
LINEAR HASHING : A NEW TOOL FOR FILE AND TABLE ADDRESSING.

Witold Litwin

I. N. Ft. I. A.
78 150 Le Chesnay, France.

Abstract.

Linear hashing is a hashing in which the
address space may grow or shrink dynamically. A
file or a table may then support ally number of
insertions or deletions without access or memory
load performance deterioration. A record in the
file is, in general, found in pale access, while
the load may stay practically constant up to 90 %.
A record in a table is found in a mean of 1.7
accesses, while the load is constantly 80 %. No
other algorithms attaining such a performance are
known.

1. B.

The most fundamental data structures are files
and tables of records identified by a primary key.
Hashing and trees (B-tree, binary tree,..) are
the basic addressing techniques for those files
and tables, thousands of publications dealed with
this subject. If a file or a table is almost
static, hashing allows a record to be found in
general in one acoess. A tree always requires
several accesses. However, when the file or the
table is, as usually, dynamic, then a tree still
works reasonably well, while the performance Of
hashing may become very bad. It may even become
necessary to rehash all records into a new file.

We have shown, however, in /LIT77/ that hashing
may be a tool for dynamic files, if the hashing
function is dynamically modified in the course of
insertions or deletions, We have called this new
type of hashing yj,&& hashitlp. (VH), in contrast
to the well known hashing with a static function,
which we will refer to as qJ.a&&& Through an
algorithm called VHO /LIT77/, we have shown that a
record in a dynamic file may typically be found in
two accessses, while the load stays close to 70 %

/LIT77a/. Another algorithm, called VHl /LIT78/, /
LIT78a/, has shown that a record may even be found
typically in one a&ass, while the load during
insertions oscillates between 45 % and 90 % and is
67.5 % on average. It showed also that the average
load during insertions may be always greater than
63 % and almost always greater than 85 5, if we
accept that the average successful search requires
1.6 accesses /LIT79a/. Finally, a gensralisation
of VHl, called VH2, has shown that for a similar
load, the average successful search requires very
close to one access /LIT79a/. Two other algorithms
similar to VHO have been proposed, Dynamic Hashing
(DH) /LAR78/ and Extendible Hashing (EH) /FAG78/.
Since trees typically lead to more than 3 or 4
accesses per search and to a load close to 70 %
/KND74/, /COW/g/, all these VH algorithms offer
better access performance for similar or higher
load factors.

VHO, DH and EH require at least two accesses
per search because the data structure which
represents the dynamically oreated hashing
functions must be on the disk. VHl and VH2 are
faster, because the functions are represented by a
bit table which, depending on file parameters,
needs 1 kbyte of core (main storage), per file for
7 000 to more than 1 500 000 records. In this
paper, we present the algorithm which goes
further, only a few bytes of core suffice now for
a file of any size. For RD~ number of insertions
or deletions, the load of a file may therefore be
high and a reaord may be found, in general, in one
access. No other algorithms attaining such a
performance are known.

The algorithm is called Linear Virtual Hashing
or Linaar &&~g in short (LH). The choice of
file parameters may lead to a mean number of
accesses per successful search not greater than
1.03, while the load stays close to 60 %. It may
also lead to a load staying equal to 90 % while
the successful search requires 1.35 accesses in

C”1534-7/80/0000-0212$00.75 0 1980 IEEE 212

the average. Even if the buffer in core may
contain only one record, a search in the file
needs 1.7 accesses in the average while the load
remains at 80 $. This property makes LH probably
the best performing tool for dynamic tables as
well.

The next section describes the principles of
LH. We first snow the basic schema for nashing. We
then discuss the computing of the physical
adaresses of buckets, when tne storage for tnem is
allocated in a non-contiguous manner. Finally, we
present some variants of the basic schema.

Section 3 shows performance of the Linear
Hashing. First, we show access and memory load
performance of the basic schema. Next, the
performance are analysed for a variant with a,
so-called, load control.

Section 4 concludes the paper. We sum up the
advantages which Linear Hashing brings, we show
some application areas and, finally, we indicate
directions for further research.

-I 2. -OF THE LINEAR .

2.1. &sic schem&

We recall that hashing is a technique which
addresses records provided with an identifier
called B&y or, simply, key. The key, let
it be c, is usually a non-negative integer and, in
a work on the addressing by primary key, we may
disregard the rest of the record. A simple
pseudo-random function, let it be h, called a
m function, assigns to c the memory cell
identified by the value h(c). The &&i,ng Pu

. w c /--> c mod M ; M = 2,3,.. ; is an
exemple of a hashing function. The cells are
called buckets and may contain b records,
b = 1,2,.. . The record is inserted into the
bucket h(c), called m for c, unless the
bucket is already full. The search for c always
starts with the access to the bucket h(c).

If the bucket is full when c should be stored,
we speak about a w. An algorithm called

. . sm w methoq (CRM) is then applied
which, typically, stores c in a bucket m such that
md h(c). c then becomes an overflow record and
thl; bucket m is called overflow bucket for c. If
(i) overflow buckets are not primary for any
c,(U) each of them is devoted to only one h(c)
and (iii) a new overflow bucket for an h(c) is
chained to the existing ones, then we have a
u chaininn CRM. If, in particular, the
capacity b' of an overflow bucket is b' = 1, we
call this CAM seoarate chaininn /KNU74/.

A search for an overflow record requires at
least two accesses. If all collisions are resolved
only by overflow record creations, as it was
assumed until recently /LIT77/, then access
performance must rapidly deteriorate when primary
buckets become full. If the insertion of c leads
to a collision and no records already stored in
the bucket h(c) should become overflow records,
then c may be stored in its primary bucket only if
a new hashing function is chosen. The new
function, let it be h', should assign new
addresses to some of the records hashed with h on
h(c) and the file should be. reorganized in
consequence. If h = h’ for all other records, the
reorganizing needs to move only a few records and
so may be performed dynamically. The new function
is then called by us w created-
function or, shortly, a s&&j.~g function.
The modification to the hashing function and to
the file is called au, h(c) is, under the
circumstances, -address . The idea in VH in
general and so, in particular, in LH is to use
splits in order to avoid the accumulation of
overflow records. Splits are typically performed
during some insertions. All splits result from the
application of -functions. For LH, as well as
for VHO and for VHl, the basic Split functions are
defined as follows /LIT79/, /LITBO/ :

- Let C be the key space. Let

hO : c --> (0, l,.., N-11 be the function that is
used to load the file. The functions h ,s h2,..,
hi,.. are called split functions for ho if they
obey the following requirements :

(1)

hi : C --> (0, l,.., 2’N-11

(2)
For any c either :

hi(c) = hi,,(c)

or :

hi(c) = h. (c) + 2 i-l l-l N

(2.1)

We assume that, typically, each hi ;
i = O,l,.. ; hashes randomly. This means that the
probability that c is mapped by h. to a given
address is l/2iN. This also meansithat (2.1) and
(2.2) are equiprobable events.

Fig. 1 illustrates the use of split functions.
The file is created with h0 : c --> c mod N, where
N = 100. The bucket capacity is b = 5 records. For
split functions we choose tne hashing by division,
namely we put :

hi : c /--> c mod 25.4.

213

This choice respects (2) since, obviously, for any
non-negative integers k, L, either :

k mod 2L = k mod L

or :

k mod 2L = k mod L + L.

We assume that a collision occurs during the
insertion of c = 4900. Instead of simply storing c
as an overflow record, we change ho to the
following h :

h(c) = h,(c)
h(c) = ho(c)

if ho(c) = 0
otherwise.

We then reorganize the file. We thus have applied
h, as the split function and we have performed the
split for the address 0. The hashing function h
results from the spLit and is a dynamic hashing
function.

h
0

ho 8 h

4 900

‘a) $J;-%J--#iJ

0 1 53 99

h
1

0 1 53 99 100

Fig. 1. The use of a split for a collision reso-
t;;ion. (a) - a collision occurs for the bucket 0.

- the collision is resolved without creating
an overflow record and the address space is
extended.

Fig. 1.b shows the new state of the file. Since
h = ho for each address except 0, no records other
than these hashed to 0 have been moved. Since
hzh for the records which h0 hashed to the
addre& 0, for approximatively half the number of
these records the address has been changed. It
followed from (2) that all these records had the
same new address which, under the circumstances,

had to be 100. A new bucket has therefore been
appended to the last bucket of the file to which
all the records have been moved &l pne m.
Since for all these records the bucket 100 is
henceforward the primary bucket, they are all
accessible in m access. In particular, this is
also the case of the new record, i. e,, 4 900. On
the other hand, the records which remained in the
bucket 0 continue to be accessible in one access.
In contrast to what could be done if a classical
hashing was used, the split has resolved the
collision ulthout creatina a JELW.&X record and
without--deterioration.

Let us now assume that the file addressed with
h0 undergoes a sequence of insertions which did
not yet lead to overflow records. Furthermore, let
us assume that a split is performed iff a
collision occurs. The natural idea would be to
split the bucket which undergoes the collision,
this was implicit for all algorithms for VH.
However, split addresses must then be random and
this must lead to dynamic hashing functions using
tables. Dynamic hashing functions which do not
need tables may be obtained only if the split
addresses are chosen in a predefined order. To
perform splits in some predefined order, instead
of split the bucket which undergoes the collision,
is the main new idea in the linear hashing.

Let m be the address of a collision. Let n be
the address of a split to be performed in the
course of the resolution of this collision. Since
the values of m are random while these of n are
predefined, usually n f m. If so, we assume that
the new record is stored as an overflow record
from the bucket m through a classical CRM, bucket
chaining for instance. Next, we assume that n is
given by a pointer which thus indicate the bucket
to be split. For the first N collisions, the
buckets are pointed in the linear order
0,1,2,.., N-l and all splits use h, (2.2) implies
then, that the file becomes progr&sively larger,
including one after another the buckets N+l,
N+2 ,...,2N-1. A record to be inserted undergoes a
split usually not when it leads to the collision,
but with some delay. The delay corresponds to the
number of buckets which has to be pointed while
the pointer travels up, from the address indicated
in the moment of the collision, to the address of
this collision.

With this mechanics, no matter what is the
address, let it be ml, of the first collision, LH
performs the first split using h, and for the
address 0. The records from the bucket 0 are then
randomly distributed between the bucket 0 and a
new bucket N, while, unless m,=O, an overflow
record is created for the bucket m,. The second
collision, no matter what is its address, let US

say m2, leads to an analogous result, except that,

214

first, it splits for the address 1 and appends the
bucket N+l. Next, it may constitute the delayed
split for the first collision, suppressing
therefore the corresponding overflow record. This
process continues for each of the N first
collisions, moving thus the pointer, step by step,
up to the bucket N-l. Sooner or later, the pointer
points to each m and the splits, despite of being
delayed, move thus most of the overflow records to
the primary buckets. We may therefore reasonably
expect that, for any n < N, only a few overflow
records exist.

After N collisions, we have h = h,, (1) implies
then that, instead of the hashing on N addresses,
we now hash on 2N addresses. (2) implies that h2
has on the hashing with h,, the action analogous
to that of h, on the hashing with h = h0, except
that it hashes on 4N addresses. We therefore
assume that n = 0 again, that now we split with h
and that the upper bound on n is now 2N-1. go!
further insertions, we use h
the pointer travels each tim$‘from 0 toj

h4,.., h while
‘;j’lN.

It results from the above principles that,
first, the address space increases linearly and is
as large as needed. Next, for any number of
insertions, most of overflow records is moved to
the primary buckets by the delayed splits. On one
hand, we may thus reasonably expect that the rate
of overflow records remains always small. If
b >> 1, the rate should even be neglectable small.
Thus, we may expect the linear hashing to find a
record usually in one access to the bucket, no
matter how few buckets were provided when the file
was created and how high the number of insertions
finally is.

The highest index of a split function currently
used, let it be j ; j=O,l,.. ; is called u
&y& If n=O, we always have h = hj for some j.
Otherwise, first, h = h j-, for the buck@ not yet
split with h , i. e., n, n+l,..,2 N. Next,
h = hj for alljthe others. The algorithm computing
the primary address of a c is therefore trivial :

(Al)
if n = 0
else

: m <-- hj(c)

:f<m-<hd-!(z)<-- h (c) endif
endif .I

endA

2.2. -dress comnu .

The address given by hashing must be transfor-
med into the physical address of the bucket in the
memory. The memory for files is usually divided
into quanta of let it be q buckets ; q = 1,2,..
Quanta may be all of the same size or different

sizes may be available. It then may be particula-
rly worthwhile to use sizes which are 2i of a
Certain minimal q (buddy system /KNU74/).

When the file is loaded some quanta are
statically allocated. Then, if a file increases
dynamically, quanta are sometimes added. If all
quanta for a file are contiguous, then the the
physical address of a bucket m is as follows :

m’(m) = ml(O) + dm (3)

where d is the number of memory elements, i. e.,
bytes, words or sectors,., per bucket. Thus the
advantage of a contiguous allocation is that only
the address of the first quantum is needed and
that the computing of the physical address is
trivial.

However, if several dynamic files should share
a memory, it may be better to allocate
non-contiguous quanta. For each file, the
addresses of these quanta must then be collected.
The address of the i-th quantum may be the value
T(i) of a table T. For the quanta of a fixed size,
we then have the following formula :

i(m) = INT(m/q) (4)

m’(m) = T(i(m)) +d(m - i(m)q)

where INT denotes the integer part. In particular,
if q=l, i. e., if the allocation is totally
distributed, then we have simply :

m’(m) = T(m). (5)

For the quanta of different sizes, we particu-
larly recommend the following schema :

- let K be a parameter; K = 1,2,.. . The, sizes

90’ 9,‘“. of successive quanta of the file should
be :

40 =N

q1 = q2 = . . . = qK = qO/K

. . *

(6)

‘lk+l
1

= qlk+2 = -* = q(l+,)k = 2 9,

where l=O,l,.. For instance, if N = 20 and K = 4,
then the sizes of the quanta dynamically allocated
are 5, 5, 5, 5, 10, 10, 10, 10, 20, 20,.. .
Dynamic allocations take thus place when LH starts
to use the addresses 20, 25, 30, 35, 40, 50, 60,
70, 80, loo,... Higher is the value of K, smaller
is the drop in memory load when a new quantum is
allocated, but T is larger. The practical values
of K are between 1 and 10.

215

Let mi be the smallest logical address in the
i-th quantum. Next, let it be ;

a’ ’ -m-m i(m)’

Therefore we have :

m'(m) = T(i(m)) + dm”. (7)

In the case of (61, i(m) and tat’ may then be
computed by the following obvious algorithm :

(A2)
if m < N : i <-- 0 ; rnrI <-- m
else

i <-- j-l ; M <-- 2’N
while M > m and i > 0 :

M <-- M/2 ; i <-- i-l
endwhile
if <-- M/k ; mrt <-- m-M
i <-- INT(m”/i’) +ik +l
ml 1 <-- m’ 1 mod is

endif
endA

2.3. Yariants of the.

2.3.1. scoetrol.

Splits that are performed iff a collision
occurs are called s. Splits are called
gontrolled if they also depend on other conditions
or are performed even if there is no collision. A
particularly useful control is called &f&
control. Under this control, a split is performed
when a collision occurs, but only if the load
factor is superiour to some threshold. This may
concern the load factor, let it be P, defined as
usual /KNU74/ :

I= x/ bM (8)

where x is the number of records in the file, b is
the bucket capacity and M is the number of primary
buckets. The control may also take in to account
the overflow buckets in which case the load
factor, let it be s’, is defined as :

C’ = x/(bM + b’M’) (9)

where M’ is the number of overflow buckets and b’
is the overflow bucket capacity.

In what follows the thresholds are denoted as g
and g’, respectively. We will show that, when the
file undergoes insertions, the load control
usually keeps the load factor almost equal to the
chosen threshold. A similar control may keep the
load factor greater than or almost equal to a

threshold, when the file undergoes deletions. Each
time a deletion brings the load below this
threshold, we may simply perform an operation
called prouDinn which is inverse to splitting. A
grouping moves thus the pointer one address
backward and so decreases M. If the threshold for
deletions is equal to the one for insertions, m
LQdPf~Ltlfikusuallvstavs~constant.

2.3.2. Pointeress '- .

It may surprise, but primary address may be
computed in fact without the knowledge of the
value of n. The following algorithm, analogous to
that of VHl /LIT78a/, proves it :

(A31
m <-- hj(c)

endA
if m >= M : m G- hj,,(c) endif

If n=O, then it is obvious that (A3) works.
If n i 0 then, if :

h(c) = hj(c),

then :

h(c) < n < M

or :

2j" < n < M.

Thus (A31 terminates correctly. Else, we have :

h(c) = hj,,(c).

Then, if :

h j-1 (‘I = hj(c)

then :

h(c) < 2j”N < M.

Thus (A31 also terminates correctly. Else :

hj(c) >= M,

since the bucket h(c) is not yet split. Therefore,
in this last case, the algorithm terminates
correctly as well.

In particular, we may assume N = 1. The file
level j is then a function of M. It follows,
first, that the size of address space may be the
only one parameter which LH needs for addresses

216

computing. It follows, next, that the parameters
of a classical hashing may suffice in order to
construct a linear one. For instance, the
knowledge of the number of the addresses for the
hashing function and of the fact that a hashing by
division is used, suffice in both cases.

2.3.3. m.sDlit functim .

Let b,, b2,..., bi,... be a sequence of
randomly generated bits, with equiprobability of
bi=O and of bi=l. Such a sequence may be obtained
using a random number generator. Let Bi be the
integer with binary representation bi,bi-,,,..,b 1’
The functions hi defined as follows :

hi : c I--> ho(c) + BiN (10)

are, obviously, split functions for m ho. Thus,
LH may be constructed not only for a hashing by
division, but for any usual hashing function.

Split functions with Bi given by a random
number generator may be particularly interesting
for N L 1. For this value each hi hashes on 2l
addresses. If the hashing by division is applied,
the address of c is, simply, the i least
significant bits of c. The hashing by division may
then be sometimes rather non-random, while a
random number generator may still perform well.
The choice of N = I is particularly useful since,
first, there is no more problem to choose among
several possible ho. Next, LH covers all possible
address space sizes. Finally, since the file may
then be constituted even from only one bucket, a
good load factor may be provided even for very few
records.

Bi may also result from the multiDlicatlon
function /KNU74/, let it be h’ . If w is the word
size and A is an integer relati;ely prime to w,
then the hashing with h’ on 2 addresses is
defined as follows :

hIi = INT(Zi((Ac/w) mod 1). (11)

Bi is in this case constituted from the bits of
h’ i(c), taken in the reverse order. In other
terms, the most significant bit of hli becomes the
least significant in Bi etc

Knuth shows that a particularly good choice for
A is A = 6 125 423 371. He also shows an algorithm
computing (11) in only four instructions of the
MIX assembler. Finally, he shows that his
algorithm is usually faster than the hashing by
division. To compute Bi through the multiplication
function may thus be faster than through a random

number generator.

In particular, Knuth shows that h’ is a
scramblina f&ction. This means, first, that its
partial result, let it be f(c) ;
f(c) = AC mod w ; is such that if c’ # c”, then
f(C’) d f(c”). Next, this means that the
transformation c --> f(c) tenders to randomize the
keys. Therefore, the following split functions may
be constructed :

(12)
hi(c) = f(c) mod 2iN

which may perform better than the direct hashing
by division.

Finally, split functions may also be construc-
ted for alphabetic or variable-length keys. In
particular, the individual words of such a key may
be simply combined into a single word, to wnich
any of the previously discussed functions may then
be applied. Any of the combinations suggested by
Knuth may be used, the addition mod w for
instance.

2.3.4. General of snlit .

LH may be seen as VHl in which split addresses
have been predefined. VHl may be generalized into
an algorithm called VH2. Furthermore, it may be
assumed that split addresses are, in fact,
predefined for VH2. The conditions (1) and (2) may
then be generalized follows ;

- let K be a parameter which value is fixed
when the file is created ; K=l,2,.. . Let it be

ki = K + i mod K. Let N be an integer, N > 1. The
hashing functions hi ; i=l,2,.. ; are split
functions for a hashing functions ho, if the
following condition are respected :

- for i = O,l,.. : (13)

hi : c --> 10,l,..,Ni-lI

NO = KN

Ni+l = Ni + Ni/ki

For any c, either

hi(c) = hi-,(c)

or :

hi(c) = Ni,, + INT(hi-, (c) / ki).

(14)

217

For example, if N-5 and K=4, then the successive
NiS are : 20, 25, 30, 35, 40, 50, 60, 70, 80,
loo,... (note the similarity to (6)).

As Previously, we assume that each h should
hash randomly, It follows that the probability
that a key changes the address after a split, let
it be p, is now pk = l/(kt;;),n;f(,“,=a;i Fe: 0;;
and (14) are, simply,
For greater K, P decreases and the dist!ibution
of records wit in LH file becomes more uniform. l-c
First, higher load factor obviously results for
uncontrolled splits. Next, when the threshold
increases, load control with K > 1 should lead to
a better search performance. However, it is easy
to see that for such K, to perform a split,
usually needs more accesses. Therefore, insertions
and deletions will be more costly than for K = 1
as well.

K > 1 implies that the address space doubles
not after one, but after K trips of the pointer.
Each of K trips may then be called a DB&&&
m of the address space. Partial expansions
may result from formula others than the above,
these introduced by /LAR80/ in particular.
Performance resulting from (13) and (14) for K > 1
being quite similar to these of the Larson’s
schema, only the case of K = 1 is discussed in
what follows.

3. PERFORMANCE.

3.1. Udress cornout&&

If the allocation is contiguous, LH is
obviously almost as simple and fast as the
classical hashing. If the allocation is
non-contiguous and (3) or (4) are used, then this
is also the case, as long as T may be entirely in
core. The use of (6) needs few more instructions,
but the computing of (A21 also very fast ; it is
quite clear that, for any j, the “while” loop is
in the average executed at most twice.

A four byte word allows the values of n and of
j to go up to 232, i. e., allows the LH file to
grow up to more than four billions buckets. For

any number of insertions, (Al) enters thus even a
very small core. If the allocation is contiguous,
since (3) is used, the computing of the physical
address also needs only a few bytes. If the
allocation is non-contiguous, the core is mainly
needed for T. If (A2) is used, the size of T is,
obviously, not greater than jk+l. For k = 10 which
is largely sufficient in practice, 301 words are
then sufficient for a file which increases even a
billion times. Thus, in practice, no matter if the
allocation is contiguous or not, no matter how
small is the core and how high is the number of

insertions, the computing of a address resulting
from LH, m reouiresauaccess.

However, the disk storage is usually needed if
the allocation is totally distributed. (5) shows
then clearly that any address is computed in no
more than one access. On the other hand, since the
disk is required only for T and since T contains
only the pointers to buckets, the disk storage
required then by LH is the minimal one. It is
usually much smaller than that of the index of a
VSAM file, since the index contains keys and
internal pointers and since its load foactor is
lower. It is also several times smaller than the
storage required by the tables of VHO, DH and EH,
either because of their much lower load factor
(VHO,. EH) or because of the internal pointers
(DH).

3.2. VsDlit.

3.2.1. as oerforw.

We now assume that overflow records are
addressed through separate chaining and that the
file is created by x insertions ; x=0,1,.. . We
alSO assume that each hi hashes randomly. Finally,
we assume (and we have now right to do it) that
the computing of an address never requires a disk
access. By s’, s*‘, strr we denote the mean number
of accesses per successful search, per unsuccess-
ful search and per insertion. By 5 we denote the
mean number of accesses per split. These
coefficients will be called u.

Fig. 2 shows curves of s’(x) obtained through
simulations for bucket capacities b = 1,5,10,50.
For b n1,5 we have not shown the first splits,
since they correspond to x < 10 and to s1
practically equal to 1. For b = 5, we have also
shown the evolution of the file level j. The
curves describe the file which is created with
only one bucket and which undergoes x > 213b
insertions. At the end, the number of records in
the file is thus more than 8 000 times greater
than the number of records wnich could be found in
one access in the initial one. It does not even
make sence to compute what would be the deterio-
ration of access performance, if the classical
hashing would have been used.

For each b, when x increases, the curve is
first irregular and therefore displays the
existence of a transient &&&. After a few
insertions, the file reaches a &,&.I& &&g ,
where the curve is a periodic function of log2x.
On one hand, it means that in the stable state s’
does not depend on x, but on the relative position
of the pointer. On the other hand, it means that
S’ does not increase for whatever the number of

218

recall that B-trees need in general ‘1,5 accesses
while binary trees need typically more than 10,
since s’(x) P log2x /KNU74/.

The transient state may be disregarded, since
the performance is good and .x is neglectable
small. Since the curves in the stable state are
periodical, they may be characterized by the
values of s.’

min * s’max
mean value of 9’

and of stave, which is the
over one period. The values

corresponding to the curves are displayed in the
table 1.a.

b I 5 10 20 50

s'
ave 1.73 1.16 1.07 1.02 I .oo

s'
max 1.77 1.20 I.11 1.06 1.03

=*mi" 1.68 I. IO 1.02 I .oo I .oo

s" ave 1.62 1.28 1.19 I.12 1.06
5"

max 1.63 1.32 1.26 1.24 1.23
511

min 1.6 1.20 1.08 1.02 I .oo

s'I I
ave 7.91 3.97 3.14 2.67 2.35

sll 1
max 8.92 4.07 3.45 3.09 2.71

s111
min 6.45 3.34 2.48 2.11 2.00

ave 6.94 6.09 5.99 5.98 5.98

'min 5.80 5.10 5.00 5.00 5.00

fmax 8.62 7.45 8.10 8.85 10.85

t

Pave 1.30 0.66 0.61 0.59 0.59

amax 1.30 0.67 0.63 0.65 0.70

'rain 1.30 0.65 0.59 0.55 0.51

i' ave 0.8 0.63 0.59 0.59 0.59

Table 1 -

Fig.2. Mean number of accesses per successful
search for linear hashing with uncontrolled
split.

insertions could be. We therefore may conclude
that for any bucket capacity and any number of
insertions, the mean number of accesses per
successful search stays close to 1. For large
buckets, we may even consider that we have always
s’=1 ! LH is thus a very important algorithm,
since, first, 11~ a &gprithmg attalnlna 22ud

an almost ideal performance are known. Next, it
performs several times better than trees. We

(a)

(b)

(cl

Cd)

:e)

Performance of linear hashing with
uncontrolled splits :

(a) successful search,
(b) unsuccessful search,
(c) insertion,
Cd) split,
(e) load factor.

The analysis of s” through simulations and
through modelling /LIT79/ shows also a transient
state and a stable state. Both states correspond
of course with these of s’. The performance of
unsuccessful search with LH in the stable state
are displayed in the table 1.b. As in the case of
classical hashing using the separate chaining (see
/KNU74/), they are better than the performance of
the successful search for b = 1 and poorer for

219

b > 1. However, as before, for any bucket capacity
and any number of insertions s” stays close to 1.
The limit value for s’ ‘max when b increases is
1.24 /LIT79/.

Table 1.d shows the characteristics of the
split cost. Unless split is performed for the
address of the collision, this cost is at least
five accesses (two accesses in order to store the
overflow record for the bucket m, three acaesses
in order to split the bucket n). The split needs
more accesses if the bucket n overflows. This case
is obviously the most frequent for b = 1 ; that is
why gave is maximal. The number of overflow
records on n is obviously the shortest for n
close to 0, 0 = smin corresponds to such values
of n. Inversely,
close to 2’, 8

the longest chains exist for n
= 9 corresponds thus to the end

of a trip of the F%ter. 8 increases with b,
since the chains become longezhile the use of
the separate chaining implies one access per every
record in the chain. However, gave reveals
practically independent of b.

Finally, table 1.c lists s”‘, i. e., the cost
of an insertion. For b = 1 almost 8 accesses are
needed, since split cost is the highest and since
a split results from almost any insertion. For
larger b, s”’ falls down quickly, since the
proportion of insertions leading to a split
decreases and the others need typically 2 to 3
accesses. If b >> 20, which is a typical value for
files, s”’ oscillates between 2 and 3. Thus,
first, as it was the case of the other costs,
insertion cost of LH may also stay always close to
its theoretical minimum. Next, even in the worst
case, i. e., for b = 1, the insertion cost is
still typically much smaller than for trees,

since, for instance, for X = 105, a binary tree
leads to s”’ > 16 /Ktw74/.

3.2.2. Loadfactor.

The characteristics of load factors 8 and 8’
are shown in the table I.e. For b = 1 the load
factor is constantly equal to 80 %. This
conjunction of such a good load and of the
previously shown access performance makes LH
probably the best known tool for dynamic tables.
For higher values of b, the load is going down to
the average value of almost 60 % and so the load
of LH with uncontrolled split may be almost 10 5
worse than the load of a B-tree. However, better
access performance is usually prefered to a
sligtly better use of the increasingly cheaper
disk space.

3.3. wd SDU.

If the load is controlled and the threshold g
is greater than zmax, then the load is practically
equal to g. It is obvious that the higher g is,
the worse must be the access performance, since
the ratio of overflow records increases.
Simulation studies show, however, that substantial
increases to the load factor may be achieved while
the value of the acaess performance still stays
excellent.

For instance g = 0.75 and b = 5 leads to a load
which is almost 10 % higher than the one for the
uncontrolled load. The correspondig access
performance is still very good, since
9’ ave = 1.25, s”ave = 1.43 and slll = 3.84.
For b = 50, the same g leads to a 16 rimprove-
ment , while the access performance becomes :
9’ ave = 1.28, sllave = 2.38 and slllav = 3.46,
For many applications the above trade o f may be e
significant.

Higher thresholds increase the length of
overflow record chains. On one hand, the storage
occupied by overflow buckets is then no more
negligible. On the other hand, larger overflow
buckets must lead to better access performance.
For higher thresholds, more stable load factor
results thus from the control on 8’ and it is
better to choose b’ > 1.

The threshold corresponding to the load control
on 8’ is denoted gl. For given values of b and of
g’, access performance depend on b’. If g1 is
higher than 8ax of uncontrolled split, then,
obviously, neither b’ = 1 nor b’ >> 1 can provide
the best access performance. Therefore, they are
b’s which are the optimal ones. Fig. 3 shows
curves of 9’ corresponding to the minimal s’
for bo 10,20,50 while g1 = 0.75,O.g. It aCX
indicates the corresponding optimal b’s. Table 2
displays the performance of the corresponding
stable states and the performance for g’ = 0.85.
All these results are obtained through simula-
tions.

It first become apparent from the figure, that
if g’ = 0.75, then s1 is always almost 1. It is
also apparent that s1 stays close to one even for
l3’ = 0.9 ! In other words, LH does not only find a
record in general in one access independently of
the number of insertions, but may also use almost
the minimal storage I In particular LE achieves
not only a much better access performance than
B-trees but also saves more than 20 % in storage !

220

b;lo
b’z3 g=o,9

gz3 9=0,75

x
20 10 80 320 1780 5120 20 480 8,920 327680

X

,o ..: 73c 800 3200 12800 51200 2OL800 819203

Fig.3. Mean number of accesses per successful
search for linear hashing with the load kept
equal to 75 % (- -> and to 90 % (-)

Furthermore, with respect to table 1, table 2
shows that it is rather worthwhile to choose a
high threshold, even if one seriously cares about
performance other than s’. For g’ = 0.9, load
control improves the load factor up to 31 5 in
mean and up to 40 '5 with respect to the worst
value. The price to pay for such a significant
improvement in load seems rather low, since,
first, s” ave increases only by 1.3 accesses.

Next,
Only .G

s”lave increases only by 1.5 accesses.
deteriorates more substantially, since

it incr$IEes by 3.4 accesses. However, for b = 50
and g’ E 0.85, this deterioration stays small,
since it not exceed 1.3 accesses. Finally, srnax
may do not deteriorate at all, being, even, for
g’ I 0.75, better for all each b. For b = 50 the
gain is quite important, since it reaches 3.4
accesses. These gains are obviously due to b’ > 1.

5” 1.37 1.99 2.48 1.29 I.80 2.45 1.27 1.70 2.37 a"e

s” max 1.48 2.15 2.75 1.43 2.11 2.87 1.49 2.19 2.95

S” 1.21 1.52 2.06 1.10 1.38 1.85 1.02 I.10 1.66

sll 1 ave 3.42 4.05 4.68 2.91 3.42 4.17 2.62 3.10 3.73

sl’ 1 max 3.67 4.71 5.43 3.11 3.60 4.43 2.60 3.30 4.15

s” ’ min 2.91 3.29 3.73 2.51 2.82 3.25 2.27 2.43 2.91

‘min 5.05 5.60 6.15 5.05 5.75 5.9 5.00 5.45 6.20

(a)

(b)

(cl

Cd)

Table 2 : Performance of linear hashing with
controlled load :

(a) successful search,
(b) unsuccessful search,
(c) insertion,
(d) split cost.

Fig. 4 displays s’ave in function of b’, with
values of b and of g’ from table 2 as parameters.
It appears that for a file loaded up to 75 fc,
access performance are almost the same for a large
number of values of b’. For these values,
performance are, in addition, almost independent
of b. For example, s’ave is smaller than 1.2
accesses, for all b* between 2 and 8 when b = 10,
for all b* between 2 and 16 when b = 20 and for
all b’ between 2 and 50 when b = 50 ! Since
practical constraints may frequently impose bucket

221

.

SW.
2.4+

b= 20
+

1
+ t , .-

‘a . . + .’

b= 50

Fig.&. Mean number of accesses per success-
ful search as a function of the size of the
overflow bucket.

capacities which are not the optimal ones, this
stability of excellent access performance is one
more important property of LH.

The figure shows, however, that when the loaa
becomes higher, b’ should be kept closer to the
optimal one. The practical rule which appears is
then :

b/5 :< b’ =< b/j.

For b > 20, even if the lower bound is b/7, we
stay under a mean of 1.5 accesses.

It also becomes apparent that the access
performance deteriorates less when g’ increases
from 75 ‘$ to 85 5, as it deteriorates when g’
increases from 85 % to 90 %. In other terms, the
last 5 $ are the most expensive ones and it is not
recommended to further increase g’.

If a file or a table addressed with LH is
static, then the performance is simply that of
classical hashing, i. e., the best known. If they
are dynamic, then the mean number of accesses per
search stays close to 1 independently of the
number of insertions and for load factors reaching
90 5. If the bucket capacity is greater than 10
records, then almost any record is found in one
access. Finally, address computing is almost as
simple and rapid as for classical hashing. The
comparison of these performance with those of the
classical hashing, of trees and even of other
algorithms for virtual hashing, shows that for the
search by the primary key, LinearBashinaj.g&hq
&& DerfornQg technioue ~QQWQ.

High and constant load factor means that LH
store records always in an almost minimal storage.
A sequential search scans thus an almost minimal
number of buckets, i. e., is almost as fast as
possible. If the classical hashing is used, the
number of primary buckets is fixed when the file
is created. If the number of records is then i
times less than expected, a sequential search with
LH is almost i times faster. This property of LH
is also important, since sequential searches are
quite frequent.

With respect to trees, in addition to much
faster search, LH provides much simpler algorith-
mic. This is, first, the case of the algorithms
for a search, for an insertion and, especially,
for a deletion. This is also the case of the
algorithms for concurrency control, since only the
key and the pointer must be locked, instead of a
path in the tree. Also, there is no a problem of
an inconsistency which may occur in a tree because
of keys duplicated between the file and its index.
Thus trees stay more advantageous only when the
file must be searched in one order.

LH is, of course, primarly devoted to applica-
tions where the file may heavily grow or shrink or
where the number of records is unknown when the
file is created. It may thus be very useful for
compilers and text processing systems. It may
avoid the painful estimations of the file sizes in
a DBMS, from which files the deleted records are,
usually, not physically removed. It may also avoid
performance deterioration for such files,

222

rendering thus the very annoying reorganizations
of the whole database /SCH73/ unnecessary or less
frequent. It is a good tool for the management of
working spaces for queries to a DBMS, since the
number of records retrieved by a query to a
working space is, usually, unknown in advance. It
may also be used for a virtual memory management.
On the other hand, since it works with very small
cores, LH renders dynamic files usable on
micro-computers. Clearly, the applications of the
Linear Hashing are very numerous.

Research on LH has just started and many
possibilities are still open. Other criteria for
control may be useful, /SH079/ for instance shows
that the performance may be excellent if we simply
split one time for any gb insertions. M. Girault
(Institut de Programmation) has suggested to
consider splits and groupings as operations which
are, finally, completely out of the algorithmic
for a record insertion or deletion. He suggests
further to leave splits and groupings to the
competence of a dedicated processor which task
would thus be to take care of performance of all
files. This idea obviously leads to a new and
interesting type of an associative memory.

Furthermore, methods other than bucket chaining
should be explored for overflow record addressing.
The first investigations of open addressing show
that it may work pretty well /KAR79/. Also, the
properties of split functions should be investi-
gated. Finally, much work is needed in modelling,
since classical methods do not apply to dynamical-
ly created hashing functions. Especially, there is
no models for the transient state and for a file
with small buckets.

This work was sponsored by project SIHIUS.

AH075

BLA77

CAR73

COM7Y

FAG78

GH075

GUI72

Aho, A.V., Hopcroft, I.L., bllman, J.D.
The aesign ana analysis of computer
aigorithms, Addison-Wesley Reading Mass.
1975.
Blake, I.F., Konhein, A.G. Big bUCKetA are

(are not) better! Journal ACm 24, 4 (Ott
19771, 591-ociu
Carter, B. The reallocation of nash-codea
tables. Corn. ACM 16, 1 (Jan 1973), 11-14
Comer, D. The ubiquous B-trees. ACM Comp.
Surv., 11, 2, (Jun 19791, 121-138.
Fagin, R., Nievergelt, J., Pippenger, N.,
Strong, H, R. Extendible hashing - a fast
access method for dynamic files. IBM Hes.
Rep. RJ2305, (Jul 31, 1978).
Ghost, S.P.,Lum, V.Y.Analysis of colli-
sions when hashing by division. Informa-
tion Systems, 1-B (19751, 15-22
Guiho G. Sur l'etude de collisions aans
les methodes de hash-coding, CRAS 274 (Feb
14, 1972)

GU173

KAR79

KN071

KNU74

LAR78

LAR80

LIT77

LIT77a

LIT78

LlT78a

LIT79

LIT79a

LlT80

LUM73

MAR77

ROS77

SW73

SHO79

SPA77

Guiho, G. Organisation des memoires,
Influence d'une structure et etude d'une
optimisation. These de Doctorat dIEtat.
Univ. Paris VI, (Jun 19731, 278.
Karlsson, K. Resolution de collisions du

hachage virtue1 lineaire par une methode
du type adressage ouvert. Rap. D.E.A. Inf.
Institut de Programmation, (Jun 1979), 61.

Knott, G. D. Expandable open addressing
hash table storage and retrieval. SIGFIDET
Workshop on Data Description, Access and
Control, ACM, (1971), 186-206.
Knuth D.E. The Art of Computer Programing,
Vol 3. Addison-Wesley, Reading Mass. lY74
Larson, P. Dynamic hashing. BIT 18 (1978),
(184,201).
Larson, P. Linear hashing with partial
expansions. Proc 6-th Conf on Very Large
Databases, Montreal (Ott 1980).
Litwin, W. Auto-structuration d'un
fichier : methodologie, organisation
d'acces, extension du hash-coding. Res.
Rep 77111, Institut de Programmation,
Paris , (Avr 19771, 102
Litwin, W. Metnode d’access par
hash-coaing virtue1 (VHAM) : Modelisation,
Application a la gestion de memoire. Hes.
Rep. 77116, Institut de Programmation,
Paris, (Nov 19771, 50.
Litwin, W. Une nouvelle methode d’acces

par codage decoupe a un fichier.
Compte-rendus de 1'Academie des Sciences,
Paris, t. 286, (Avr 1978), 695,698.
Litwin, W. Virtual hashing : a dynamically
changing hashing. Proc 4-th Conf on Very
Large Databases, Berlin, (Sep 19781,
517-523
Litwin, W. Linear virtual hashing : a new
tool for files and tables implementation.
Res. Rep. MAP-I-021, 1.R.l.A , (Jan 19'79),
24.
Litwin, W. Hachage Virtue1 : une nouvelle
technique d'adressage de memoires. These
de Doctorat d'Etat. Univ. Paris VI, (Mar
19791, 248.
Litwin, W. Linear hashing : a new algori-
thm for files and tables addressing. Proc
Int Conf. On Data Bases, Aberdeen, (Jul
i9ao).
Lum V.Y. General performance analysis of
key to address transformation methods. Corn
ACM 16, (Ott 1973).
Martin, J. Computer Datbase Organization.
Prentice Hall, Inc. Englewood Cliffs, New
Jersey, 1977.
Rosenberg, A.L., Stockmayer, L.J. Hashing
shemes for extendible arrays. JACM 24, 2,
(Apr 19771, 199-221.
Schneiderman, 8. Optimum data reorganiza-
tion points, Corn ACM 16, 6 (Jun 1973),
23-28.
Scholl, M. Performance analysis of new
file organizations based on dynamic
hash-coding. Hes. Rep 347, I.ti.1.A -
Laboria, (Mar 19791, 28.
Sprugnoli, ft. Perfect hasning functions :
a single probe retrieving method f'Or
static sets. Corn ACM 20, 11 (Nov 19'771,
841-850.

223

