
The Performance of Multiversion
Concurrency Control Algorithms

MICHAEL J. CAREY and WALEED A. MUHANNA

University of Wisconsin

A number of multiversion concurrency control algorithms have been proposed in the past few yes.rs.
These algorithms use previous versions of data items in order to improve the level of achievable
concurrency. This paper describes a simulation study of the performance of several multiversion
concurrency control algorithms, investigating the extent to which they provide increases in the level
of concurrency and also the CPU, I/O, and storage costs resulting from the use of multiple versions.
The multiversion algorithms are compared with regard to performance with their single-version
counterparts and also with each other. It is shown that each multiversion algorithm offers significant
performance improvements despite the additional disk accesses involved in accessing old versions of
data; the nature of the improvement depends on the algorithm in question. It is also shown that the
storage overhead for maintaining old versions that may be required by ongoing transactions is not
all that large under most circumstances. Finally, it is demonstrated that it is important for version
maintenance to be implemented efficiently, as otherwise the cost of maintaining old versions could
outweigh their concurrency benefits.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance-simulation; H.2.2
[Database Management]: Physical Design--deadlock avoidance; recovery and restart; H.2.4
[Database Management]: Systems--transactionprocessing

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Concurrency control, multiple versions

1. INTRODUCTION

A number of papers proposing the use of multiple versions of data to increase
the level of concurrency in database systems have appeared in the literature
[2, 7, 9, 11, 23, 24, 28, 311. The basic idea in all of these proposals is to maintain
one or more old versions of objects in the database in order to allow work to
proceed using both the current version and older versions. Some of these algo-
rithms maintain just one old version of an object [2,31], whereas other algorithms
are designed to utilize potentially many versions of an object [7, 9, 11, 23, 5!4,
281. For most of the algorithms in the latter class, the idea is to permit 1o:ng

This research was supported in part by an IBM Faculty Development Award, by National Science
Foundation grant DCR-8402818, and by the Wisconsin Alumni Research Foundation.
Authors’ addresses: M. J. Carey, Department of Computer Sciences, University of Wisconsin,
Madison, WI 53706; W. A. Muhanna, Graduate School of Business, University of Wisconsin, Madison,
WI 53706.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Associatllon
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or spec:ific
permission.
0 1986 ACM 0734.2071/86/1100-0338 $00.75

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986, Pages 338-378.

Performance of Multiversion Concurrency Control Algorithms l 339

read-only transactions to read older versions of objects while allowing update
transactions to create newer versions concurrently. It is this latter class of
multiversion algorithms, those that do not limit the number of versions in the
database, that we address in this paper.

In addition to the papers proposing various new algorithms, multiversion
concurrency control has been the subject of several recent theoretical papers
[4, 211. Serializability theory has been extended to include multiversion algo-
rithms, and it has been shown that multiversion algorithms are able to provide
strictly more concurrency than single-version algorithms. An issue that has not
received very much attention yet is the performance of multiversion algorithms.
In this paper we describe a simulation study of three multiversion algorithms in
which several performance and storage issues are addressed. Among the questions
studied are:

(1) To what extent do multiple versions provide increases in the level of achiev-
able concurrency that can be exploited in real database systems?

(2) How do the CPU and I/O costs associated with locating and accessing old
versions affect overall performance?

(3) How severe are the costs (particularly the storage cost) for maintaining
multiple versions?

The answers to these questions are investigated for three multiversion algo-
rithms: Reed’s multiversion timestamp ordering algorithm [24], which is based
on timestamps; the version pool algorithm used by the Computer Corporation of
America (CCA) in their LDM database system [9, 111, which is an algorithm
based on two-phase locking;’ and a multiversion serial validation algorithm [7],
which is based on the optimistic concurrency control algorithm of Kung and
Robinson [16]. The algorithms are compared with regard to performance both
with each other and with their single-version counterparts. We do not attempt
to predict the absolute performance of the various algorithms, as this will of
course depend on specific implementation and workload details. Instead, our goal
is to examine the relative performance of the algorithms and to analyze the
performance trade-offs involved.

Few previous studies have addressed these questions. Several recent papers by
Lin and Nolte included throughput results for multiversion timestamp ordering
[18, 191, and one of these papers also included throughput results for an
“optimistic” variant of the CCA version pool algorithm in which transactions
postpone setting write locks until commit time [19]. In both papers, however,
transaction sizes were fairly small (mean sizes ranged from 1 to 32 objects), and
the sizes for read-only and update transactions in the mix were identically
distributed. In addition, their studies were based on models of a distributed
database system, making it hard to separate the effects of having multiple
versions of data from those of having distributed data. A recent paper by Peinl
and Reuter [22] included results for the before-value locking scheme of [2], but
these results were based on synthetic performance metrics (the number of restarts
and the average number of nonblocked transactions, not throughput or response

1 The CCA algorithm is based on a similar algorithm used in Prime’s Database Management System
[13], as noted in [S] and [ll].

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

340 l M. J. Carey and W. A. Muhanna

time). In addition, the nature of the results was strongly related to the fact that
the algorithm is a before-value algorithm, permitting only two copies of any data
object. Finally, none of these studies have examined the response time or storage
overhead characteristics of multiversion concurrency control algorithms.

In this paper we try to overcome some of the shortcomings of these previous
studies. The performance of the multiversion concurrency control algorithms is
examined in a centralized database setting so as to isolate the effects of multiple
versions on performance. Also, the performance and overheads of the algorithrns
are analyzed using a variety of metrics. Among the metrics employed are through-
put, average response time, number of disk accesses per read, work wasted due
to restarts, and space required for old versions. Two classes of transactions, each
with independently determined characteristics, are used in the study. Several of
the performance metrics are examined on a per-class basis.

2. ALGORITHMS STUDIED

This section briefly describes each of the three algorithms studied in this paper.
The descriptions are sketchy, but hopefully sufficient to give the reader the basic
idea in each case. For more details, the reader is encouraged to refer to t:he
original papers in which the algorithms were proposed. This section also includes
a description of the version maintenance scheme proposed for use with the CCA
version pool concurrency control algorithm, as we have used this scheme for
maintaining the set of old versions for each of the multiversion concurrency
control algorithms that we have studied.

2.1 Multiversion Timestamp Ordering (MVTO)

In this paper we consider a simplified version of Reed’s original proposal [f!3,
241. In particular, we consider the algorithm as implemented in the SWALLOW
data repository project at MIT [24]. This version of the algorithm can be viewed
as a multiversion variant of the basic timestamp ordering algorithm (BTO) of
Bernstein and Goodman [3] (although Reed’s algorithm came first historically):
Write requests are synchronized using basic timestamp ordering on the most
recent versions of objects, while read requests are always granted (possibly usi:ng
old versions of objects).

The basic timestamp ordering algorithm, used for write requests, works as
follows: Each transaction T has a startup timestamp, S-TS(T), which is issued
when T begins executing. The most recent version of an item X in the database
has a read timestamp, R-TS(X), and a write timestamp, W-TS(X), which record
the startup timestamps of the youngest reader and the writer (respectively) of
this version of X. A write request from T for X is granted only if S-TS(T) z
R-TS(X) and S-TS(T) 2 W-TS(X). Transactions whose write requests are not
granted are restarted. Once a write request is granted, it is considered pending
until the writer commits. When a read or write request is made for an object
with a pending write request from an older transaction, the read or write request
is blocked until the pending write is no longer pending (i.e., until the writer
either commits or aborts).

Read requests are never rejected, though they may sometimes be blocked due
to pending write requests. Each version of an object X is marked with W-TS(X),
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986

Performance of Multiversion Concurrency Control Algorithms 341

the startup timestamp of its creating transaction. Read requests from a transac-
tion T for an object X are granted by allowing the transaction to read the most
recent version of X such that S-TS(T) I W-TS(X). Note that, although T must
have started running more recently than the writer of this version of X, the
writer may still be running as well. This is the case that requires a read request
to be blocked for some period of time. Also note, however, that pure read-only
transactions will neuer be restarted for any reason.

Since MVTO is a multiversion variant of basic timestamp ordering, it shares
BTO’s potential for having the cyclic restart problem [6, 12, 321 arise among two
or more update transactions. The basic problem is that a pair of update trans-
actions wishing to concurrently read and then write a common object can restart
each other over and over again, and this “restart loop” can persist indefinitely.
(Note that a transaction receives a new startup timestamp each time it restarts,
so the timestamp ordering of such a pair reverses every time one of them restarts.)
We addressed this problem in our implementation by dynamically maintaining
an estimate of the mean response time for transactions; we used this estimate to
delay restarted transactions for an exponentially distributed time period with a
mean of one response time. We chose this scheme because it has worked well for
other algorithms [11; Ullman proposed another random delay-based scheme that
would also work [32]. Adding this adaptive delay drastically improved perfor-
mance for both BTO and MVTO as compared with some earlier results (from
[6]) that were obtained with a constant restart delay. (For more information on
the cyclic restart problem, the reader is referred to one of [6], [12], or [32].)

2.2 The CCA Version Pool Algorithm (MV2PL)

The CCA version pool algorithm [lo, 111 is a multiversion variant of two-phase
locking (2PL), and it works as follows: Each transaction T is assigned a startup
timestamp S-TS(T) when it begins running and a commit timestamp C-TS(T)
when it reaches its commit point. Also, transactions are classified at startup time
as being either read-only or update transactions. When an update transaction
reads or writes a data item, it locks the item, just as it would in two-phase
locking, and it reads or writes the most recent version of the item. Transactions
block when they cannot obtain a lock, and deadlock must be dealt with in one of
the usual ways. Our implementation checks for deadlocks whenever a transaction
blocks, restarting the youngest transaction in a deadlock cycle when one is
discovered. When an item is written, a new version of the item is created, and
every version of an item is stamped with the commit timestamp of its creator.’

When a read-only transaction Twishes to access an item, no locking is required.
Instead, the transaction simply reads the most recent version of the item with a
timestamp less than S-TS(T). Since the timestamp associated with a version is
the commit timestamp of its writer, a read-only transaction T is thus made to
only read versions that were written by transactions that committed before T
even began running. Thus, T is serialized after all transactions that committed
prior to its startup, but before all transactions that are active during any portion
of its lifetime.

*The CCA algorithm actually stores the creator’s transaction identifier with the item, maintaining a
separate list that associates transactions with their commit timestamps [lo, 111.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

342 l M. J. Carey and W. A. Muhanna

2.3 Multiversion Serial Validation (MVSV)

The multiversion serial validation algorithm [7] is based on the single-version
optimistic concurrency control algorithm of Kung and Robinson [16] known as
serial validation (SV). In the SV algorithm, transactions record their read and
write sets as they run. A transaction is restarted at its commit point if any item
in its readset has been written by a transaction that committed during its lifetime.
One difference between their algorithm and our version of the algorithm, which
we shall describe shortly, is that we use timestamps to efficiently check for
readset/writeset conflicts instead of storing old writesets and explicitly testing
for readset/writeset intersections [7]. Each transaction is assigned a startup
timestamp, S-TS(T), at startup time, and a commit timestamp, C-TS(T), when
it later enters its commit processing phase. A write timestamp TS(X) is main-
tained for each data item X; TS(X) is the commit timestamp of the most recent
(committed) writer of X. Each transaction T is validated at commit time,
being allowed to commit if and only if S-TS(T) > TS(X,) for each object X, in
its readset. Each transaction T that successfully commits sets TS(X,) equal to
C-TS(T) for all data items X, in its writeset.

The CCA version pool algorithm is a multiversion algorithm that enhances a
known concurrency control algorithm, two-phase locking, by permitting read-
only transactions to read older versions of objects. In this way, serializability is
guaranteed for update transactions in the usual way, and serializability is guar-
anteed for read-only transactions by having them read a consistent set of older
versions of data determined by their startup time. Conflicts between read-only
transactions and update transactions are eliminated, increasing the level of
concurrency that can be achieved using the algorithm. This same idea can be
applied to yield a multiversion variant of serial validation.

In multiversion serial validation [7], transactions are again classified as being
either read-only or update transactions at startup time. Update transactions
record their readsets and writesets and perform commit-time conflict testing,
and versions are stamped with the commit timestamp of their creator (as above).
As in the CCA version pool algorithm, read-only transactions read the most
recent versions of items with timestamps less than their startup timestamps. As
a result, the serializability of update transactions is guaranteed by SV semantics,
and the serializability of read-only transactions is guaranteed by making sure
they read consistent committed versions of data. Read-only transactions thus do
not have to undergo a validation test in multiversion serial validation, and they
are never restarted. (Similar multiversion optimistic concurrency control algo-
rithms are discussed in [17], [28], and [29].)

2.4 Maintaining Old Versions

For all three of the algorithms studied here, versions are maintained using a
slightly simplified version of the scheme proposed in the CCA version pool paper
[ll]. Basically, the physical database is divided into two parts, the main segment
and the version pool. The main segment contains the current versions of all of
the objects in the database, and the version pool contains older versions of
database objects. The version pool objects are organized in a large circular buffer
with slots numbered from 0 to max-up-size -1. Versions of objects are chained
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 343

Main Segment

Version Pool

I Fig. 1. Storing multiple versions.

in reverse chronological order, and version pool slots are allocated sequentially.
Figure 1 depicts the main segment of the database, the version pool, and a version
chain for an object X.

The reclamation of free-version pool space is handled efficiently by using the
CCA algorithm for maintaining sliding ranges of version pool slots that are in
use [ll]. Three pointers, reader-first, update-first, and last, where reader-first 5
update-first I last (modulo max-up-size), are used to maintain these sliding
ranges. Slots between reader-first and last contain versions of objects that may
be needed to satisfy a read request for some ongoing transaction. Slots between
update-first and last contain object versions that have been written by an ongoing
or recently committed update transaction. The objects in this latter range are
those objects that may be required to undo the effects of an ongoing update
transaction if it is restarted, so this section of the version pool also serves as an
UNDO log [14] for recovery purposes [ll]. The simplification referred to earlier
is that the maximum size of the version pool is made sufficiently large in our
simulations so as to avoid problems that arise when the version pool size reaches
its maximum limit. In addition, our approach to version selection is based on
timestamps rather than on Chan’s completed transaction lists [ll], slightly
simplifying the implementation while preserving the desired semantics.

Of the three multiversion algorithms studied in this paper, two were designed
to be used with this version management scheme [7,111. Reed proposed a scheme
where versions with timestamps newer than some threshold value are kept, and
older versions are discarded [24]. Depending on the threshold setting, this scheme
may require that some read-only transactions be aborted. We opted to use the
CCA version management scheme for multiversion timestamp ordering as well
for several reasons. First, it is simple and efficient, and allows us to ignore
the problems of a finite-version pool limit if we choose the version pool size
appropriately for our simulations. Second, unlike Reed’s proposal, it allows
objects to be updated in place, which is usually thought to be preferable from
a database performance standpoint. (Reed’s proposal was aimed at providing a

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

344 l M. J. Carey and W. A. Muhanna

transaction-oriented object storage facility in an operating system, not at solvmg
database problems.) Finally, we felt that making one uniform assumption would
facilitate a fairer comparison of the algorithms, and using the CCA scheme allows
us to address the question of how much storage is required to maintain all
versions that may be needed by in-progress transactions.

3. THE SIMULATION MODEL

This section outlines the structure and details of the simulation model that was
used to evaluate the performance of the algorithms. The model was designed to
support performance studies for a variety of centralized concurrency control
algorithms [l, 6, 81.

3.1 The Workload Model

An important component of the simulation model is a transaction workload
model. When a transaction is initiated in the simulator, it is assigned a readset
and a writeset. These determine the objects that the transaction will read and
write during its execution. Two transaction classes, large and small, are recognized
in order to aid in the modeling of realistic workloads. The class of a transaction
is determined at transaction initiation time on the basis of its terminal of origin,
and its class determines the manner in which its readset and writeset are assigned.
Transaction classes, readsets, and writesets are generated using the workload
parameters shown in Table I.

The parameter mpl determines the level of multiprogramming for the workload.
The parameter db-size determines the number of objects in the database, and
objects are represented by integer names ranging from 1 to db-size. Objects
correspond to disk pages throughout this paper.

The readset and writeset for a transaction are lists of the names of the objects
to be read and written, respectively, by the transaction. These lists are assigned
at transaction startup time. When a terminal initiates a transaction, the class of
the terminal is used to decide the class of the transaction. To provide a steady
mix of transactions of each class, terminal classes are assigned when the simu-
lation begins by statically designating Lsmall-frac*num-termsJ terminals as
generators of small transactions and the remainder as generators of large
transactions. If the class of a newly initiated transaction is small, the parameters
small-mean, small-xact-type, small-size-d&, and small-write-prob are used to
choose the readset and writeset for the transaction as described below. Readsets
and writesets for the class of large transactions are determined in a similar
manner using the parameters large-mean, large-xact-type, large-size-dist, and
large-write-prob.

The readset size distribution for small transactions is given by small-size-dist.
It may be fixed or uniform. If it is fixed, the readset size is simply small-mean. If
it is uniform, the readset size is chosen from a uniform distribution with range
small-mean -+ Lsmall-mean/2J. The particular objects accessed are determined by
the parameter small-xact-type, which determines the type (either random or
sequential) for small transactions. If they are random, the readset is assigned by
randomly selecting objects without replacement from the set of all objects in the
database. In the sequential case all objects in the readset are adjacent, so the
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms

Table I. Workload Parameters for Simulation

Workload parameters

l 345

wl
db-size
small-frac
small-mean
small-xact-type
small-size-dist
small-write-prob
large-mean
large-xact-type
large-size-dist
large-write-prob

Multiprogramming level
Size of database
Fraction of small transactions in mix
Mean size for small transactions
Type for small transactions
Size distribution for small transactions
Pr(write X 1 read X) for small transactions
Mean size for large transactions
Type for large transactions
Size distribution for large transactions
Pr(write X 1 read X) for large transactions

readset is selected randomly from among all possible collections of adjacent
objects of the appropriate size. Finally, given the readset, the writeset is deter-
mined as follows using the small-write-prob parameter: It is assumed that trans-
actions read all objects that they write (“no blind writes”). When an object is
placed in the readset, it is also placed in the writeset with probability small-
write-prob.

3.2 The Queuing Model

Central to the detailed simulation approach used here is the closed queuing model
of a single-site database system shown in Figure 2. There are a fixed number of
terminals from which transactions originate. When a new transaction begins
running, it enters the startup queue, where processing tasks such as query
analysis, authentication, and other preliminary processing steps are modeled.
Once this phase of transaction processing is complete, the transaction enters the
concurrency control queue (or cc queue) and makes the first of its concurrency
control requests. If this request is granted, the transaction proceeds to the object
queue and accesses its first object. If more than one object is to be accessed prior
to the next concurrency control request, the transaction will cycle through this
queue several times. When the next concurrency control request is required, the
transaction reenters the concurrency control queue and makes the request. It is
assumed for modeling convenience that transactions first perform all of their
read accesses and then perform any write accesses.

If the result of a concurrency control request is that the transaction must
block, it enters the blocked queue until it is once again able to proceed. If a
request leads to a decision to restart the transaction, it goes to the back of the
concurrency control queue after a randomly determined restart delay period with
a mean of one average transaction response time; this adaptive restart delay is
invoked regardless of the concurrency control algorithm employed, as it was
found in a previous study that the adaptive delay seems to have a stabilizing
effect on any concurrency control algorithm when the conflict probability be-
comes large [l]. Following its restart delay, the transaction then begins making
all of its concurrency control requests and object accesses over again. Eventually,
the transaction may complete and the concurrency control algorithm may choose

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

346 l M. J. Carey and W. A. Muhanna

TERMINALS

object
queue

4
“0

Fig. 2. Logical queuing model.

to commit the transaction. If the transaction is read-only, it is finished. If it has
written one or more objects during its execution, however, it must first enter the
update queue and write its updates into the database. (It is assumed that sufficient
main memory exists to allow updates to be cached in main memory until end-of-
transaction.) When a transaction finally does commit, it is immediately replaced
by a new transaction.

Underlying the logical model of Figure 2 are two physical resources, the I/O
(disk) and CPU resources. Associated with each logical service depicted in the
figure (startup, concurrency control, object accesses, etc.) is some use of each of
these two resources-each can involve I/O processing followed by CPU process-
ing. The amounts of I/O and CPU used per logical service are specified as
simulation parameters. All services compete for portions of the global I/O and
CPU resources for their I/O and CPU cycles. The underlying physical system
model is depicted in Figure 3. As shown, the physical model is simply a collect.ion
of terminals, a CPU server, and an I/O server (plus the restart delay path).
Requests in the CPU queue are serviced FCFS (first-come, first-served), except
that concurrency control requests have priority over all other service requests.
The service discipline for the I/O queue is also FCFS. These service disciplines
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 347

TERMINALS

--e$+-

Fig. 3. Physical queuing model.

Table II. System Parameters for Simulation

Svstem uarameters

startup20
startup-cpu
obj-io
obj-cpu
CC-CPU

I/O time for transaction startup
CPU time for transaction startup
I/O time for accessing an object
CPU time for accessing an object
Basic unit of concurrency control CPU time

were chosen to approximately model the characteristics that a real database
system implementation would have. Note that, since a transaction never requests
CPU time for processing more than one page in a cycle through the CPU queue,
CPU scheduling is approximately equivalent to a round-robin CPU scheduling
policy where the quantum exceeds the page processing time.

The parameters determining the service times (I/O and CPU) for the various
logical resources in the model are given in Table II. The parameters startup-io
and startup-cpu are the amounts of I/O and CPU associated with transaction
startup. Similarly, obj-io and obj-cpu are the amounts of I/O and CPU associated
with reading or writing an object. Reading an object takes resources equal to
obj-io followed by obj-cpu. Writing an object is assumed to require the same
resources as reading an object,3 but the time when the obj-io portion of the cost
is assessed is different. A cost of obj-cpu is charged at the time of the write
request and a cost of obj-io is charged later, at transaction completion time. (It
is assumed that updates reside in main memory buffers until being flushed out
when the transaction commits.) The parameter CC-CPU is the amount of CPU

’ We refer here to the cost of writing the object itself; recovery cost issues are discussed separately in
Section 3.4.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

348 - M. J. Carey and W. A. Muhanna

time associated with a concurrency control request. All of these parameters
represent constant service time requirements rather than stochastic ones for
simplicity. All parameters are specified in internal simulation time units, which
can be interpreted in whatever manner is desired. In the studies reported here,
one simulation time unit will represent 1 millisecond of simulated time.

3.3 Algorithm Descriptions

Concurrency control algorithms are described for simulation purposes as a
collection of four routines, Init-CC-Algorithm, Request-Semantics, Commit-
Semantics, and Update-Semantics. Each routine is written in SIMPAS, a simu-
lation language based on extending Pascal with simulation-oriented constructs
[5], the language in which the simulator itself is implemented. Init-CC-Algorithm
is called when the simulation starts up, and it is responsible for initializing all
algorithm-dependent data structures and variables. The other three routines are
responsible for implementing the semantics of the concurrency control algorithm
being modeled. Request-Semantics handles concurrency control requests made
by transactions before they reach their commit point. Commit-Semantics is
invoked when a transaction reaches its commit point. Update-Semantics is called
after a transaction has finished writing out its updates. Each of the latter three
routines returns information to the simulator about how much simulation time
to charge for any CPU costs associated with concurrency control processing.

3.4 Concurrency Control and Recovery Costs

In order to simulate the single-version and multiversion concurrency control
algorithms of interest, it is necessary to make some assumptions about thieir
costs. In this section we briefly describe how the simulation cost parameters are
used to model the costs for each of the multiversion algorithms.

It is assumed that transactions are issued startup timestamps (for all three
algorithms) and registered as being either read-only or update transactions (for
MV2PL and MVSV) at transaction startup time. The cost of doing so is assumed
to be included in the startup-cpu and startup-i0 costs. Read-only transactions
incur no additional concurrency control costs in MVBPL or MVSV, but read-
only transactions in MVTO and update transactions in all three algorithms will
incur costs for setting locks, checking timestamps, or performing validation tests
(depending on the algorithm being considered). These latter costs are charged1 at
the points where the algorithms require the associated actions. It is assumed that
the costs for the actions of setting a lock, checking a transaction timestamp,
or performing a validation test step are all equal, and each results in a charge of
CC-CPU per action [8].

When a transaction accesses a version of an object, costs of obj-io and obj-cpu
are assessed for each disk access required. The number of disk accesses required
to satisfy a read request using an old version of an object depends on whether or
not there is a pending (uncommitted) update for the object and on the number
of versions accessed. If there is no pending update for the object, one disk access
is required to access the current version, two are required to access the second
most current version, three are required for the most recent version before thlat,
and so on. If there is a pending update for the object, we assume that the address
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 349

of the object’s before-image in the version pool is stored in the lock or’timestamp
table in main memory along with its concurrency control state. In this case one
disk access is required for either the current version or the second most recent
version, two accesses are required for the most recent version before that, and so
on. Thus, in effect, the cost of accessing the most recently committed version of
an object is always one, even if it happens to be the before-image of a version
undergoing an update. Other read and write charges are assessed as described
previously in the discussion of the queuing model.

Note that we do not distinguish between random and sequential I/O costs in
our model of the object accessing cost. We chose not to do so for several reasons.
First, while sequential transactions incur lower I/O costs than random transac-
tions in a single-user environment, this is much less true in a multiuser environ-
ment where the disk receives interleaved requests for accesses to different
cylinders on the disk. Second, there is recent evidence that, in a multiuser,
multidisk environment, it may actually be better to spread sequential data pages
out across the disks (i.e., to “decluster” the data) in order to improve performance
[20]. Finally, distinguishing between random and sequential I/O would require
us to adopt a much more detailed model of the disk, its associated scheduler, and
the physical layout of data on disk, and we doubt that this added complexity
would significantly affect the overall conclusions of the paper.

In addition to the costs for concurrency control processing and following
version chains, the multiversion algorithms incur version maintenance costs.
When an object is to be updated, the before-image of the object must be read
from the main segment and written into the version pool before the actual update
can be permitted. We ignore this source of costs throughout most of the paper,
as we believe that this cost is analogous to the recovery costs (e.g., logging costs)
that arise in single-version algorithms, and thus that recovery costs are compa-
rable for all of the algorithms considered here. In terms of UNDO and REDO
logging [14], copying before-images to the version pool eliminates the need for
UNDO logging for transaction recovery; however, REDO logging is still necessary
to protect against media failure (and also against normal crashes if updated pages
are not forced to disk at commit time) [S, 111. Thus, to see that it is indeed
reasonable to ignore the before-image copying cost here, we must compare it with
the cost of UNDO logging in single-version algorithms.

For UNDO logging, the before-image of each changed object is written to the
log, which requires a sequential page write (assuming page-level logging). The
cost of before-image copying can be reduced to a similar level by keeping the
version pool on dedicated stable storage devices like log disks [lo]; version pool
disks can be managed in nearly the same way as log disks are managed, as a
circular buffer [15]. Although it is true that a version pool read will move the
version pool disk arm, thus lessening the sequentiality of version pool writes,
similar arm movement can occur with log disks; for example, a background log
archiving process will compete with log writes, as will the log reads needed to
undo the effects of restarted transactions. (We see later that multiversion
algorithms can reduce the frequency of transaction restarts, making the latter
effect more pronounced for a log disk than for a version pool disk.) Similarly,
the amount of information recorded in the log is not significantly different from

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

350 ’ M. J. Carey and W. A. Muhanna

that recorded in the version pool-although we assume page-level operations in
this study, both the log and the version pool mechanism are capable of operating
at the record level as well [lo, 151. The bottom line is that similar recovery costs
appear to be incurred by both single-version and multiversion concurrency control
algorithms, and a truly realistic comparison of these costs would require a very
detailed model of the recovery implementations used by the respective algorithms.
We thus factor out these recovery costs (i.e., log writes and version pool writes)
throughout most of the paper. An alternative version maintenance cost assump-
tion is examined in Section 4.4, and we will see that it is indeed important that
the version pool write cost be made equivalent to the cost of a log write in order
to retain all of the benefits associated with multiversion algorithms.

3.5 Statistical Analysis

In the simulation experiments reported here, one of the primary performance
metrics used is the transaction throughput rate. Mean throughput results a.nd
90 percent confidence intervals for these results were obtained from the simula-
tions using a variant of the batch means [30] approach to simulation output
analysis. The approach used is due to Wolff (personal communication, 1983); it
differs from the usual batch means approach in that an attempt is made to
account for the correlation between adjacent batches. Briefly, we assume that
adjacent batches are positively correlated, that nonadjacent batches are uncor-
related, and that the correlation between a pair of adjacent batches is independent
of the pair under consideration. We then estimate this correlation and use it, in
computing a confidence interval for the mean throughput. In the remainder of
this paper we omit the confidence interval data for brevity, presenting just mean
throughput figures. However, we only point out performance differences that are
significant in the sense that their confidence intervals do not overlap. M’ore
information on the statistical approach used in our experiments may be found
in [6, Appendix 31.

4. EXPERIMENTS AND RESULTS

In this section we present the results of four experiments designed to examine
the performance and storage characteristics of the multiversion concurrency
control algorithms. Experiment 1 examines the algorithms under the type of
workload for which they are expected to be beneficial, a mix of small update
transactions and larger read-only transactions. The mean size of the read-only
transactions in the mix is varied in this first experiment. Experiment 2 inve:sti-
gates the effects of the fraction of update transactions in the mix on the degree
of benefit obtained. Experiment 3 investigates the relative performance of the
three multiversion algorithms for workloads consisting only of update transac-
tions, varying the multiprogramming level, to see how the algorithms behave
over a range of update conflict probabilities. Finally, Experiment 4 investigates
the importance of efficient version pool management by repeating Experiment 1
under a cost model where version pool writes are assumed to be more expensive
than log writes. In all four experiments, we examine the performance of both the
multiversion algorithms and their single-version counterparts.

Table III contains the settings for parameters that are fixed throughout all
four experiments. The database size used for the experiments is 500 pages (or
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms

Table III. Fixed Parameters

Fixed parameter settings

l 351

db-size
startup-cpu
startup-i0
cc-cpu
obj-cpu
obj-io

500 pages
10 ms
35 ms
1 ms
10 ms
35 ms

2 megabytes, assuming 4-kilobyte pages). This rather small size was chosen to
allow the simulation of transaction sizes that represent a significant fraction
of the database without requiring prohibitively long simulation times. Trans-
actions incur costs of a 35millisecond disk access and 10 milliseconds of CPU
time at startup time. The unit cost for a concurrency control decision is
1 millisecond of CPU time (assuming that all concurrency control information is
kept in tables in main memory). The cost associated with accessing a page is a
35-millisecond disk access and 10 milliseconds of CPU time to process the page.
Other parameters are varied from simulation run to simulation run and are
provided in the descriptions of the individual experiments. (Also, the reader is
reminded that the meaning and use of each parameter are described in detail in
the previous section.)

We must mention here that our parameter settings are not intended to
duplicate those of real applications, and the same is true of the workloads used
for our experiments. Our intention is to investigate how the algorithms compare
with one another under various conditions, both in terms of performance (e.g.,
throughputs and response times) and storage costs. The particular conditions
that we address in this paper are varied read-only transaction sizes, varied mixes
of read-only and update transactions, a varied degree of conflicts among update
transactions, and two different version pool write costs. Since our simulation
model has many parameters, there are necessarily a number of parameters that
we could have varied but did not. For example, we could have varied the
granularity of the database, the write probability or the readset size for update
transactions, or the various I/O and CPU cost parameters. For the purposes of
this study, however, such variations were not of interest. Also, studies with such
variations have been described elsewhere [l, 6, 81. Although different parameter
settings would lead to different absolute performance results, we believe that the
experiments presented here do a good job of illustrating the key performance and
storage trade-offs.

4.1 Experiment 1: Read-Only Transactions

This experiment examines the behavior of the algorithms under a mix of trans-
actions for which the multiple-version algorithms were designed to be beneficial.
The mix used here consists of update transactions and read-only transactions.
Update transactions are small, and the size of read-only transactions is varied
from small to very large as a fraction of the overall database size. We study the
relative performance of each of the multiversion algorithms, first as compared
with their single-version counterparts, and then as compared with each other.
The performance metrics used are the per-class throughputs and response times.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

352 - M. J. Carey and W. A. Muhanna

Table IV. Workload
Parameters, Experiment 1

Workload parameters

T 1.00
I-

a 0.90
n

s
0.x0

a

c
t 0.70

i

0 0.60

n

s 0.50

P 0.40
c

r
0.30

s
0.20

c
c
0 0.10

n

cl

mPl
small-frac
small-mean
small-write prob
small-xact-type
small-size-type
large-mean

large-xact-type
large-size-type
large-write-prob

10
0.8
2
1.0
Random
Fixed
5, 10, 25, 50,

100
Sequential
Uniform
0.0

IO 20 30 40 SO 60 70 x0 90 LOO
Read-Only Transaction Size

Fig. 4. Read-only transaction throughput.

(Overall throughput and response times are not examined here, as they have
little or no meaning with a multiclass workload. For example, the way to maxim.ize
the overall throughput and minimize the overall response time would be simply
to block large read-only transactions forever and run only small update transac-
tions.) Also examined are the size of the version pool and the number of disk
accesses required to satisfy read requests from transactions.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 353

T 6.00
I-

a

n 5. so

s

a

C
5.00

t

i
4. so

0

”

s 4.00

P
e 3.50

r

3.00
S

e

C 2. so
0

n

d I

IO 20 30 40 50 60 70 x0 90 100
Read-Only Transaction Size

Fig. 5. Update transaction throughput.

The workload parameters for Experiment 1 are shown in Table IV. The level
of multiprogramming is set to ten, so ten transactions will be in the system at
all times (although some of these ten may be blocked or undergoing a restart
delay). Eighty percent of these transactions are updaters, reading and then
updating two randomly chosen pages, and the other 20 percent are read-only
transactions. Each read-only transaction reads a number of sequential pages, and
the mean size of these transactions is varied from 5 pages up to 100 pages over
the set of simulations associated with this experiment. The readset size distri-
bution for read-only transactions is uniform, ranging +_50 percent from the mean
size (as described in Section 3.1). With these parameter settings, conflicts between
update transactions are unlikely. In the single-version case, however, conflicts
between update transactions and read-only transactions are quite likely for the
larger read-only transaction sizes. The point of this experiment is to see what is
gained by having multiple versions available to eliminate this latter source of
conflicts.

Figure 4 shows the throughput results for the read-only transactions for the
three multiversion concurrency control algorithms and their single-version coun-
terparts, and Figure 5 shows the throughput results for the update transactions
in the workload. Two things are evident from these figures. First, the three
multiversion algorithms provide almost identical throughput, both for the

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

354 l M. J. Carey and W. A. Muhanna

read-only transactions and the update transactions. The explanation for this is
that, given the small size of the update transactions in this experiment, almost
all conflicts are between read-only and update transactions. All three multiversion
algorithms eliminate this source of conflicts, allowing read-only transactions to
execute using older versions of objects and requiring update transactions to
compete only among themselves for access to the objects in the database. Second,
the three single-version algorithms provide quite different performance trade-
offs between the two transaction classes. 2PL provides good throughput for -the
large read-only transactions, but it also provides the worst throughput for the
update transactions. BTO and SV, on the other hand, provide better update
transaction throughput at the expense of the large read-only transactions-the
large transaction throughput drops rapidly as the size of the read-only transac-
tions is increased.

In order to understand why the single-version algorithms perform as they do,
it is necessary to consider how each of them treats the two classes of transactions.
Both SV and BTO are biased against large read-only transactions because of
their conflict resolution mechanisms. SV restarts a transaction at the end of its
execution if any of the objects in its readset have been updated during its lifetilme;
for large transactions, such an update is very likely, so the large read-only
transactions in the mix have little hope of ever being able to commit. For read-
only transaction sizes of 25 (5 percent of the database) or more, these transacticons
are simply being restarted over and over, and their throughput rate is zero.
Similarly, BTO restarts a transaction any time it attempts to read an object with
a timestamp newer than its startup timestamp, meaning that the object has b’een
updated by a transaction that started running after this transaction did. Again,
this becomes very likely as the read-only transaction size is increased, and read-
only transactions are “starved out” by the update transactions when the read-
only transaction size is 10 percent or more of the database. In contrast, 2PL has
the opposite problem. Read-only transactions set locks on objects that they read,
perhaps occasionally waiting briefly while an update transaction completes, and
then hold these locks for the remainder of their execution time. Thus, readonly
transactions can hold locks on a significant portion of the database for quite a
long time when their size is large. Update transactions that wish to update locked
objects must wait a long time in order to lock and update these objects (half the
read-only transaction execution time, roughly).4 This is evident in Figure 5,
where 2PL’s update transaction throughput decreases significantly when the size
of the read-only transactions in the mix exceeds 5 percent of the database size.

Figure 6 presents the response time results for the read-only transactions. For
the most part, the trends in this figure reflect the throughput trends observed in
Figure 4. It is again evident that, as compared with the multiversion algorithms,
2PL favors large read-only transactions, while BTO and SV are biased against
them. In fact, the response time curves for BTO and SV end early because no
large read-only transactions at all were able to complete successfully during the
simulations beyond the points shown. Figure 6 also shows a slightly better
response time for large read-only transactions under MVTO as compared with

’ Also, since update transactions tend to be younger in comparison with read-only transactions, they
will be chosen as the victims when deadlocks arise involving read-only and update transactions.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 355

70.0

60.0

50.0

S

e
40.0

C

0

”

d 30.0

S

20.0

10.0

2PL BTO D 0 0 _. 0 x... . ..sv #

10 20 30 40 50 60 70 x0 90 100
Read-Only Transaction Size

Fig. 6. Read-only transaction response time.

the other multiversion algorithms. This trend is explained by Figure 7, which
gives the average number of disk accesses required to satisfy an individual read
request from a read-only transaction. Figure 7 shows that the average number of
versions read by a large read-only transaction is slightly lower under MVTO.
The reason for this is that, in the MVSPL and MVSV algorithms, versions are
stamped with the commit timestamp of their creator. Read-only transactions
read the most recent committed version of an object, a version that was committed
before the read transaction started running. In MVTO, however, versions are
instead stamped with the startup timestamp of their creator, and read-only
transactions read the most recent version that has a timestamp less than their
own startup timestamp. Note that this version does not have to have been created
by a transaction that committed quite as long ago (i.e., prior to this one’s
startup)-it may have been created by a transaction that started running right
before this one. As a result, large read-only transactions end up reading slightly
newer data under MVTO than under MVSPL or MVSV, and thus the version
chains that they follow to find the desired data are slightly shorter on the average.

Figure 8 shows the response time results for the update transactions.
Again, the trends in this figure closely reflect the throughput trends observed in
Figure 5. In Figure 8, BTO is seen to provide better performance than SV for the
update transactions when the size of the read-only transactions in the mix is
large; this trend is visible in Figure 5 as well. This is explained by Figure 9, which

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

356 - M. J. Carey and W. A. Muhanna

D
i 1.40

5

k 1.30

A

C 1.20
c

e
s 1.10

s

e
1.00

s

0.90 MVTO x MVSV

10 20 30 40 50 60 70 X0 90 100
Read-Only Transaction Size

Fig. 7. Read-only transaction version accesses.

shows the fraction of the available disk time (since the disk is the bottleneck
resource with our parameter settings) that is spent processing requests from
transactions that were later restarted. It can be seen in the figure that SV is the
most wasteful of the algorithms, as it uses the largest amount of the overall d.isk
capacity for processing requests that were subsequently rendered useless. This is
because SV restarts transactions at the end of their execution, whereas at least
BTO, the second most wasteful algorithm, tends to restart transactions earlier
when restarts are called for. Wasting more resources leads to lower through:put
and higher response times in most situations, as shown in [l, 81.

Having studied the performance of the multiversion algorithms for this exper-
iment, we now consider their storage overheads. Figure 10 shows how the relative
version pool size, defined as the average ratio of the size of the version pool to
the size of the database, behaves as a function of read-only transaction size. The
three multiversion algorithms have similar storage overheads, and this overhead
increases with read-only transaction size. The larger the ratio of read-only
transaction response time to update transaction response time, the larger the
number of old versions of objects that a read-only transaction may have to read
(because more updates occur during its lifetime). Thus, more old versions have
to be maintained in the version pool, which is why the relative size of the version
pool increases with read-only transaction size. As shown in the figure, the version
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 357

2.15

2.50

2.25

S 2.00
e

C

0 1.75
n

d
s 1.50

1.25

1.00

rzJ ?P!...o 0 STCo x s!!)(

MVZPL MVTO MVSV

I

10 20 30 10 so 60 70 x0 90 100
Read-Only Transaction Size

Fig. 8. Update transaction response time.

pool is quite small until the read-only transaction size reaches 25 (5 percent of
the database size), at which point the version pool size is about 20 percent of the
database. When the read-only transaction size is 10 percent of the database size,
the version pool size is approximately 40 percent of the size of the database.
Finally, when each read-only transaction reads about 20 percent of the database,
the version pool becomes as large as the database itself, as a large number of
update transactions can complete during the execution of a single read-only
transaction at this point.

Figure 11 shows the average number of version accesses (i.e., disk reads)
required for accessing a data object, including reads by both the update transac-
tions and the read-only transactions. The trends are similar to those of Figure 7,
which shows the same metric with the update transaction reads excluded. The
average number of disk accesses (over all reads) is less than 1.07 or so as long as
read-only transactions read no more than 10 percent of the database, and it is
still less than 1.15 when read-only transactions read as much as 20 percent of
the database. Of course, as one would expect, the average number of disk accesses
is higher if only the read-only transactions are considered (as was the case in
Figure 7).

Tables V-VII each contain three results pertaining to the version access
behavior of transactions for the MV2PL algorithm for read-only transaction

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

358 l M. J. Carey and W. A. Muhanna

0.20

0.18

0.16

u
t 0.14

i

1 0.12

i

z 0.10
a

t 0.08
i

0
0.06

n

0.04

0.02

I-

..-. x-- -.--_.._.... .-.------..----.----x

x .-._

,: :

/ :
0 2PL. 0 0 B.?Ko x s\l....)(

>i ::’ MV2PL MVTO _ ” MVSV

i

1

10 20 30 30 SO 60 70 80 90 100
Read-Only Transaction Size

Fig. 9. Wasted disk utilization.

sizes of 25, 50, and 100 (respectively). The results for MVTO and MVSV were
similar, so MVSPL results alone are given to illustrate the interesting points.
The first column in each table is the number of disk accesses, or versiolns
accessed, per read request. The next two columns in each table pertain to the
number of disk accesses per read for the update and read-only transactions,
respectively. The last column pertains to the number of disk accesses per read
overall (i.e., regardless of the requesting transaction’s class).

In all three tables, as expected, read requests for the update transactions were
always satisfied in one disk access. In addition, Table V shows that, with a mean
read-only transaction size of 25, or 5 percent of the database, almost 90 percent
of the read requests for the read-only transactions were satisfied in a single disk
access. Ninety-nine percent of the read requests from these transactions were
satisfied in only one or two disk accesses, and less than 1 percent needed three
or four disk accesses. No read request ever required more than four disk accesses
at this read-only transaction size setting. The last column in the table shows
that, overall, about 97 percent of all read requests were satisfied in only one disk
access. Table VI shows the same collection of statistics for the case in which the
mean size of the read-only transactions is 50, or 10 percent of the overall database
size. The results are similar to those in Table V, though the percentages for more
than one disk access are a bit higher in this case. Nearly 80 percent of all read
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 359

0.60-

I , 0

IO 20 30 40 SO 60 70 X0 90 100
Read-Only Transaction Size

Fig. 10. Relative version pool size.

requests from the read-only transactions were satisfied in a single disk access,
and 97 percent of the requests required just one or two disk accesses. Just over
3 percent of the read requests necessitated three or four disk accesses in this
case, with none requiring more than that. Ninety-four percent of all read requests,
overall, required only one disk access.

Table VII shows the version access statistics for the most extreme case
examined, where the mean read-only transaction size is 100, or 20 percent of the
database size. Even with this extremely large read-only transaction size, over
90 percent of all reads were satisfied in just one disk access. However, it is evident
here that read-only transactions did encounter a greater percentage of reads
requiring multiple disk accesses. Only about 62 percent of all read requests from
the read-only transactions could be processed in one disk access, with the
remainder of the first 87 percent of the requests requiring two accesses. Another
9 percent of the read requests required three disk accesses, and another 3 percent
required four accesses. The remaining l-2 percent of the requests required
between five and eight disk accesses in this case. It is clear from these results
that, even in extreme cases, the vast majority of reads do not need to use a
version other than the most recently committed version. Note, however, that the
performance results discussed earlier do indicate that having old versions avail-
able for those accesses that need them is definitely beneficial

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

360 l M. J. Carey and W. A. Muhanna

D

i

s

k

MVTO MVSV

1

10 20 30 40 50 60 70 x0 90 100
Read-Only Transaction Size

Fig. 11. Average version accesses.

Table V. Versions Accessed, Read-Only Transaction Size = 25, MVBPL

Disk
accesses

Percent of Percent of
update transaction read-only transaction

reads reads
Percent of
all reads

100.00 89.89 96.90
0.00 9.33 2.86
0.00 0.73 0.23
0.00 0.05 0.01

Considering the results of Experiment 1 as a whole, several conclusions can be
drawn at this point. First, it was seen that multiversion concurrency control
algorithms are definitely beneficial from a performance standpoint-all three of
the algorithms examined here outperformed their single-version counterparts in
some respect. The MVBPL algorithm remedied a problem that 2PL was seen -to
have: For medium to large read-only transaction sizes, the response time for the
update transactions degraded quickly as the read-only transaction size was
increased. Similarly, MVSV and MVTO remedied the (dual) problem that SV
and BTO were found to have: As the read-only transaction size was increased,
the large read-only transactions quickly began to be starved out (i.e., restarted
over and over again) because of updates made by the update transactions in the
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 361

Table VI. Versions Accessed, Read-Only Transaction Size = 50, MVBPL

Disk
accesses

1
2
3
4

Percent of Percent of
update transaction read-only transaction

reads reads

100.00 79.31
0.00 17.46
0.00 2.83
0.00 0.40

Percent of
all reads

94.05
5.02
0.81
0.12

Table VII. Versions Accessed, Read-Only Transaction Size = 100, MVBPL

Percent of Percent of
Disk update transaction read-only transaction Percent of

accesses reads reads all reads

100.00 61.80 90.63
0.00 25.36 6.22
0.00 a.79 2.15
0.00 2.81 0.69
0.00 1.04 0.25
0.00 0.15 0.04
0.00 0.03 0.01
0.00 0.02 0.01

workload. Our results also confirm results reported for BTO versus MVTO in
[X3], as we found that multiple versions do not help as much when the read-only
transactions are small. In addition, we found that the same is true for 2PL versus
MVBPL (and also for SV versus MVSV to some extent). Finally, in analyzing
the storage-related aspects of the algorithms, it was found that, for read-only
transactions that read less than 5 percent of the database on the average, the
size of the version pool was less than 20 percent of the size of the database; only
when read-only transactions read more than 10 percent of the entire database
did the size of the version pool exceed 40 percent of the database size. It was also
found that, even in extreme cases, the vast majority of read requests could be
satisfied in a single disk access.

4.2 Experiment 2: Transaction Mix

This experiment examines the behavior of the algorithms under a mix of trans-
actions similar to that of Experiment 1. In this experiment, however, the size of
read-only transactions is held fixed. The variable here is the fraction of update
versus read-only transactions in the mix. The point of this experiment is to find
out how the performance benefits associated with multiversion algorithms vary
with the transaction mix. Also investigated is the way in which the storage cost
(i.e., the size of the version pool) varies with the mix.

Table VIII gives the parameter settings used in this experiment. The level of
multiprogramming is set to ten, as in Experiment 1. The update transactions in
the mix again read and update two objects. The mean size of read-only transac-
tions is 50 in this case, meaning that each read-only transaction reads between
25 and 75 sequential pages. As mentioned above, the mix of transactions in the

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

362 l M. J. Carey and W. A. Muhanna

T 0.60
r

a

n
S 0.50

a

c

t
0.40

i

0

n

s 0.30

P
e

r 0.20

S

e 0.10
c

0

”

d

Table VIII. Workload Parameters,
Experiment 2

Workload parameters

wl 10
small-frac 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
small-mean 2
small-xact-type Random
small-size-type Fixed
small-write-pro6 1.0
large-mean 50
large-xact-type Sequential
large-size-type Uniform
large-write-pro6 0.0

2PL BTO D q o... 0 x SK)(

0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.X 0.9 1.0
Update Transaction Fraction

Fig. 12. Read-only transaction throughput.

workload is varied in this experiment. In particular, workloads with 0, 20, 40, 60,
80, and 100 percent update transactions are studied, with the remainder of the
workload consisting of read-only transactions.

Figure 12 shows the throughput results for the read-only transactions for this
experiment, and Figure 13 shows the throughput results for the update transac-
tions in the workload. Figures 14 and 15 give the corresponding response-tirne
results. Figure 14 does not show results for the SV and BTO algorithms, except

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 363

T b.00
r

a

n

s 5.00

a

C

t
4.00

i

0

n

S 3.00

P
e

r 2.00

s

e 1.00
c

0

n

d I I I I I I 1

0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.X 0.9 1.0
Update Transaction Fraction

Fig. 13. Update transaction throughput.

when the mix has no update transactions; no read-only transactions were able to
complete beyond this point under SV, and those that did complete under BTO
(at the 20 and 40 percent settings) had an average response time more than ten
times worse than that of the multiversion algorithms (which would throw the
scale of the graph way off). In both sets of figures, the multiversion algorithms
perform nearly identically-as in Experiment 1, the workload here is such that
the multiversion algorithms eliminate most concurrency control conflicts. For
these algorithms, the read-only transaction throughput decreases linearly as the
fraction of update transactions in the workload is increased. The update trans-
action throughput also varies linearly, but in the opposite manner. This is
expected since, without conflicts, the throughput of each class is simply propor-
tional to the number of terminals submitting transactions of that class. The
linear increase in the response times for read-only transactions under the
multiversion algorithms, shown in Figure 14, is due to the fact that the average
number of disk accesses required to satisfy their read requests increases with the
fraction of update transactions in the mix (as we shall see shortly). This factor
is another contributor to the throughput decrease for read-only transactions in
Figure 12. The slight performance advantage that MVTO has in Figures 12 and
14 is due to the fact that read-only transactions read slightly newer data in
MVTO, as explained in Experiment 1, so read-only transactions incur somewhat
fewer extra disk accesses when MVTO is used.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

364 l M. J. Carey and W. A. Muhanna

24.0

S

e 20.0

c

0

”

d 16.0
S

12.0

o MV2PL MVTO MVSV

I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Update Transaction Fraction

Fig. 14. Read-only transaction response time.

Turning to the single-version algorithm performance results, it is evident from
Figure 12 that it takes only a small fraction of update transactions to cause t.he
read-only transactions to starve in the BTO and SV algorithms (i.e., to be
repeatedly restarted), causing read-only transaction performance to degra.de
rapidly as the fraction of update transactions is increased. Both BTO and SV
provide slightly better performance for the update transactions than the multi-
version algorithms because of this, as shown in Figures 13 and 15. This is because
a larger fraction of the system’s CPU and I/O resources are available for
processing update transactions while read-only transactions are undergoing re-
start delays. BTO provides slightly better performance than SV does for the
update transactions for the reasons discussed in Experiment 1. As for 2PL,
Figures 12-15 again show that 2PL provides better performance for the large
read-only transactions than the other algorithms, but worse performance for the
update transactions, which is consistent with what we saw in Experiment 1.
Because update transactions are usually blocked waiting for locks held by reald-
only transactions, more of the system’s resources are available for serving the
read-only transactions. The update transactions suffer the most under 2PL
when the majority of transactions are read-only transactions, as evidenced by
Figure 15. All three single-version algorithms perform the same as their multi-
version counterparts at the two extremes, where the mix consists of either <all
read-only transactions or all update transactions; this is because there are :no
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 365

6.00

5.00

4.00
S

e

c

0 3.00
n

d

s
2.00

1.00

‘b.,

,
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.X 0.9 1.0

Update Transaction Fraction

Fig. 15. Update transaction response time.

conflicts when the mix is devoid of updaters, and there are virtually no conflicts
at the other extreme with the parameter settings used here.

Figures 16 and 17 show the storage-related results obtained in this experiment.
The results are basically what one would expect, given the storage results of
Experiment 1 and the performance results just examined. The relative size of the
version pool is greatest with 80 percent updaters and 20 percent readers, which
is where the largest number of updates take place during the lifetime of the read-
only transactions. The average number of disk accesses needed to satisfy read
requests from read-only transactions is also the greatest for this mix of transac-
tions. Figure 17 shows the disk access behavior for both the read-only transactions
alone and the overall mix (including update transactions). The overall average
actually peaks at the mix of 60 percent updaters and 40 percent readers; this is
because the update transactions have their requests satisfied in a single disk
access, and the 80 percent of the mix that are update transactions pull the overall
average value down toward 1.0 at the 80 percent setting. The slight version chain
length advantage that MVTO has over MVBPL and MVSV is also shown by
Figure 17.

4.3 Experiment 3: Update Conflicts

This experiment examines the behavior of the algorithms under a workload
consisting almost entirely of update transactions. Whereas Experiments 1 and 2
examined the performance of each of the multiple-version algorithms under

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

366 l M. J. Carey and W. A. Muhanna

0.45

F

r 0.40
a

C

t
0.35

i

0 0.30

n

0.25
0

f
0.20

D

a 0.15
t

a

b
0. IO

a

s 0.05

e

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Update Transaction Fraction

Fig. 16. Relative version pool size.

conditions that were favorable for the algorithms, we examine their performance
under less favorable conditions in this experiment. The size of update transac-
tions is somewhat larger here, and the multiprogramming level is varied in order
to see how each of the algorithms performs under varying conflict probabilities
(as in [l]).

The workload parameters for Experiment 3 are given in Table IX. The
transactions in this experiment read a random number of pages and then update
each page with 50 percent probability. The number of pages read is selected from
a uniform distribution with a mean of 6 pages, so transaction readsets range
between 3 and 9 pages in size. These pages are selected at random from among
all of the pages in the database. The multiprogramming level is varied from 3. to
50, as indicated in the table. At the extreme, then, conflicts between update
transactions become highly probable-the average transaction reads 6 pages and
updates 3, and there are 50 such transactions in the system at a time, all with a
database size of only 500 pages.

Figures 18 and 19 give the throughput and response time results for Experi-
ment 3. These results indicate that the single- and multiple-version counterparts
of each algorithm provide extremely similar performance, which is expected since
the mix consists almost entirely of update transactions. (Since transactions read
an average of six items and update each one with 50 percent probability, the

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 367

D

i

s

k

Read-Only Transactions

MV2PL MVTO MVSV

1

0.1 0.2 0.3 0.4 0.s 0.6 0.7 0.8 0.9 1.0
Update Transaction Fraction

Fig. 17. Version accesses.

Table IX. Workload
Parameters, Experiment 3

Workload parameters

wl 1, 5, 10, 20, 50
small-frac 1.0
small-mean 6
small-xact-type Random
small-size-type Uniform
small-write-prob 0.5

likelihood of a newly arrived transaction not updating any of the items that it
reads is very small.) All three of the multiversion algorithms and their single-
version counterparts perform similarly at low multiprogramming levels, where
there are too few concurrent transactions to lead to many conflicts, but their
performance diverges at higher multiprogramming levels. MVBPL (and 2PL)
perform significantly better than the other algorithms when conflicts become
likely, with MVTO (and BTO) performing just slightly better than MVSV (and
SV) under these circumstances. These results are due to the large fraction of the
disk resources that the timestamp-based and optimistic algorithms waste due to
restarts. This is evident in Figure 20, which shows the fraction of the disk

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

368 l M. J. Carey and W. A. Muhanna

T 3.00
r

a

n
s 2.75

a

C

t
2.50

i

0

n

s 2.25

P
e

r 2.00

S

e 1.75
C

0

n

d

fYJ 2PL -0 0 !F.., x. ..s\/ x

MV2PL MVTO MVSV

t

5 10 15 20 25 30 35 40 45 50
Multiprogramming Level

Fig. 18. Transaction throughput.

resources wasted by transactions that were later restarted. The locking algorithlms
attempt to block transactions instead of restarting them to resolve conflicts
(unless deadlocks occur), so they waste fewer resources and therefore get more
useful work done. As a result, the locking algorithms provide higher throughput
and lower response times. Similar results were reported for blocking-oriented
versus restart-oriented algorithms in [l, 81. Finally, the shape of the curves in
Figure 18 is easily explained; starting at the lowest multiprogramming level,
increasing the multiprogramming level first increases throughput because it
decreases the idle time for the disk, but then throughput decreases owing to
conflicts that lead to transactions being restarted and resources being wasted..

Figure 21 shows how the relative version pool size behaves as a function of the
multiprogramming level in this experiment. Note that, with no read-only cl.ass
of transactions in the mix, the version pool simply serves as an UNDO log, and
its size is determined by the number of objects that are currently (or were
recently) undergoing updates. In particular, since the version pool is managed as
a circular buffer, it holds the before-images of all objects that were updated since
(and including) the first update made by the oldest active transaction instance
in the system. Thus, Figure 21 basically shows the size of the UNDO log for
the algorithms. Table X gives statistics that shows the lifetime of the average
instance of a transaction. The lifetime is defined as the time from startup until
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 369

20.0
S

e

C

0 15.0

n

d

s
10.0

5.0

MVTO _ y MVSV

I

5 10 1s 20 25 30 35 40 45 so
Multiprogramming Level

Fig. 19. Transaction response time.

either a commit or a restart for an instance of a transaction; this is different
from the transaction’s response time, which is the sum of the lifetimes of all of
its instances, including all restarted instances, plus the restart delays incurred in
between. As is evident from comparing Figure 21 and Table X, there seems to be
a correlation between the average transaction instance lifetime and the average
version pool size, which makes sense since the lifetime of the oldest transaction
at a given point in time will influence the number of before-images in the version
pool. Note, however, that this correlation is not perfect-over much of the
multiprogramming level range, MVTO has a slightly larger relative version pool
size than MVBPL despite its shorter average lifetime values.

4.4 Experiment 4: Version Pool Write Cost

This last experiment examines the behavior of the algorithms under a different
set of assumptions about the version pool implementation for the multiversion
concurrency control algorithms. As described in Section 3.4, we have assumed
thus far that the cost of writing the before-image of an object to the version pool
is comparable with the cost of writing the before-image of an object to the log.
The former cost is the UNDO-related recovery cost for the multiversion algo-
rithms, and the latter cost is the UNDO-related recovery cost for the single-
version algorithms. In this section we ask the question, “What if the version pool

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

370 - M. J. Carey and W. A. Muhanna

0.40

u 0.30

t

i 0.25
1

i

z 0.20
a

t
i 0.15

0

”
0.10

0.05

I-

A

2PL BTO !-J 0 0 . ..__. 0 x... ..?! x

,
5 10 IS 20 25 30 35 40 45 50

Multiprogramming Level

Fig. 20. Wasted disk utilization.

is not stored on one or more dedicated disks, and thus version pool writes are
equivalent in cost to normal disk writes ?” We investigate the answer by assuming
that the before-image copying cost for the multiversion algorithms is equal to
the difference between the cost of a random disk write, which we have assumed
to be 35 milliseconds (in Table III), and the cost of a sequential log disk write,
which we assume to be about 40 percent of the cost of a random write, or
14 milliseconds. This provides a rough way to account for the incremental cost
that the multiversion algorithms would incur as compared with the single-version
algorithms if the version pool were not managed in a loglike fashion; a more
realistic approach would involve integrating a detailed queuing model of the
recovery subsystem into our simulation model for all of the algorithms. We o:pted
for the simpler, rougher cost model because the purpose of this experiment is
simply to illustrate the importance of an efficient version pool implementation,
and also because a more detailed model would add quite a bit of comp1exit.y to
our simulator. Given this modified cost model, we repeated Experiment 1 (w!hose
workload parameters were given in Table IV).

Figures 22-25 give the throughput and response time results that were obtained
by rerunning Experiment 1 under the modified cost model. The results for the
update transactions are very different here. As shown in Figures 23 and 25, the
performance of the update transactions is strongly affected by the increased
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms l 371

0.40

F

r
0.35

a

C

t 0.30
i

0

” 0.25

D 0.15
a

t

a 0.10

b

a

s 0.05

e

MV2PL MVTO _ \, MVSV

“P

5 10 1s 20 25 30 3s 40 45 SO
Multiprogramming Level

Fig. 21. Relative version pool size.

Table X. Transaction Instance Lifetimes (seconds)

MPL
MVPPL MVTO MVSV

mean (std. dev.) mean (std. dev.) mean (std. dev.)

1 0.460 (0.149) 0.460 (0.149) 0.460 (0.149)
5 1.677 (0.513) 1.612 (0.463) 1.518 (0.470)

10 3.193 (1.025) 2.805 (0.791) 2.610 (0.759)
20 5.730 (2.227) 4.556 (1.239) 4.193 (1.229)
50 10.530 (5.637) 6.981 (1.836) 6.928 (1.945)

before-image copying cost-their performance is about 20 percent worse than it
was under the old cost model, making the multiversion algorithms less attractive
here. For SV and BTO versus MVSV and MVTO, the multiversion algorithms
are still needed to avoid starvation of read-only transactions; however, under the
cost model in this experiment, about 20 percent of the update transaction
performance must be sacrificed in order to help out the read-only transactions.
For 2PL versus MVBPL, 2PL is now the more attractive algorithm until the
read-only transaction size approaches 20 percent of the overall database size;
before this point, the before-image copying cost associated with MVBPL out-
weighs the advantages of reduced waiting time for the update transactions. As
for how read-only transaction performance is affected by the modified cost model,

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

372 - M. J. Carey and W. A. Muhanna

T 1.00
r

a
0.90

”

s
0.80

a

C

t 0.70

i
0 0.60

n

s 0.50

P 0.40
e

r 0.30

S
0.20

e

C

0 0.10

n

d
”

SI

10 20 30 40 SO 60 70 X0 90 100
Read-Only Transaction Size

Fig. 22. Read-only transaction throughput.

the read-only transactions actually have somewhat better performance under the
modified model. They do not update objects, so they do not suffer the cost of
before-image copying; instead, they gain the advantage that, because the response
time for the update transactions is larger here, fewer can run during their lifetime.
As a result, fewer updates occur during the lifetime of read-only transactieons,
version chains are shorter on the average, and thus they end up incurring fewer
additional disk accesses. It is clear from these results that it is important that
the cost of before-image copying be minimized so that the results of Experiment
1, and not these results, are more indicative of the true performance of the
multiversion algorithms (as argued in Section 3.4).

The storage-related results that were obtained in Experiment 4 are similar to
those presented for Experiment 1, so we do not show them here. The only changes
were that the size of the version pool and the average version chain lengths in
this experiment came out significantly smaller than those of Experiment 1. for
the reasons described in the previous paragraph. For example, the average number
of versions accessed to process a read-only transaction’s read request dropped
from nearly 1.6 in Experiment 1 to about 1.35, or by over 15 percent, for a read-
only transaction size of 20 percent of the database. The relative version pool size
at this extreme dropped from about 1.0 to a little under 0.6. The overall shapes
of the version and storage-related curves remained the same, however.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 373

T 6.00
r

a

n 5.50

s

a

C
5.00

t

i 4.50
0

”

S 4.00

P
e 3.50

e

C 2.50
0

”

d

o Q

&g(:..::+_.._..._.__.

. --------------0

x_.................... x

.--.___

‘8.

‘Ll.
. .

‘.__

8%

‘...
I w a

‘...

“0

B ?.!L 0 0 . ..BTO... x.. .S!.. x

MV2PL MVTO x MVSVx

, 1 I ,

IO 20 30 40 50 60 70 80 90 100
Read-Only Transaction Size

Fig. 23. Update transaction throughput.

5. CONCLUSIONS

In this paper, we have examined the performance and storage overheads of three
multiversion concurrency control algorithms, Reed’s multiversion timestamp
ordering algorithm, the CCA multiversion locking algorithm, and a multiversion
variant of Kung and Robinson’s serial validation algorithm [16]. We have also
compared the performance of the algorithms to their single-version counterparts
(basic timestamp ordering, two-phase locking, and serial validation, respectively).
Our study of these algorithms was based on a detailed simulation model of a
centralized (i.e., single-site) database management system.

Experiment 1 examined the performance of the algorithms under a mix of
small update transactions and large read-only transactions of various sizes. It
was found that all three multiversion algorithms offer performance advantages
over their single-version counterparts under such a workload. Since the proba-
bility of conflicts was nearly zero for the multiversion algorithms with this
workload, the three multiversion algorithms themselves performed almost iden-
tically. It was seen that MVSV and MVTO significantly outperformed SV and
BTO with respect to large read-only transactions, as both SV and BTO tended
to starve this transaction class in favor of the small update transactions in the
mix. For MVBPL, the overall throughput and response-time results indicated a
different trade-off than those for 2PL. 2PL was found to favor large read-only

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

374 - M. J. Carey and W. A. Muhanna

70.0

60.0

50.0

S
e

40.0
C

0

n
d 30.0

s

20.0

10.0

0 ZPL.. -0 0 B.T9...o x sv)(

MV2PL MVTO MVSV

1

10 20 30 40 50 60 70 X0 90 100
Read-Only Transaction Size

Fig. 24. Read-only transaction response time.

transactions over small update transactions, leading to poor update transaction
performance. MVBPL remedied this problem, providing better response time
than 2PL for small update transactions at some expense in the performance
of large read-only transactions (i.e., it did not favor them over updaters). T.his
is a significant advantage for some applications, such as on-line transaction
processing.

In terms of their storage characteristics, all three multiversion algorithms were
again fairly similar in Experiment 1. For the parameter settings used here, it was
found that the size of the version pool was less than 20 percent of the size of t.he
database when read-only transactions read an average of less than 5 percent of
the overall database; only when read-only transactions read more than 10 percent
of the entire database did the size of the version pool exceed 40 percent of the
database size. These results concur with Reed’s claims of reasonable overhead
for his (somewhat different) storage management scheme [24]. It was also found
that, even in extreme cases, the vast majority of read requests could be satisfi.ed
in a single disk access. When read-only transactions read an average of
10 percent of the database, it was seen that almost 95 percent of all read requests
were still able to be handled in only one disk access. Considering only the read-
only transaction reads in this situation, it was still found that about 80 percent
of their requests were handled in a single disk access. Finally, it was seen that,
despite the cost of accesses to old versions, the performance benefits of the
ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms - 375

2.15

2.50

S 2.00
e

c

0 1.75
n

d
s 1.50

1.25

1.00

!a

,...?P!x 0 o.., sroo x ._... sv ..3(

MVZPL MVTO MVSV

10 20 30 40 SO 60 70 80 90 100
Read-Only Transaction Size

Fig. 25. Update transaction response time.

multiversion algorithms clearly outweighed the costs. While the exact storage
overhead figures are certainly dependent on workload particulars, such as the
multiprogramming level of the database system and the size and update charac-
teristics of the update transactions in the workload, the basic trends are fairly
clear from these results. In addition, our workload-with ten transactions always
present in the system, and with the read-only transactions reading a significant
portion of the database-is probably a stressful workload by practical standards.
Thus, we would expect the storage overheads and average version chain lengths
in actual systems to be smaller than those observed here.

Three other experiments were also performed. Experiment 2 examined the
performance and storage characteristics of the algorithms as a function of the
fraction of read-only transactions in the mix. It was found that only a small
fraction of update transactions are required for BTO and SV to begin starving
out long read-only transactions, and therefore for the advantages of MVTO and
MVSV to show up. For the locking algorithms, small update transactions were
found to have a much better response time under MVBPL than under 2PL when
the workload was comprised mainly of large read-only transactions. It was also
found that the relative size of the version pool was the greatest with 80 percent
update transactions and 20 percent read-only transactions, where the most
updates occurred during the lifetimes of the read-only transactions. Experiment
3 examined the performance of the algorithms for a mix consisting solely of

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

376 l M. J. Carey and W. A. Muhanna

update transactions, and the multiprogramming level of the system was varied
in this experiment. The multiversion algorithms provided the same performance
as their single-version counterparts in this experiment, as expected, and 2PL #and
MVSPL were found to outperform the other algorithms. Finally, Experiment 4
examined the performance of the algorithms under a modified model of the
version pool write cost, but with assumptions otherwise similar to those of
Experiment 1. The performance of the small update transactions suffered under
the multiversion algorithms due to the added overhead associated with copying
the before-images of updated objects to the version pool, making it clear that the
version pool should be treated in a manner similar to that of a log in conventional
systems.

In summary, multiversion concurrency control algorithms can definitely pro-
vide improvements in performance by allowing large read-only transactions; to
access previous versions of data items; the nature of these improvements depends
on the multiversion algorithm in question. The added costs that arise due to
following version chains for read requests are not all that significant, as the
majority of read requests can be satisfied in a single disk access, and most of the
remaining requests require just one additional access. Finally, the storage oter-
head for maintaining all old versions that might be required to satisfy read
requests from ongoing transactions is not that large-in our experiments, the
average size of the version pool only began to be fairly significant when the read-
only transactions read more than 5-10 percent of the entire database or when
the number of update transactions in the system was very large (as was the case
in Experiment 3 at the highest multiprogramming levels). Although the actual
performance and storage overhead figures will vary depending on workload and
implementation details, we believe that our results provide a good picture of the
costs and benefits associated with the multiversion approach to concurrency
control.

ACKNOWLEDGMENTS

The authors wish to acknowledge helpful discussions that we had with Mary
Vernon regarding approaches to modeling multiclass transaction workloads.
Comments from the referees on earlier versions of this paper helped us to improve
both the clarity and the technical content of the presentation. The NSF-
sponsored Crystal multicomputer project at the University of Wisconsin provid.ed
the many CPU-hours that were required for this study.

REFERENCES

(Note: References [25]-[27] are not mentioned in the text.)
1. AGRAWAL, R., CAREY, M., AND LIVNY, M. Models for studying concurrency control performance:

Alternatives and implications. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (Austin, Tex., May 28-30). 1985.

2. BAYER, R., HELLER, H., AND REISER, A. Parallelism and recovery in database systems. ACM
Trans. Database Syst. 5, 2 (June 1980), 139-156.

3. BERNSTEIN, P. A., AND GOODMAN, N. Concurrency control in distributed database systems.
ACM Cornput. Suru. 23,2 (June 1981), 185-221.

4. BERNSTEIN, P. A., AND GOODMAN, N. Multiversion concurrency control-Theory and algo-
rithms. ACM Trans. Database Syst. 8, 4 (Dec. 1983), 465-483.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

Performance of Multiversion Concurrency Control Algorithms 377

5. BRYANT, R. SIMPAS-A simulation language based on PASCAL. Tech. Rep. 390, Computer
Sciences Dept., Univ. of Wisconsin-Madison, June 1980.

6. CAREY, M. Modeling and evaluation of database concurrency control algorithms. Ph.D. disser-
tation, Computer Science Div. (EECS), Univ. of California, Berkeley, Aug. 1983.

7. CAREY, M. Multiple versions and the performance of optimistic concurrency control. Tech.
Rep. 517, Computer Sciences Dept., Univ. of Wisconsin-Madison, Oct. 1983.

8. CAREY, M., AND STONEBRAKER, M. The performance of concurrency control algorithms for
database management systems. In Proceedings of the 10th International Conference on Very Large
Data Bases (Singapore, Aug.). VLDB Foundation, 1984.

9. CHAN, A., AND GRAY, R. Implementing distributed read-only transactions. IEEE Trans. Softw.
Eng. SE-II, 2 (Feb. 1985).

10. CHAN, A., DAYAL, U., AND HSU, M. Providing database management capabilities for mission
critical applications. Paper presented at the International Workshop on High-Performance Trans-
action Processing Systems (Asilomar, Calif., Sept.). IEEE, New York, 1985.

11. CHAN, A., FOX, S., LIN, W., NORI, A., AND RIES, D. The implementation of an integrated
concurrency control and recovery scheme. In Proceedings of the ACM SZGMOD International
Conference on Management of Data (Orlando, Fla., June 2-4). ACM, New York, 1982.

12. DATE, C. An Introduction to Database Systems (Vol. II). Addison-Wesley, Reading, Mass., 1982.
13. DUBOURDIEU, D. Implementation of distributed transactions. In Proceedings of the 6th Berkeley

Workshop on Distributed Data Management and Computer Networks. 1982.
14. GRAY, J. Notes on database operating systems. In Operating Systems: An Aduanced Course,

R. Bayer, R. Graham, and G. Seegmuller, Eds. Springer-Verlag, New York, 1979.
15. GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PUTZOLU, F., AND

TRAIGER, I. The recovery manager of the system R database manager. ACM Comput. Suru. 13,
2 (June 1981), 223-242.

16. KUNG, H. T., AND ROBINSON, J. T. On optimistic methods for concurrency control. ACM
Trans. Database Syst. 6, 2 (June 1981), 213-226.

17. LAI, M., AND WILKINSON, W. Distributed transaction management in JASMIN. In Proceedings
of the 20th International Conference on Very Large Data Bases (Singapore, Aug.). VLDB
Foundation, 1984.

18. LIN, W., AND NOLTE, J. Basic timestamp, multiple version timestamp, and two-phase locking.
In Proceedings of the 9th International Conference on Very Large Data Bases (Florence, Italy).
VLDB Foundation, 1983.

19. LIN, W., AND NOLTE, J. Performance of distributed concurrency control. In Distributed
Database Control and Allocation. Final Tech. Rep., vol. 2, Computer Corporation of America,
Cambridge, Mass., 1983.

20. LIVNY, M., KHOSHAFIAN, S., AND BORAL, H. Multi-disk management algorithms. Paper pre-
sented at the International Workshop on High-Performance Transaction Processing Systems
(Asilomar, Calif., Sept.). 1985. (Also MCC Tech. Rep., Microelectronics and Computer Technol-
ogy Corporation, Austin, Tex., Dec. 1985.)

21. PAPADIMITRIOU, C., AND KANELAKIS, P. On concurrency control by multiple versions. ACM
Trans. Database Syst. 9, 1 (Mar. 1984), 89-99.

22. PEINL, P., AND REUTER, A. Empirical comparison of database concurrency control schemes. In
Proceedings of the 9th International Conference on Very Large Data Bases (Florence, Italy).
VLDB Foundation, 1983.

23. REED, D. Naming and synchronization in a decentralized computer system. Ph.D. dissertation,
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, Mass., 1978.

24. REED, D. P. Implementing atomic actions on decentralized data. ACM Trans. Comput. Sys. I,
1 (Feb. 1983), 3-23.

25. RIES, D. The effects of concurrency control on database management system performance.
Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, Univ. of California at
Berkeley, 1979.

26. RIES, D. R., AND STONEBRAKER, M. Effects of locking granularity on database management
system. ACM Trans. Database Syst. 2, 3 (Sept. 1977), 233-246.

27. RIES, D. R., AND STONEBRAKER, M. R. Locking granularity revisited. ACM Trans. Database
Syst. 4, 2 (June 1979), 210-227.

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

378 l M. J. Carey and W. A. Muhanna

28. ROBINSON, J. Design of concurrency controls for transaction processing systems. Ph.D. disser-
tation, Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa., 1982.

29. ROOME, W. A content-addressable intelligent store. Bell Syst. Tech. J. 61, 9 (Nov. 1982).
30. SARGENT, R. Statistical analysis of simulation output data. In Proceedings of the 4th Annual

Symposium on the Simulation of Computer Systems. National Bureau of Standards, Boulder,
Colo., 1976.

31. STEARNS, R., AND ROSENKRANTZ, D. Distributed database concurrency controls using before-
values. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(Ann Arbor, Mich., Apr. 29-May 1). ACM, New York, 1981.

32. ULLMAN, J. Principles of Database Systems, 2nd ed. Computer Science Press, Rockville, Md.,
1983.

Received August 1984; revised February 1986 and June 1986; accepted June 1986

ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986.

