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DEFINITION
Linear Hashing is a dynamically updateable disk-based index structure which implements a hashing scheme and
which grows or shrinks one bucket at a time. The index is used to support exact match queries, i.e. find the
record with a given key. Compared with the B+-tree index which also supports exact match queries (in logarithmic
number of I/Os), Linear Hashing has better expected query cost O(1) I/O. Compared with Extendible Hashing,
Linear Hashing does not use a bucket directory, and when an overflow occurs it is not always the overflown bucket
that is split. The name Linear Hashing is used because the number of buckets grows or shrinks in a linear fashion.
Overflows are handled by creating a chain of pages under the overflown bucket. The hashing function changes
dynamically and at any given instant there can be at most two hashing functions used by the scheme.

HISTORICAL BACKGROUND
A hash table is an in-memory data structure that associates keys with values. The primary operation it supports
efficiently is a lookup: given a key, find the corresponding value. It works by transforming the key using a hash
function into a hash, a number that is used as an index in an array to locate the desired location where the values
should be. Multiple keys may be hashed to the same bucket, and all keys in a bucket should be searched upon a
query. Hash tables are often used to implement associative arrays, sets and caches. Like arrays, hash tables have
O(1) lookup cost on average.

SCIENTIFIC FUNDAMENTALS
The Linear Hashing scheme was introduced by [2].

Initial Layout The Linear Hashing scheme has m initial buckets labelled 0 through m−1, and an initial hashing
function h0(k) = f(k) % m that is used to map any key k into one of the m buckets (for simplicity assume
h0(k) = k % m), and a pointer p which points to the bucket to be split next whenever an overflow page is
generated (initially p = 0). An example is shown in Figure 1.

Bucket Split When the first overflow occurs (it can occur in any bucket), bucket 0, which is pointed by p, is
split (rehashed) into two buckets: the original bucket 0 and a new bucket m. A new empty page is also added
in the overflown bucket to accommodate the overflow. The search values originally mapped into bucket 0 (using
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Figure 1: An initial Linear Hashing. Here m = 4, p = 0, h0(k) = k % 4.

function h0) are now distributed between buckets 0 and m using a new hashing function h1.
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Figure 2: The Linear Hashing after inserting 11 into Figure 1. Here p = 1, h0(k) = k % 4, h1(k) = k % 8.

As an example, Figure 2 shows the layout of the Linear Hashing of Figure 1 after inserting a new record with key
11. The circled records are the existing records that are moved to the new bucket. In more detail, the record is
inserted into bucket 11 % 4 = 3. The bucket overflows and an overflow page is introduced to accommodate the
new record. Bucket 0 is split and the records originally in bucket 0 are distributed between bucket 0 and bucket
4, using a new hash function h1(k) = k % 8.
The next bucket overflow, such as triggered by inserting two records in bucket 2 or four records in bucket 3 in
Figure 2, will cause a new split that will attach a new bucket m+1 and the contents of bucket 1 will be distributed
using h1 between buckets 1 and m+1. A crucial property of h1 is that search values that were originally mapped
by h0 to some bucket j must be remapped either to bucket j or bucket j + m. This is a necessary property for
Linear Hashing to work. An example of such hashing function is: h1(k) = k % 2m. Further bucket overflows will
cause additional bucket splits in a linear bucket-number order (increasing p by one for every split).

Round and Hash Function Advancement After enough overflows, all original m buckets will be split. This
marks the end of splitting-round 0. During round 0, p went subsequently from bucket 0 to bucket m− 1. At the
end of round 0 the Linear Hashing scheme has a total of 2m buckets. Hashing function h0 is no longer needed
as all 2m buckets can be addressed by hashing function h1. Variable p is reset to 0 and a new round, namely
splitting-round 1, starts. A new hash function h2 will start to be used.
In general, the Linear Hashing scheme involves a family of hash functions h0, h1, h2, and so on. Let the initial
function be h0(k) = f(k) % m, then any later hash function hi(k) = f(k) % 2im. This way, it is guaranteed that
if hi hashes a key to bucket j ∈ [0..2im− 1], hi+1 will hash the same key to either bucket j or bucket j + 2im. At
any time, two hash functions hi and hi+1 are used.
Figure 3 and Figure 4 illustrates the cases at the end of splitting-round 0 and at the beginning of splitting-round
1. In general, in splitting round i, the hash functions hi and hi+1 are used. At the beginning of round i, p = 0
and there are 2im buckets. When all of these buckets are split, splitting round i + 1 starts. p goes back to 0. the
number of buckets becomes 2i+1m. And hash functions hi+1 and hi+2 will start to be used.
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Figure 3: The Linear Hashing at the end of round 0. Here p = 3, h0(k) = k % m, h1(k) = k % 21m.
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Figure 4: The Linear Hashing at the beginning of round 1. Here p = 0, h1(k) = k % 21m, h2(k) = k % 22m.
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Component Summary and Search Scheme In summary, at any time a Linear Hashing scheme has the following
components:

A value i which indicates the current splitting round.
••A variable p ∈ [0..2im− 1] which indicates the bucket to be split next.
•A total of 2im + p buckets, each of which consists of a primary page and possibly some overflow pages.
•Two hash functions hi and hi+1.

A search scheme is needed to map a key k to a bucket, either when searching for an existing record or when
inserting a new record. The search scheme works as follows:

If hi(k) ≥ p, choose bucket hi(k) since the bucket has not been split yet in the current round.
(a)(b)If hi(k) < p, choose bucket hi+1(k), which can be either hi(k) or its spit image hi(k) + 2im.

For example, in Figure 2, p = 1. To search for record 5, since h0(5) = 1 ≥ p, one directly goes to bucket to find
the record. But to search for record 4, since h0(4) = 0 < p, one needs to use h1 to decide the actual bucket. In
this case, the record should be searched in bucket h1(4) = 4.

Variations A split performed whenever a bucket overflow occurs is an uncontrolled split. Let l denote the Linear
Hashing scheme’s load factor, i.e., l = S/b where S is the total number of records and b is the number of buckets
used. The load factor achieved by uncontrolled splits is usually between 50-70%, depending on the page size and
the search value distribution [2]. In practice, higher storage utilization is achieved if a split is triggered not by an
overflow, but when the load factor l becomes greater than some upper threshold. This is called a controlled split
and can typically achieve 95% utilization. Other controlled schemes exist where a split is delayed until both the
threshold condition holds and an overflow occurs.
Deletions will cause the hashing scheme to shrink. Buckets that have been split can be recombined if the load
factor falls below some lower threshold. Then two buckets are merged together; this operation is the reverse of
splitting and occurs in reverse linear order. Practical values for the lower and upper thresholds are 0.7 and 0.9,
respectively.
Linear Hashing has been further investigated in an effort to design more efficient variations. In [3] a performance
comparison study of four Linear Hashing variations is reported.

KEY APPLICATIONS
Linear Hashing has been implemented into commercial database systems. It is used in applications where exact
match query is the most important query such as hash join [4]. It has been adopted in the Icon language [1].

CROSS REFERENCE
Hashing, Extendible Hashing, Bloom Filter.
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