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Abstract

Why might B-tree concurrency control still be 
interesting?  For two reasons: (i) currently 

exploited “real world” approaches are 

complicated; (ii) simpler proposals are not used 
because they are not sufficiently robust.  In the 

“real world”, systems need to deal robustly with 

node deletion, and this is an important reason 
why the currently exploited techniques are 

complicated.  In our effort to simplify the world 

of robust and highly concurrent B-tree methods, 
we focus on exactly where b-tree concurrency 

control needs information about node deletes, 

and describe mechanisms that provide that 
information.  We exploit the Blink-tree property of 

being “well-formed” even when index term 

posting for a node split has not been completed 
to greatly simplify our algorithms. Our goal is to 

describe a very simple but nonetheless robust 

method.

1. Introduction 

1.1. Early Techniques 

The importance of only holding short 

duration locks on B-tree nodes was recognized 

very early [1,9,16,17].  However, none of the 

early methods can be applied directly to real 

database systems because they cannot recover 

the B-tree correctly should the system crash 

during a structure modification (node split or 

node delete).    

1.2. Techniques Supporting Recovery 

A paper by Mohan and Levine [15] in 

SIGMOD’92, based on an earlier tech report, is 

the earliest paper detailing B-tree concurrency 

with recovery.1  Their method, which exploits 

the ARIES recovery method [14], globally 

serializes structure modifications (B-tree splits 

and node deletions).  It has a structure 

                                                          
1 The analyses in [6,7] deal briefly with the impact of 

recovery on B-tree concurrency, but do not describe a 

complete method.  

modification bit in each page to guard a sub-tree 

whose structure is being modified.  And it has a 

“delete” bit in each page that needs to be tested 

to handle deletes correctly.  These bits and 

latches are encountered during normal operations 

on the B-tree, with the result that these 

operations are made substantially more complex.   

Unwinding of B-tree traversals can result, with 

the need for subsequent re-traversals.  

Furthermore, serialized structure modifications 

reduce concurrency. 

Concurrency is higher when using a method 

based on Blink-trees [6,7,18].  Lomet and 

Salzberg derive their method [12,13] from Blink-

trees.  Their method has two variants, one 

without node deletion and another with it.  In 

both cases, concurrency is very high.  Further, 

when node deletes are not supported, the 

algorithms are quite simple.  Unfortunately, node 

deletes add substantial complexity.   

Blink-tree complexity arises with node 

deletes because there are periods when no latches 

are held on the tree.  Hence, a program may 

acquire a valid node reference, release its latch, 

and when it accesses the node, this node has 

been deleted during the unlatched period.  Two 

problems arise because of this:     

1. Node splits propagate from data leaf upward 

toward the root.  This upward traversal 

cannot latch couple since latch coupling is 

used in the downward traversal.  So there is 

a period in which no latches are held.  If 

node deletes are supported, it is uncertain 

whether the remembered parent of a node 

being split exists.  Guarding against this 

previously entailed a tree re-traversal. 

2. When posting a new index term for a split 

node, it is uncertain whether the new node 

resulting from the split continues to exist.  It 

may have been deleted, again in a period 

when no latches are held.  To guard against 

this previously required that the existence of 

the node be verified.  This meant re-visiting 

the old node and checking whether its side 

pointer still referenced the new node. 
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Dealing with these problems leads to 

decreased performance, decreased concurrency, 

and increased complexity, including the re-

traversal of the tree and the re-visiting of split 

nodes. 

1.3. Simpler Proposal for Node Delete 

With node delete, nodes can disappear 

unexpectedly.  We want to use node addresses 

from the remembered path down the tree to post 

index terms for splits to the parents of the 

splitting nodes.  However, with node deletes, our 

remembered path node pointers may be dangling.   

One way to deal with this is to require that 

the node being deleted “live” until no pointers to 

it exist [16], called the “drain approach” in [19].  

It entails waiting for the page to be empty, 

waiting for pointers to the page to be discarded, 

and only then deleting the page. 

There are, we believe serious reasons why 

this approach, while “simple”, is not robust. 

1. It requires waiting until a node is empty 

before deleting it.  This can sometimes be 

acceptable, e.g., if it is known that most 

deletes are part of a modify involving a 

delete followed by an insert, as would occur 

when an indexed field of a base tuple is 

updated [5].  But this becomes unacceptable 

when deletes occur with any regularity, and 

especially if their distribution is skewed.  

This may be caused, e.g., by purging out-of-

date information, or dropping a set of 

products from an inventory database.  Then 

many under-utilized pages may exist for 

extended periods, compromising utilization.  

The method of [15] also requires pages to be 

empty.  

2. It can require that we update a page to mark 

it as empty prior to finally deleting it.  Extra 

updates lead to extra logging, and potentially 

extra writes of the page back to disk. 

However, we need not worry about dangling 

references across crashes since B-tree node 

references don’t span crashes.  Thus, in effect, a 

system crash does drain any delete state that we 

need to track whether references are dangling.   

1.4. Our Contribution 

Unlike prior approaches, we do not focus on 

revalidating references via tree re-traversal to 

check whether nodes have been deleted.2

Instead, we remember how many nodes have 

been deleted, this number being maintained as 

“delete state”.  When we want to directly access 

a node of the tree in a structure modification 

action, we check whether delete state has 

changed since we discovered the need for the 

action.  If not (the high frequency case), we use 

the remembered node reference since no node 

has been deleted in the interval of interest.   

We use latch coupling to ensure that 

ordinary B-tree traversals do not need to check 

delete state.   Thus, delete state is checked only 

during B-tree structure modifications.  Since a 

characteristic of Blink-trees is that the tree is 

search correct even when such structure 

modifications are deferred, we choose to 

abandon the modifications if we discover that 

delete state has changed.   This avoids re-

traversals even in this case. 

We describe this new approach in the 

remainder of the paper.  In section 2, we provide 

an overview of the approach.  Section 3 

describes in some detail the specifics of the 

operations that the Blink-tree needs to support, 

and how the “delete state” approach simplifies 

these operations.  In section 4, we describe how 

we separately track leaf level deletes and internal 

node deletes, and explain why this is 

advantageous.  We very briefly discuss how this 

technique generalizes to handle multi-attribute 

indexing in section 5.  Finally, an appendix 

provides pseudo-code for some of operations that 

index trees need to support. 

2. Overview of Our Approach 

2.1. Our Starting Point: B
link

-Trees  

We want to deal with node deletion robustly, 

while preserving the simplicity and high 

concurrency of the Blink-tree approach.  The 

problem with node deletion as a general 

operation is that we need to know when nodes 

                                                          
2 Previous methods [12,13,15] optimize the re-

traversal by remembering node LSN’s.  But the 

complexity of re-traversal is not avoided.  Further, 

performance and concurrency are impacted since each 

node on the remembered path has to be re-latched and 

re-accessed.  Extra accesses involve extra memory 

fetches that are likely to be cache misses, which are 

very expensive on modern processors. 
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whose addresses we remember continue to exist, 

even when we have permitted the possibility that 

they may be deleted.   

There are additional issues to deal with.  

Any method has to permit the desired locking so 

as to serialize transactions correctly.  Sorting out 

transactional locking is not trivial, but can be 

made largely independent of Blink-tree latching.  

We will discuss briefly how transactional 

locking interacts with tree maintenance.   

We must also ensure that Blink-tree

mechanisms do not interfere with transactional 

operations during crash recovery. This problem 

was solved in [13] using multi-level recovery 

[11], and we assume multi-level recovery is used 

here.  Thus, we needn’t worry about partially 

completed structure modifications resulting from 

system crashes.  Structure modifications are 

recovered first, restoring the Blink-tree to a well-

formed state prior to the recovery of 

transactional operations that require a well-

formed Blink-tree.

We want to support a framework that 

provides concurrency control and recovery, 

leaving the details of search and update within 

the nodes of the index tree to be determined by 

the specific data being indexed.  This 

independence of Blink-tree support mechanisms 

from the index operations for specific forms of 

data is essential for a general indexing 

framework [8,13].  

2.1. B
link

-tree Fundamentals 

A big plus for the Blink-tree is that it is well 

formed after a “half split” [19].   A half split 

allocates a new node and divides the full node’s 

data between the full node and a new node.  This 

half split must be done to accommodate the 

addition of data to the Blink-tree.

Figures 1, 2 and 3 show the node splitting 

process in a Blink-tree.    Figure 1 shows the tree, 

with its side pointers, prior to the splitting of 

node F.  Figure 2 shows the tree after the new 

node G is allocated and the contents of node F 

are divided between F and G.  Note that node G 

is not referenced by an index term in Parent.  

Data in node G is found by means of a side 

traversal from node F.  Finally, in Figure 3, the 

index term for G is posted to the parent.  The 

important essential characteristic of the Blink-tree

is that data in G is accessible even when it is not 

referenced by an index term in Parent. 

Figure 1: Blink-tree before split.  Node F is 
full.

Figure 2: First “half split”: contents of 
node F are divided between F and G.  

Figure 3: Second “half split”: new index 
term for G is posted to parent. 

With side traversals, we know both the node 

address and the key space description for an 

index term because side links contain this 

information, exactly as with a child link (see 

Figure 3).  Thus, our Blink-tree is what was called 

a Pi-tree in [12,13].  We use the term “Blink-tree” 

in the sequel because it is more widely 

recognized, but the reader should not forget that 

the sibling links contain space descriptions as 

well as node addresses.  The key space 

Parent

Node P Node F Node S 

Node G 

Parent

Node P Node F Node S 

Node G 

Parent

Node P Node F Node S 

Sibling link is   

<key space, ptr>

Sibling link is   

<key space, ptr>
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descriptions are exploited below to enable our 

lazy structure modification approach. 

2.2. Tracking Deletes 

We track “delete state” so that we can be 

sure when a node has not been deleted.  We 

introduce two delete states to deal separately 

with the two complications resulting from node 

deletes: (i) a parent to which we want to post an 

index term may have been deleted; (ii) a new leaf 

node for which we want to post an index term 

may have been deleted.   

Index delete state (DX) indicates whether it is 

safe to directly access a parent node (hence an 

index (internal) node, not a data (leaf) node) 

without re-traversing the B-tree.  Index nodes are 

deleted in less than 1% of the node deletes. DX

has to answer for all nodes above the leaf level; 

and it must be maintained outside of the tree 

since any index node may be deleted.   Testing 

DX will return “yes” if an index node may have 

been deleted and “no if an index node cannot 

have been deleted.     

Data delete state (DD) indicates whether it is 

safe to post an index term for a new data node 

that resulted from a data node split.  Since we 

access the parent of the new data node in any 

event, keeping DD state tightly associated with 

the parent causes no extra page accesses.  

Further, data node deletes are much more 

common than index node deletes, and so there is 

real value to localizing data node deletes to a 

sub-tree.  Hence we maintained DD state in each 

parent of a leaf.  Testing DD(nodeA) returns 

“yes” if data nodeA may have been deleted, and 

“no” if data nodeA cannot have been deleted.   

Higher up in the tree, DX is used for this 

verification.   

For both delete state tests, we can be 

conservative, returning “yes” even when the 

node we are asking about has not been deleted.  

Our algorithms will still work correctly, simply 

triggering a delay in propagating index terms up 

the tree.  Because we are using a Blink-tree, the 

tree remains search correct even when index 

terms are missing.  Since we only need to check 

delete state during structure modifications, 

normal Blink-tree operations can be almost 

completely unaffected. 

2.3. Exploiting Laziness for Simplicity 

Our goal is simplicity, including for 

structure modifications.  When we know that 

nodes have not been deleted, we have a very 

simple structure modification mechanism. We 

simply promptly post the index term for a node 

split, and promptly delete under-utilized nodes. 

However, what happens if an index term has not 

been posted or a node has not been deleted? 

The Blink-tree enables correct search when 

index terms are not posted, and when under-

utilized nodes continue to exist.  There is thus 

never a case where index posting or node 

deletion changes to the Blink-tree are required for 

continued operation of the tree.  Normal reading 

and updating of indexed data can continue as the 

Blink-tree is always well-formed, even after a half 

split with an index term that has not been posted.  

Search is slower, however, because the side-

traversal adds an extra node access to the search 

path.  Hence, we want to make these structure 

changes as soon as it is “convenient”. 

Blink-trees thus enable lazy structure 

modification to be our strategy.  Whenever we 

need to access a node further up the tree, e.g. as 

we would to post an index term, this access will 

start a new atomic action.  We exploit a volatile

to-do queue of structure modification actions that 

can be acted upon independently of mainline 

processing.  This queue does not survive system 

failures. 

1. We enqueue an index posting action on the 

to-do queue whenever we split a node.  We 

do the first half-split “in line” because this 

must be done to accommodate the newly 

entered data.   

2. We enqueue a node delete action on the to-do
queue whenever we encounter an under-

utilized node.  The node does not need to be 

empty.  We can set any utilization lower 

bound that we wish.   

We abort enqueued actions should we detect 

a node delete that might impact the action.  Such 

a node delete can lead to a substantial 

complication in what the action needs to do. This 

abort can result, e.g., in index terms not being 

posted.   When a structure modification is 

aborted, we eventually re-discover the need for it 

and re-enqueue the action.   We exploit this 

mechanism as well to deal with lost structure 

modifications that result from system crashes.  
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We re-discover the need for an index term 

posting during a Blink–tree side traversal; such a 

side traversal can only occur if we were directed 

to a predecessor page because an index term was 

not posted for the target page.   Because our 

sibling links contain the key space description as 

well as the sibling’s node address, we have the 

complete index term and so can fully describe 

the index term to be posted. 

2.4. Latches and Locks 

Latches are light-weight “locks” which 

provide exclusion without the need to go to the 

lock manager.  Hence, the overhead for setting 

and releasing a latch is an order of magnitude 

smaller than for locks.  “Real” B-tree 

implementations all use latches because of this 

performance gain.  All users of latches are, 

however, required to acquire latches in the same 

consistent partial order so that deadlocks among 

latches are impossible.3

Like locks, latches come in multiple modes, 

share, exclusive, and update [3].  We do not need 

multi-granularity modes as the resource being 

latched is almost always a single node, and in 

any event does not impose a resource hierarchy.  

Share latches are compatible with each other and 

with update latches.  Update latches are not 

compatible with each other.  Exclusive latches 

are not compatible with any other latches.    

Downward traversals of the tree exploit 

“latch coupling” in which, from a latched 

precursor node n1, a node n2 referenced by n1 is 

latched prior to the latch on n1 being released.  

This ensures that n2 cannot have been deleted 

between acquiring its reference and accessing it.  

Note that latch coupling does not increase the 

number of latches acquired, though it does 

increase the time that they are held.  Usually this 

will be minimal as most internal nodes are in the 

database’s main memory cache.   

The use of latch coupling in downward 

traversals imposes the partial order on latches, an 

ordering that is down the tree and to the right 

following side pointers.  Thus, upward 

traversals, e.g. to post index terms, cannot use 

latch coupling because of the risk of undetected 

deadlocks with downward traversals. 

The lock manager knows nothing about 

latches. Thus, a lock wait while holding a latch 

can produce undetected deadlocks.  This is a 

                                                          
3 The lock manager detects deadlocks among locks.  

Users are required to order latching to avoid deadlock.  

problem whenever latches are used, including in 

other data organizations.  The usual solution is to 

ask for the lock in “no wait” mode [15].  Almost 

always this request succeeds and normal 

program execution continues since lock conflicts 

are the exception.  Otherwise, if the lock is held, 

the request returns immediately with an 

indication that the lock was not granted, instead 

of blocking and waiting for the lock,  

When a lock is denied, the program gives up 

its latch, and re-requests the lock, this time 

blocking until the lock is granted.  Once the lock 

is acquired, the latch is re-requested.  It is here 

that the B-tree complication occurs, because the 

node that needs to be latched may have changed 

as a result of a structure modification.  That is, 

the data that a program wants to access may no 

longer be in the original node. Hence, we need to 

once again find the node that contains the data 

that we wish to access.  This is a problem for all 

B-tree methods that use latches.  And it requires 

that we re-traverse the tree (to some extent) to 

find the node that needs to be latched. 

A re-traversal is required in our method as 

well.  We can optimize the re-traversal however.  

During the original downward tree traversal, we 

remember the path.  There are two cases.  Both 

check DX to see if an index node delete has 

occurred.  If it has not, then:   

1. Re-latching a non-leaf node: we re-latch the 

original node, and traverse to a sibling if a 

node split has occurred, using latch 

coupling.    

2. Re-latching a leaf node: we re-latch the 

parent of our leaf node and traverse to the 

leaf node currently containing the data that 

we just locked, using latch coupling.  

Finding the correct leaf can be immediate if   

DD indicates that the remembered leaf node 

still exists. 

In either case, if DX indicates a node delete 

has occurred, we can abort the transaction.  Such 

aborts are rare.  The “no-wait” lock request will 

almost always succeed because lock conflicts are 

few. So re-traversals are rare.  Furthermore, DX

changes are extremely rare. So, re-traversals are 

very fast, accessing only one or two nodes.  We 

can bury the complexity of the re-traversal inside 

a re-latch procedure, which we call should our 

“no-wait” lock request fail.   We provide re-latch
with a path, the level of the desired page to latch, 

and a key. 
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3. Operations on the B
link

-tree

In this section, we give an overview 

description of how our Blink-tree approach 

supports the operations a database index needs to 

provide. 

3.1. Normal Operations 

B-trees support a number of operations, not 

all of which we will fully explore here.  The 

principal operations are: 

1. Read a record: tree traverse followed by an 

access to the found page to read node the 

record requested.   

2. Range read: a tree traverse followed by the 

accessing of potentially multiple pages to 

return records in the range.   This is done via 

a series of fetch operations. 

3. Insert, update, or delete a record: tree

traverse followed by an access to the found 

node, and an update, insert, or delete of the 

record in an update node operation.    

Below, we provide an overview of the 

preceding operations.  The step by step 

descriptions of these operations are more fully 

described in the appendix. 

3.1.1. Traverse Tree. Given a key, a node of the 

B-tree, and the level of the node that is desired in 

the tree, traverse returns the address of the node 

containing the key at the level desired.   Latch 

coupling is performed both down the tree and for 

sibling traversals.  The latch ordering is a partial 

order proceeding down the tree and to the 

“right”, hence preventing deadlocks. 

Latch coupling prevents a node deleter from 

accessing and deleting node n2 in the tree 

traversal between the time the index term for n2

is found in node n1 and n2 is accessed.  We do 

not have to check delete state as n2 cannot have 

been deleted without a prior access to n1, which 

latch coupling prevents.  Latch coupling isn’t 

required if node deletes cannot occur.  Tree 

traversal via latch coupling is one of two places 

outside of access parent (see below) in which 

support for node deletes has an impact. 

Tree traversal latches differ depending upon 

the type of operation using them.  But this 

difference only manifests itself when we reach 

the level of the tree that has been requested.  

Nodes higher in the tree than the requested level 

are latched in share mode.  Latches for nodes at 

the level requested are share mode for reads and 

update mode for updates.  The update latch on 

the final node in the traversal for updates is then 

promoted to exclusive before exiting traverse.

We use an update latch for updaters to avoid the 

deadlock that may arise when two updaters both 

trying to promote their latches to exclusive.4

3.1.2. Read Node. We assume that a share latch 

is held on the node being read when this starts.  

Read node is not impacted by our handling of 

node delete.   We are at the correct node, so we 

find the correct entry and return it.  We enqueue 

a delete node action if we find the node is under 

utilized.  

3.1.3. Update Node.  We assume an exclusive
latch is held on the node being updated when 

update node starts.  Update node is not impacted 

by our handling of node delete.   We are at the 

correct node, so we find the correct place in the 

node and do the update, be it an insert, delete or 

record update.   If the update does not fit in the 

node, we do a split node action and try again. We 

enqueue a delete node action if we find the node 

is under utilized.  

3.1.4. Fetch Next (Previous).  Reading a key 

range of records involves more.  We make only a 

comment about range reads.  We use side 

pointers for B-tree concurrency control, not for 

enabling range reads via side pointer traversals.  

One might use them for range reads, but of 

course, they only are effective in a single 

direction.   

Instead, we describe a technique that does 

not require side pointers to do range reads.  

Without side pointers, one avoids doing 

additional tree traversals by remembering the 

path down the tree.  A “cursor” is maintained for 

the range. This cursor contains the path 

information.  It shifts forward or backward as 

fetching proceeds.   

For good range search performance, we 

want to avoid continually re-traversing the tree 

from the root.  Our delete information makes this 

possible, even though we cannot maintain page 

latches continuously on the leaf nodes in the 

range.  Hence, remembered nodes can be deleted 

during a range search.  We use the re-latch 

procedure of 2.4 to deal with this. 

                                                          
4 An exclusive latch must be held on a page before it 

can be changed.  Update latches permit some sharing 

until it is sure that the page to be changed is identified. 
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3.2. Structure Modifications 

Structure modification operations labeled as 

atomic actions are those we designate as “low 

level” transactions in the multi-level transaction 

hierarchy.  These are actions that must be 

recovered prior to the recovery of “user” 

transactional level operations.   Atomic actions 

[10] are like transactions in their atomicity and 

isolation, but durability is not required. 

3.2.1. 1
st
 Half Split: Split Node (atomic 

action). We split a node using the usual Blink-tree

method involving two “half splits” (Figs. 1, 2, 3).   

Move old node high range contents and 

old side pointer to new node, and update 

side pointer in old node to point to new 

node. 5

Post index term for new node in parent. 

Here we describe only the first half-split. The 

posting of the index term describing this split to 

the parent node is done as an update of the parent 

in a separate enqueued action.  The impact of our 

approach for handling node deletion is all 

encapsulated in our access parent routine during 

the posting of the index term to the parent node. 

This first half-split is the one tree 

modification action that must be done promptly.  

Otherwise, we would have to abort transactions 

whose updates caused nodes to become overly 

full.  The important property of Blink-trees is that 

this can always be done under a latch that we are 

already holding.   And the updating is confined 

to original node and new node.  This atomic 

operation will typically involve two log records, 

one for each node, followed by a commit log 

record (which could be included in the second 

record).  Only the contents of the original node 

are blocked from concurrent activity elsewhere. 

3.2.2. Access Parent. Other Blink-tree 

modifications are performed lazily.  Actions are 

enqueued on our to-do queue and all use the 

access parent routine.   

Access parent accesses the parent of the 

splitting node (or node to be deleted) so that the 

index term can be inserted (deleted).  It is given 

the remembered parent node address and returns 

with the current parent node latched if it 

determines that the parent has not been deleted.  

This parent may, because of concurrent splitting, 

be a sibling of the original parent.  An error is 

returned if the parent may have been deleted.  No 

                                                          
5 We can leave the moved contents in the old node to 

avoid needing an undo log record for it. 

latches can be held when executing access

parent so that latch deadlocks cannot occur. 

As a parent node must be an index node, we 

check DX state to ensure that we can safely 

access “up the tree”.  The parent is guaranteed to 

exist when DX has not changed.  This is the key 

test that makes it possible for us to deal with 

node deletion while avoiding re-traversal of the 

tree.  Once the parent is latched, it cannot be 

deleted until it is unlatched.     

Within access parent, we use delete state to 

avoid having to verify that index term posting is 

still required, and that the descendent node has 

not been deleted.  We use DX for this purpose if 

the descendent is an index node.  Since data node 

deletes are not captured in the DX state, we use 

our separate DD state for data node descendents.  

This is illustrated in Figure 4.  We use the double 

arrow in Figure 4 to indicate latch ordering, 

where we must latch DX prior to latching Parent, 

and the DX latch is not released until the Parent is 

latched, hence latch coupling.   DD is protected 

by the Parent latch. 

Within access parent, we also do all 

updating of delete state.  Access parent is called 

indicating whether it is handling a delete or an 

index posting.  In the case of delete, it 

determines whether an index node or a data node 

is the target of the delete.  If access parent

returns normally, it will have updated the 

appropriate delete state, either DD or DX.

Because delete state information can be 

conservative, we can safely assume the 

completion of the node deletion action that is to 

follow. 

Figure 4: For index term posting for leaf 
nodes, “access parent” checks DX to 
ensure that Parent exists, and DD in 
Parent to ensure that G exists. 

Index posting 

for Node G

Parent  

DD

Node P  Node F Node S 

Node G 

DX

Leaf level

Volatile state
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Thus, access parent encapsulates all 

updating and testing of both forms of delete 

state, and for both parent node existence 

validation and for index term posting 

verification. 

3.2.3. 2
nd

 Half Split: Post Index Term (atomic 

action).  Our access parent routine determines 

whether posting an index term will be successful.  

If access parent returns normally with the parent 

node identified and latched, we use update node 

to post the index term.  This can, of course, lead 

to a split of this parent node.  But this is a 

separate atomic action, fully decoupled from the 

preceding split that triggered this index posting. 

If access parent returns an exception, then 

rather than continuing to try to post the index 

term, we simply abort the index term posting and 

return.  Deletes should be sufficiently rare so that 

this is not an issue. 

3.2.4. Delete Node (atomic action). Our delete 

node action permits us to consolidate all data 

nodes with low occupancy except for the left 

most sibling of a parent node.  However, this 

consolidation will permit us to eventually 

consolidate the parent, and parent consolidation 

will permit the eventual consolidation of what 

were originally left most siblings. 

We burden delete node so that dealing with 

splits is easy.  Hence, delete node maintains the 

delete state information DX and DD.  Delete node

uses the access parent routine to access the 

parent node of a delete node candidate.   Access

parent updates the delete state information as it 

accesses the parent, and latches it.  At this point 

it removes the index term for the candidate. 

Delete node then exclusive latches and 

accesses the left sibling of the candidate, and the 

candidate itself, and releases the parent node 

latch, in that order. The contents of the deletion 

candidate are moved to the left sibling and the 

deletion candidate is then de-allocated.  

4. Tracking Node Deletion 

Here we describe how we track node 

deletions, and what the nature of the node 

deletion test might be when we attempt to 

perform a Blink-tree structure modification.    

4.1. Delete State 

The requirements for index and data node 

deletes are sufficiently different, both in usage 

and frequency, that we represent their node 

deletion states separately.   

There are several ways to represent 

information about node deletes.  We present just 

one, which has the benefit of simplicity by 

exploiting only approximate information which 

is conservative.  It is possible to maintain precise 

information about deleted nodes, but we doubt 

its necessity. 

4.1.1. Index Delete State.  Index node delete 

state DX determines whether we can directly 

access a parent node for posting an index term or 

performing a node deletion, which requires the 

removal of the deleted node’s index term in its 

parent.  It is updated whenever an index node is 

deleted.  It is checked when we want to access 

the parent.  During an access to the parent, if DX

has changed, the parent may have been deleted, 
so we return an exception.   

We maintain DX as a counter that is 

incremented whenever an index node is deleted.  

Before we enqueue an action on our work queue 

we must have accessed and remembered the DX

value.  When we enqueue the action, we enter 

the remembered DX value with the action on the 

queue.   

When we go to access the parent, if DX has 

changed, we treat this as if the parent has been 

deleted.  This conservative method should work 

fine if deletes are not common.  Because we 

track data node deletes separately from index 

node deletes, DX rarely changes.  Over 99% of 

node deletes will be for data nodes.  This means 

that almost always, parent access will be 

successful.   

During an unsuccessful parent access, we 

remember the new DX counter value so that when 

the need for the index posting is detected again, 

we will enter the more recent DX value with the 

enqueued action, hence making it possible for 

this later action to complete successfully. 

4.1.2. Data Delete State.  We use DD state to 

determine whether leaf (data) nodes may have 

been deleted.  If not, then we know that a new 

node resulting from a split will not have been 

deleted, and hence we can, without further 

checking, post its index term in its parent node.   

It is natural to store the DD state describing 

node deletes among a sub-tree of data nodes in 

their parent index node.  That is, each such 

parent node contains DD state that tracks the 

deletes of its descendents. We are accessing the 

parent index node in any event during the 

posting operation for any of these descendent 

Proceedings of the 20th International Conference on Data Engineering (ICDE’04) 
1063-6382/04 $ 20.00 © 2004 IEEE 



nodes.  Thus, unlike with DX, we can check DD

after we have accessed the parent, not before. 

There are two additional reasons why it is 

useful (though not essential) for DD state to be in 

these “parent of leaves” index nodes. 

1. If DD state persists across periods when the 

index node is not in the cache, fewer index 

postings will be aborted.  With DD in the 

node, we will retrieve it when this index 

node is again fetched into the cache.6

2. We protect DD with the same latch used to 

access the “parent of leaves” node that 

contains it.  Thus we avoid any need to 

protect DD with a separate latch. 

As with DX state, we maintain DD as a 

counter.  Whenever we delete a data node in the 

sub-tree of this parent node, we need to have the 

parent latched and accessed.  Hence, we update 

DD during data node delete with little overhead.   

If DD for the parent node has changed when 

we attempt to post an index term for a new data 

node split, then the new node may already have 

been deleted, and hence no index term posting is 

required.  In that case, we abort the posting.   We 

may subsequently find that we have not yet 

posted an index term for this node, in which 

case, we place the posting action on our to-do
queue again. 

To make this “optimistic” approach work, 

we remember the prior value for DD when we 

visit the node on the way to a leaf node.  No 

additional latching is required.  An enqueued 

action will also include the remembered DD.

4.1.3. Volatile Delete State.  Neither DX nor DD

need be stable as (i) we are only interested in 

changed delete state since an action was 

enqueued; and (ii) no enqueued actions cross 

system crash boundaries.  Thus no logging is 

needed to make them persistent.  

4.2. Node Delete Impact 

The following summarizes the incremental 

work needed to support node deletion over that 

needed when node deletion is not supported. 

4.2.1. Impact outside structure modifications: 

a) read and remember DX state prior to 

accessing Blink-tree

                                                          
6 We do not need to log changes to DD as its exact 

value is not of interest, only the changes in value. 

b) read and remember DD state in parent of leaf 

before accessing a data node 

c) include remembered DD or DX on enqueued 

structure modifications 

d) latch coupling during traverse instead of 

holding only single latch at a time. 

4.2.2. Impact during structure modifications: 

all these are within access parent.

a) set DX state when deleting index node  

b) set DD state when deleting data node  

c) compare DX to remembered DX before 

accessing parent  

d) compare DD state to remembered DD state to 

verify that new data node from split still 

exists 

e) abandon structure modifications should 

delete states DX or DD indicate node delete  

The enqueuing of structure modification 

actions in order to optimize the index is already 

required to deal with system crashes.   We now 

exploit this lazy mechanism more frequently, i.e. 

when we detect possible node deletes.  

5. Generalized Indexing Methods 

This paper has focused on Blink-trees, but the 

approach described can be generalized to work 

with multi-attribute methods as well.   Previous 

papers [2,12,13] describe the general approach.  

How we handle deletes here is directly 

applicable to the more general case.  Note that 

the approach cannot be used directly with R-trees 

[4] because the space descriptions for R-tree 

index terms can change. 
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Appendix A: B
link

-tree Operations 

We elaborate here on some of the common 

operations involved with concurrency control 

and recovery and its interaction with index tree 

structure modifications.  Our descriptions are 

intended to reveal some of the difficulties that 

need to be addressed when using our method, not 

as full descriptions of all operation intricacies.  

Also, how to apply our technique to any 

particular database system needs to take into 

account the specifics of the target system. 

A.1. Traverse tree 

We assume starting node, nodeA, is latched 

in the appropriate mode.  The found node is left 

latched when traverse returns.  The search 

proceeds down to the requested level reqlevel.  

Traverse does the following: 

1. Search nodeA for correct entry entryA.   

2. Latch the node referenced by entryA, and call 

it nodeB.

3. Release the latch on nodeA.

4. If entryA points to a sibling node, enqueue 

post index term action for <entryA,nodeB> 
at parent(nodeA).

5. If nodeA is under-utilized, enqueue a node

deletion action for nodeA at parent(nodeA)

6. If level(nodeB) > reqlevel or nodeB is sibling  

a. then return(traverse(nodeB, reqlevel))  

i. note that nodeB becomes the nodeA
for the new invocation, and that 

nodeB is latched as required 

b. else return(nodeB)

A.2. Split node 

We assume a latch is held on the “original” 

node to be split.  Then split node does the 

following: 

1. Allocate new node.  (No latch is required as 

the node is invisible to the rest of the tree). 

2. Split data between original and new node. 

3. Assign to new node sibling pointer the 

original node sibling pointer.  

4. sibling_ptr(new) gets sibling_ptr(original) 

and sibling_ptr(original) gets a pointer to the 

new node, with new node’s space descriptor. 

5. Enqueue a post index term operation for the 

parent of the original node on TODO queue.   
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A.3. Access Parent  

Access parent does the following: 

1. Latch DX in share mode if the call is for post

index term, in exclusive for delete node.

2. If test of DX shows delete has occurred), 

release DX latch and return error. 

3. If the parent access is for an index node 

deletion, update DX.

4. Latch node requested and release DX latch.

5. Use traverse(node, level(node)) to find 

parent. This checks if node continues as the 

parent or whether node has split and real 

parent is a sibling of remembered node.   

6. If the parent access is for a data node 

deletion, then update DD state.

7. Else if access parent is to post index term for

a.  data node: if DD(node) has changed then 

release the node latch and return error.

b. index node: if DX has changed, then 

release node latch and return error. 

8. Return. 

A.4. Post Index Term

We assume that no latches are held when we 

start the posting of the index term.  Post index 

term is very simple: 

1. Access parent of split node via access 

parent.  This will check the “delete states”.  

If error returned, abort.  

2. Update node atomic action posts index term 

3. Return  

A.5. Delete Node (atomic action) 

The steps in delete node are as follows: 

1. Perform access parent.   If an error is 

returned, abort. 

2. Retain the latch on the parent while latching 

the left sibling of the original node.  If the 

parent node has no left sibling for our node to 

be consolidated, abort. 

3. Latch the node to be consolidated via a side 

traversal from its left sibling.  If the left 

sibling’s pointer does not equal the node to 

be consolidated, abort. 

4. Check whether original node remains under-

utilized, and whether its contents will fit into 

its left sibling.  If so, it will be consolidated.  

Otherwise return without consolidating.   

5. Remove the index term for the deleted node.  

This will cause subsequent searches to access 

the left sibling instead. 

6. If parent is under-utilized, enqueue a delete 

node action for the parent node.  

7. Release the latch on the parent.  The latch on 

left sibling and original page will protect the 

consolidation. 

8. Delete the original node,  

a. copy its data and sibling pointer to the left 

sibling, replacing the left sibling’s sibling 

pointer 

b. de-allocate the node.   

9. Return 
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