for reads and

update mode for updates. The update latch on

the final node in the traversal for updates is then

promoted to exclusive before exiting traverse.

We use an update latch for updaters to avoid the

deadlock that may arise when two updaters both

trying to promote their latches to exclusive.4

3.1.2. Read Node. We assume that a share latch

is held on the node being read when this starts.

Read node is not impacted by our handling of

node delete. We are at the correct node, so we

find the correct entry and return it. We enqueue

a delete node action if we find the node is under

utilized.

3.1.3. Update Node. We assume an exclusive
latch is held on the node being updated when

update node starts. Update node is not impacted

by our handling of node delete. We are at the

correct node, so we find the correct place in the

node and do the update, be it an insert, delete or

record update. If the update does not fit in the

node, we do a split node action and try again. We

enqueue a delete node action if we find the node

is under utilized.

3.1.4. Fetch Next (Previous). Reading a key

range of records involves more. We make only a

comment about range reads. We use side

pointers for B-tree concurrency control, not for

enabling range reads via side pointer traversals.

One might use them for range reads, but of

course, they only are effective in a single

direction.

Instead, we describe a technique that does

not require side pointers to do range reads.

Without side pointers, one avoids doing

additional tree traversals by remembering the

path down the tree. A “cursor” is maintained for

the range. This cursor contains the path

information. It shifts forward or backward as

fetching proceeds.

For good range search performance, we

want to avoid continually re-traversing the tree

from the root. Our delete information makes this

possible, even though we cannot maintain page

latches continuously on the leaf nodes in the

range. Hence, remembered nodes can be deleted

during a range search. We use the re-latch

procedure of 2.4 to deal with this.

4 An exclusive latch must be held on a page before it

can be changed. Update latches permit some sharing

until it is sure that the page to be changed is identified.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

3.2. Structure Modifications

Structure modification operations labeled as

atomic actions are those we designate as “low

level” transactions in the multi-level transaction

hierarchy. These are actions that must be

recovered prior to the recovery of “user”

transactional level operations. Atomic actions

[10] are like transactions in their atomicity and

isolation, but durability is not required.

3.2.1. 1
st
 Half Split: Split Node (atomic

action). We split a node using the usual Blink-tree

method involving two “half splits” (Figs. 1, 2, 3).

Move old node high range contents and

old side pointer to new node, and update

side pointer in old node to point to new

node. 5

Post index term for new node in parent.

Here we describe only the first half-split. The

posting of the index term describing this split to

the parent node is done as an update of the parent

in a separate enqueued action. The impact of our

approach for handling node deletion is all

encapsulated in our access parent routine during

the posting of the index term to the parent node.

This first half-split is the one tree

modification action that must be done promptly.

Otherwise, we would have to abort transactions

whose updates caused nodes to become overly

full. The important property of Blink-trees is that

this can always be done under a latch that we are

already holding. And the updating is confined

to original node and new node. This atomic

operation will typically involve two log records,

one for each node, followed by a commit log

record (which could be included in the second

record). Only the contents of the original node

are blocked from concurrent activity elsewhere.

3.2.2. Access Parent. Other Blink-tree

modifications are performed lazily. Actions are

enqueued on our to-do queue and all use the

access parent routine.

Access parent accesses the parent of the

splitting node (or node to be deleted) so that the

index term can be inserted (deleted). It is given

the remembered parent node address and returns

with the current parent node latched if it

determines that the parent has not been deleted.

This parent may, because of concurrent splitting,

be a sibling of the original parent. An error is

returned if the parent may have been deleted. No

5 We can leave the moved contents in the old node to

avoid needing an undo log record for it.

latches can be held when executing access

parent so that latch deadlocks cannot occur.

As a parent node must be an index node, we

check DX state to ensure that we can safely

access “up the tree”. The parent is guaranteed to

exist when DX has not changed. This is the key

test that makes it possible for us to deal with

node deletion while avoiding re-traversal of the

tree. Once the parent is latched, it cannot be

deleted until it is unlatched.

Within access parent, we use delete state to

avoid having to verify that index term posting is

still required, and that the descendent node has

not been deleted. We use DX for this purpose if

the descendent is an index node. Since data node

deletes are not captured in the DX state, we use

our separate DD state for data node descendents.

This is illustrated in Figure 4. We use the double

arrow in Figure 4 to indicate latch ordering,

where we must latch DX prior to latching Parent,

and the DX latch is not released until the Parent is

latched, hence latch coupling. DD is protected

by the Parent latch.

Within access parent, we also do all

updating of delete state. Access parent is called

indicating whether it is handling a delete or an

index posting. In the case of delete, it

determines whether an index node or a data node

is the target of the delete. If access parent

returns normally, it will have updated the

appropriate delete state, either DD or DX.

Because delete state information can be

conservative, we can safely assume the

completion of the node deletion action that is to

follow.

Figure 4: For index term posting for leaf
nodes, “access parent” checks DX to
ensure that Parent exists, and DD in
Parent to ensure that G exists.

Index posting

for Node G

Parent

DD

Node P Node F Node S

Node G

DX

Leaf level

Volatile state

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

Thus, access parent encapsulates all

updating and testing of both forms of delete

state, and for both parent node existence

validation and for index term posting

verification.

3.2.3. 2
nd

 Half Split: Post Index Term (atomic

action). Our access parent routine determines

whether posting an index term will be successful.

If access parent returns normally with the parent

node identified and latched, we use update node

to post the index term. This can, of course, lead

to a split of this parent node. But this is a

separate atomic action, fully decoupled from the

preceding split that triggered this index posting.

If access parent returns an exception, then

rather than continuing to try to post the index

term, we simply abort the index term posting and

return. Deletes should be sufficiently rare so that

this is not an issue.

3.2.4. Delete Node (atomic action). Our delete

node action permits us to consolidate all data

nodes with low occupancy except for the left

most sibling of a parent node. However, this

consolidation will permit us to eventually

consolidate the parent, and parent consolidation

will permit the eventual consolidation of what

were originally left most siblings.

We burden delete node so that dealing with

splits is easy. Hence, delete node maintains the

delete state information DX and DD. Delete node

uses the access parent routine to access the

parent node of a delete node candidate. Access

parent updates the delete state information as it

accesses the parent, and latches it. At this point

it removes the index term for the candidate.

Delete node then exclusive latches and

accesses the left sibling of the candidate, and the

candidate itself, and releases the parent node

latch, in that order. The contents of the deletion

candidate are moved to the left sibling and the

deletion candidate is then de-allocated.

4. Tracking Node Deletion

Here we describe how we track node

deletions, and what the nature of the node

deletion test might be when we attempt to

perform a Blink-tree structure modification.

4.1. Delete State

The requirements for index and data node

deletes are sufficiently different, both in usage

and frequency, that we represent their node

deletion states separately.

There are several ways to represent

information about node deletes. We present just

one, which has the benefit of simplicity by

exploiting only approximate information which

is conservative. It is possible to maintain precise

information about deleted nodes, but we doubt

its necessity.

4.1.1. Index Delete State. Index node delete

state DX determines whether we can directly

access a parent node for posting an index term or

performing a node deletion, which requires the

removal of the deleted node’s index term in its

parent. It is updated whenever an index node is

deleted. It is checked when we want to access

the parent. During an access to the parent, if DX

has changed, the parent may have been deleted,
so we return an exception.

We maintain DX as a counter that is

incremented whenever an index node is deleted.

Before we enqueue an action on our work queue

we must have accessed and remembered the DX

value. When we enqueue the action, we enter

the remembered DX value with the action on the

queue.

When we go to access the parent, if DX has

changed, we treat this as if the parent has been

deleted. This conservative method should work

fine if deletes are not common. Because we

track data node deletes separately from index

node deletes, DX rarely changes. Over 99% of

node deletes will be for data nodes. This means

that almost always, parent access will be

successful.

During an unsuccessful parent access, we

remember the new DX counter value so that when

the need for the index posting is detected again,

we will enter the more recent DX value with the

enqueued action, hence making it possible for

this later action to complete successfully.

4.1.2. Data Delete State. We use DD state to

determine whether leaf (data) nodes may have

been deleted. If not, then we know that a new

node resulting from a split will not have been

deleted, and hence we can, without further

checking, post its index term in its parent node.

It is natural to store the DD state describing

node deletes among a sub-tree of data nodes in

their parent index node. That is, each such

parent node contains DD state that tracks the

deletes of its descendents. We are accessing the

parent index node in any event during the

posting operation for any of these descendent

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

nodes. Thus, unlike with DX, we can check DD

after we have accessed the parent, not before.

There are two additional reasons why it is

useful (though not essential) for DD state to be in

these “parent of leaves” index nodes.

1. If DD state persists across periods when the

index node is not in the cache, fewer index

postings will be aborted. With DD in the

node, we will retrieve it when this index

node is again fetched into the cache.6

2. We protect DD with the same latch used to

access the “parent of leaves” node that

contains it. Thus we avoid any need to

protect DD with a separate latch.

As with DX state, we maintain DD as a

counter. Whenever we delete a data node in the

sub-tree of this parent node, we need to have the

parent latched and accessed. Hence, we update

DD during data node delete with little overhead.

If DD for the parent node has changed when

we attempt to post an index term for a new data

node split, then the new node may already have

been deleted, and hence no index term posting is

required. In that case, we abort the posting. We

may subsequently find that we have not yet

posted an index term for this node, in which

case, we place the posting action on our to-do
queue again.

To make this “optimistic” approach work,

we remember the prior value for DD when we

visit the node on the way to a leaf node. No

additional latching is required. An enqueued

action will also include the remembered DD.

4.1.3. Volatile Delete State. Neither DX nor DD

need be stable as (i) we are only interested in

changed delete state since an action was

enqueued; and (ii) no enqueued actions cross

system crash boundaries. Thus no logging is

needed to make them persistent.

4.2. Node Delete Impact

The following summarizes the incremental

work needed to support node deletion over that

needed when node deletion is not supported.

4.2.1. Impact outside structure modifications:

a) read and remember DX state prior to

accessing Blink-tree

6 We do not need to log changes to DD as its exact

value is not of interest, only the changes in value.

b) read and remember DD state in parent of leaf

before accessing a data node

c) include remembered DD or DX on enqueued

structure modifications

d) latch coupling during traverse instead of

holding only single latch at a time.

4.2.2. Impact during structure modifications:

all these are within access parent.

a) set DX state when deleting index node

b) set DD state when deleting data node

c) compare DX to remembered DX before

accessing parent

d) compare DD state to remembered DD state to

verify that new data node from split still

exists

e) abandon structure modifications should

delete states DX or DD indicate node delete

The enqueuing of structure modification

actions in order to optimize the index is already

required to deal with system crashes. We now

exploit this lazy mechanism more frequently, i.e.

when we detect possible node deletes.

5. Generalized Indexing Methods

This paper has focused on Blink-trees, but the

approach described can be generalized to work

with multi-attribute methods as well. Previous

papers [2,12,13] describe the general approach.

How we handle deletes here is directly

applicable to the more general case. Note that

the approach cannot be used directly with R-trees

[4] because the space descriptions for R-tree

index terms can change.

6. Acknowledgment

Phil Bernstein made many useful comments

that greatly improved this presentation.

Remaining difficulties are the responsibility of

the author.

7. References

[1] R. Bayer, M. Schkolnick. Concurrency of

operations on B-trees. Acta Informatica 9,1

(1977) 1-21.

[2] G, Evangelidis, D. Lomet B. Salzberg. The

hB -tree: a multi-attribute index supporting

concurrency, recovery, and node

consolidation. VLDB J. 6,1 (1997) 1-25.

[3] J. Gray, A. Reuter. Transaction Processing:

Techniques and Concepts, Morgan Kaufmann

(1993).

[4] A. Guttman. R-trees: A Dynamic Index

Structure for Spatial Searching. SIGMOD

(1984) 47-57.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

[5] T. Johnson, D. Shasha. Utilization of B-trees

with Inserts, Deletes, and Modifies. PODS

Conf. (1989) 235-246.

[6] T. Johnson, D. Shasha. A Framework for the

Performance Analysis of Concurrent B-tree

Algorithms. PODS Conf. (1990) 273-287.

[7] T. Johnson, D. Shasha. Performance of

Concurrent B-tree Algorithms. ACM TODS

18,1 (1993) 51-101.

[8] M. Kornacker, C. Mohan, J. Hellerstein.

Concurrency and Recovery in Generalized

Search Trees. SIGMOD (1997) 62-72.

[9] P. Lehman, S.B. Yao. Efficient locking for

concurrent operations on B-trees. ACM TODS

6, 4 (1981) 650-670.

[10] D. Lomet. Process structuring,

synchronization, and recovery using atomic

actions. ACM Conf. on Language Design for

Reliable Software (1977) 128-137.

[11] D. Lomet. MLR: A Recovery Method for

Multi-level Systems. SIGMOD Conf. (1992)

185-194.

[12] D. Lomet, B. Salzberg. Access Method

Concurrency with Recovery. SIGMOD (1992)

351-360.

[13] D. Lomet, B. Salzberg. Concurrency and

Recovery for Index Trees. VLDB J. 6,3 (1997)

224-240.

[14] C. Mohan, D, Haderle, B. Lindsay, H.

Pirahesh, P. Schwarz. ARIES: a transaction

recovery method supporting fine granularity

locking and partial rollbacks using write-ahead

logging. ACM TODS 17, 1 (1992) 94-162.

[15] C. Mohan, F. Levine. ARIES/IM: an efficient

and high concurrency index management

method using write-ahead logging. SIGMOD

(1992) 371-380.

[16] Y. Sagiv. Concurrent operations on B* trees

with overtaking. J Computer and System

Sciences 33,2 (1986) 275-296.

[17] D. Shasha, N. Goodman. Concurrent search

structure algorithms. ACM TODS 13,1 (1988)

53-90.

[18] V. Srinivasan, M. Carey. Performance of B-

tree concurrency control algorithms. SIGMOD

(1991) 416-425.

[19] G. Weikum, G. Vossen. Transactional

Information Systems. Morgan Kaufmann

(2002).

Appendix A: B
link

-tree Operations

We elaborate here on some of the common

operations involved with concurrency control

and recovery and its interaction with index tree

structure modifications. Our descriptions are

intended to reveal some of the difficulties that

need to be addressed when using our method, not

as full descriptions of all operation intricacies.

Also, how to apply our technique to any

particular database system needs to take into

account the specifics of the target system.

A.1. Traverse tree

We assume starting node, nodeA, is latched

in the appropriate mode. The found node is left

latched when traverse returns. The search

proceeds down to the requested level reqlevel.

Traverse does the following:

1. Search nodeA for correct entry entryA.

2. Latch the node referenced by entryA, and call

it nodeB.

3. Release the latch on nodeA.

4. If entryA points to a sibling node, enqueue

post index term action for <entryA,nodeB>
at parent(nodeA).

5. If nodeA is under-utilized, enqueue a node

deletion action for nodeA at parent(nodeA)

6. If level(nodeB) > reqlevel or nodeB is sibling

a. then return(traverse(nodeB, reqlevel))

i. note that nodeB becomes the nodeA
for the new invocation, and that

nodeB is latched as required

b. else return(nodeB)

A.2. Split node

We assume a latch is held on the “original”

node to be split. Then split node does the

following:

1. Allocate new node. (No latch is required as

the node is invisible to the rest of the tree).

2. Split data between original and new node.

3. Assign to new node sibling pointer the

original node sibling pointer.

4. sibling_ptr(new) gets sibling_ptr(original)

and sibling_ptr(original) gets a pointer to the

new node, with new node’s space descriptor.

5. Enqueue a post index term operation for the

parent of the original node on TODO queue.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

A.3. Access Parent

Access parent does the following:

1. Latch DX in share mode if the call is for post

index term, in exclusive for delete node.

2. If test of DX shows delete has occurred),

release DX latch and return error.

3. If the parent access is for an index node

deletion, update DX.

4. Latch node requested and release DX latch.

5. Use traverse(node, level(node)) to find

parent. This checks if node continues as the

parent or whether node has split and real

parent is a sibling of remembered node.

6. If the parent access is for a data node

deletion, then update DD state.

7. Else if access parent is to post index term for

a. data node: if DD(node) has changed then

release the node latch and return error.

b. index node: if DX has changed, then

release node latch and return error.

8. Return.

A.4. Post Index Term

We assume that no latches are held when we

start the posting of the index term. Post index

term is very simple:

1. Access parent of split node via access

parent. This will check the “delete states”.

If error returned, abort.

2. Update node atomic action posts index term

3. Return

A.5. Delete Node (atomic action)

The steps in delete node are as follows:

1. Perform access parent. If an error is

returned, abort.

2. Retain the latch on the parent while latching

the left sibling of the original node. If the

parent node has no left sibling for our node to

be consolidated, abort.

3. Latch the node to be consolidated via a side

traversal from its left sibling. If the left

sibling’s pointer does not equal the node to

be consolidated, abort.

4. Check whether original node remains under-

utilized, and whether its contents will fit into

its left sibling. If so, it will be consolidated.

Otherwise return without consolidating.

5. Remove the index term for the deleted node.

This will cause subsequent searches to access

the left sibling instead.

6. If parent is under-utilized, enqueue a delete

node action for the parent node.

7. Release the latch on the parent. The latch on

left sibling and original page will protect the

consolidation.

8. Delete the original node,

a. copy its data and sibling pointer to the left

sibling, replacing the left sibling’s sibling

pointer

b. de-allocate the node.

9. Return

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

	footer1:

