
ODISSEA: A Peer-to-Peer Architecture
for Scalable Web Search and Information Retrieval

Torsten Suel � Chandan Mathur Jo-Wen Wu Jiangong Zhang
Alex Delis Mehdi Kharrazi Xiaohui Long Kulesh Shanmugasundaram

Department of Computer and Information Science
Polytechnic University
Brooklyn, NY 11201

ABSTRACT
We consider the problem of building a P2P-based search engine for
massive document collections. We describe a prototype system called
ODISSEA (Open DIStributed Search Engine Architecture) that is cur-
rently under development in our group. ODISSEA provides a highly
distributed global indexing and query execution service that can be
used for content residing inside or outside of a P2P network. ODIS-
SEA is different from many other approaches to P2P search in that
it assumes a two-tier search engine architecture and a global index
structure distributed over the network.

We give an overview of the proposed system and discuss the basic
design choices. Our main focus is on efficient query execution, and
we discuss how recent work on top-

�
queries in the database commu-

nity can be applied in a highly distributed environment. We also give
preliminary simulation results on a real search engine log and a ter-
abyte web collection that indicate good scalability for our approach.

1. INTRODUCTION
Due to the large size of the Web, users increasingly rely on special-

ized tools to navigate through the vast volumes of data, and a number
of search engines, directories, and other IR tools have been built to
fill this need. While there is a plethora of smaller specialized engines
and directories, the main part of the search infrastructure of the web
is supplied by a handful of large crawl-based search engines, such as
Google, AllTheWeb, AltaVista, and a few others. Such search engines
are typically based on scalable clusters, consisting of a large number
of low-cost servers located at one or a few locations and connected
by high-speed LANs or SANs [4]. A lot of work has focused on op-
timizing performance on such architectures, which support up to tens
of thousands of user queries per second on thousands of machines.

The last few years have also seen an explosion of activity in the
area of peer-to-peer (P2P) systems, i.e., highly distributed computing
or service substrates built from thousands or even millions of typi-
cally non-dedicated nodes across the internet that may join or leave
the system at any time. Examples range from widely used unstruc-
tured ad-hoc communities such as Napster, Gnutella, and FreeNet to
recent academic work on scalable and highly structured peer-to-peer
substrates such as Chord [31], Tapestry [39], Pastry [28], or CAN [25]
that can support a variety of applications.

From the perspective of search engines and large-scale IR this de-
velopment raises two interesting issues. First, since an increasing
amount of content now resides in P2P networks, it becomes neces-
sary to provide search facilities within P2P networks. Second, the
significant computing resources provided by a P2P system could also

�
Contact author. Email: suel@poly.edu. Research partly sup-

ported by NSF CAREER Award NSF CCR-0093400 and by the Oth-
mer Institute for Interdisciplinary Studies at Polytechnic University.

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12–13, 2003, San Diego, California.

be used to implement search and data mining functions for content
located outside the system, e.g., for search and mining tasks across
large intranets or global enterprises, or even to build a P2P-based al-
ternative to the current major search engines. This second issue can
be seen in the context of the following more general question: Which
of the Giant Scale Services [4] currently provided by cluster-based
architectures can and should be provided by more highly distributed
or P2P systems? It has been established that applications such as the
sharing of large static files can be very efficiently implemented in a
P2P environment. However, other applications that, e.g., involve fre-
quent updates to massive data, are more challenging, and may turn
out to be more appropriately implemented on clusters or on highly-
robust distributed systems of dedicated nodes with limited changes in
topology (due to faults, or nodes joining or leaving).

In this paper, we describe a prototype system called ODISSEA
(Open DIStributed Search Engine Architecture) that is currently un-
der development in our group. ODISSEA attempts to address both
of the above issues, by providing a “distributed global indexing and
query execution service” that can be used for content residing inside
or outside of a P2P network. ODISSEA is different in several ways
from many other approaches to P2P search, as explained below. It
encounters some basic challenges typical of those that arise when im-
plementing more dynamic applications involving frequent updates on
P2P systems, leading to interesting algorithmic problems and solu-
tions. We describe and discuss the basic design choices and motiva-
tion and give some initial results, with focus on the issue of efficient
distributed query processing.

1.1 ODISSEA Design Overview
ODISSEA is a distributed global indexing and query execution ser-

vice, i.e., a system that maintains a global index structure under doc-
ument insertions and updates and node joins and failures, and that
executes simple but general classes of search queries in an efficient
manner. This system provides the lower tier of a proposed two-tier
search infrastructure. In the upper tier, there are two classes of clients
that interact with this P2P-based lower tier:

1. Update clients insert new or updated documents into the sys-
tem, which stores and indexes them. An update client could be
a crawler inserting crawled pages, a web server pushing docu-
ments into the index, or a node in a file sharing system.

2. Query clients design optimized query execution plans, based
on statistics about term frequencies and correlations, and issue
them to the lower tier. Ideally, the lower tier should enable
query clients to use or implement various ranking methods.

There are two main differences that distinguish ODISSEA from other
P2P search systems. First, the assumption of a two-tier architecture
that aims to give as much freedom as possible to clients to implement
their own user interfaces and search and ranking policies. This is mo-
tivated by the goal of providing an “open” search infrastructure that

allows the creation of a rich variety of client-based search and navi-
gation tools running on user desktops. There are trade-offs between
efficiency and flexibility that may limit the full realization of this goal,
and one of our main research goals is to investigate these trade-offs.

The second difference is our assumption of a global inverted in-
dex structure. Many current approaches (see [15, 19, 26] for excep-
tions) to full-text search in P2P systems assume a local inverted index,
where each node maintains an index for all local documents (or the
documents of a few surrounding nodes), and queries are broadcast to
all, or on average at least a significant fraction, of the nodes, in order
to get the best results. In a global index, the inverted index for a par-
ticular term (word) is located at a single node, or partitioned over a
small number of nodes in some hybrid organizations. Thus, queries
with multiple keywords require “combining” the data for the different
keywords over the network, at possibly significant cost. We discuss
this decision later as it has consequences for the overall design.

http://poly.edu index://chair

ODISSEA
WWW

Search
Server

Crawler
Client

Client
queries

index://table

queries

Figure 1: ODISSEA as a web search infrastructure, with a web crawler
as update client, and two query clients (one client-based and one as a web-
based search service). Also shown are indexes for the words “chair” and
“table”, and a node holding the document http://poly.edu.

Figure 1 shows the basic design. We decided to implement the
system on top of an underlying global address space provided by a
DHT structure, in particular Pastry [28]. Each object is identified by
a hash of its name (i.e., a URL or a string such as index://chair
for the index structure for the term chair) and is assigned a location
determined by the DHT mapping. Thus, the only way to move an
object is to rename it, resulting in a mapping to a random other node.
(We note that the real mapping scheme is actually more complicated,
to enable replication and load balancing.)

1.2 Target Applications
We have four main application scenarios that motivate our research:

(1) Search in P2P networks: To provide full-text search for large
document collections located within P2P communities.

(2) Search in large intranet environments: Large organizations
may use distributed search to share machine resources within
more controlled and maybe less bandwidth-limited environments.

(3) Web search: Our most ambitious application is a P2P-based
search infrastructure for the web that provides an alternative to
the major search engines, with a powerful API (more low-level
than, e.g., the Google API) that supports the anticipated shift
towards client-based search tools that exploit the resources of
todays desktop machines. This scenario may not be feasible in
the near term but we believe still deserves study.

(4) Search middleware: Instead of inserting documents, clients
could directly insert “postings”, i.e., index entries. The system
would then act as “global middleware” on top of a system of
local index structures, where nodes might periodically insert

some of their postings into the system. The middleware could
then use a combination of local and global indexes for query
processing, resulting in increased efficiency for certain queries.

Paper outline: In the next section we justify our main design de-
cisions and assumptions. Technical details and preliminary experi-
mental results on query processing are provided in Section 3. Sec-
tion 4 discusses related work, and Section 5 mentions some open
problems. A more detailed version of this paper appears in [32],
and up to date information on the ODISSEA project is available at
http://cis.poly.edu/westlab/odissea/.

2. DISCUSSION AND JUSTIFICATION
Two-tier approach: This choice was originally motivated by the

web search application scenario. Given the expected increases in
speed and bandwidth of desktop systems, we see the potential for a
rich variety of novel search and navigational tools and interfaces that
more fully exploit client computing resources, and that rely on access
to a powerful lower-level web search infrastructure. These tools may
perform a large number of web server or search engine accesses dur-
ing a single user interaction, in order to prefetch, analyze, aggregate,
and render content from various sources into a highly optimized form.
Early examples of these types of client-based tools are browsing as-
sistants such as the Alexa and Google Toolbars, Zapper, Leticia and
PowerScout [20], the Stanford Power Browser [8], or tools built with
the Google API. Specialized search engines (Google News, citeSeer)
or meta engines could also be supported by such an infrastructure.

Thus, the proposed system could be used to provide such a lower-
level search infrastructure, with an powerful open and agnostic API
that is accessed by client- and proxy-based tools. By agnostic, we
mean an API that is not limited to a single method for ranking pages
(e.g., the Google API, which returns pages according to Google’s
ranking strategy), but that ideally allows clients to implement their
own ranking strategies. There clearly are limits and trade-offs to this
goal. The most general solution of performing most of the ranking
at the client requires large amounts of data to be transferred. On the
other hand, we conjecture that limited but powerful classes of rank-
ing functions could be efficiently supported by providing appropriate
“hooks” and algorithmic techniques inside the system.

Global vs. local index: The other important decision is the use of
a global index instead of the more commonly used local index orga-
nization. We now define some terms. First, an inverted index for a
document collection is a data structure that contains for each word in
the collection a list of all its occurrences, or a list of postings. Each
posting contains the document ID of the occurrence of the word, its
position inside the document, and other information such as whether
the word is in the title or in bold face. Each postings list is best visu-
alized as an array sorted by document ID.

In a local index organization, each node creates its own index for
all documents that are locally stored. Thus, every node will have its
own small postings list for common words such as chair or table, and
a query chair, table is first broadcast to all nodes and then the results
are combined. In a global index organization, each node holds a com-
plete global postings list for a subset of the words, as determined, e.g.,
by a hash function. Thus, every node has a smaller number of longer
lists, and under the standard query evaluation strategy a query chair,
table is first routed to the node holding the list for chair (the shorter
list), which then sends its complete list to the node holding the list
for table. We emphasize here that our approach does in fact not send
the entire list, as explained later. There have been a number of per-
formance comparisons between local and global index organizations
and several hybrid organizations on parallel architectures [3, 9, 34],
but these do not directly apply to widely distributed environments.

The main issue with local index organizations is that all or most
nodes need to be contacted for most queries, and thus such schemes

are unlikely to scale beyond a few hundred nodes. There have been
attempts to overcome this issue by routing queries only to those nodes
that are likely to have good results1 or are in the vicinity [11, 18,
29]. However, we do not believe that this approach will scale if result
quality is a major concern, since document collections are simply not
naturally clustered in a way that allows queries to be routed to only a
small fraction of the nodes. This is certainly the case for the current
web, where a search infrastructure based on local indexes at each site
would be extremely inefficient. This could be somewhat improved
by clustering the entire document collection, though this seems quite
challenging to do [19]. Moreover, the statistics needed to intelligently
route queries are quite large for large collections and many nodes as
the number of distinct words grows with collection size; the existing
literature has only evaluated collections up to a few gigabytes.

In a global index organization, however, large amounts of data need
to be transmitted between nodes, since large collections result in lists
of megabytes or more for all except fairly rare words. This has led
some people to reject global indexes as unrealistic for environments
with limited bandwidth, and for moderate numbers of nodes a local in-
dex is probably a better choice. However, we believe that this problem
can be overcome through smart algorithmic techniques. One tech-
nique was recently applied in this context in [19, 26], where Bloom
filters are used to decrease the cost of intersecting lists of postings
over the network, though this only improves results by a constant fac-
tor. We study in Subsection 3.1 how recent results on top-

�
queries

in the database literature [13] can be applied to asymptotically re-
duce communication requirements. We believe that these techniques,
combined with other query optimization techniques, allow interactive
response times even on massive data sets.

Crawling punt: We assume in the web search application that
crawling is performed by crawling clients that fetch and insert doc-
uments. The main reason is that from our own experiences with
large-scale crawling [30] we are not sure a P2P solution is appropri-
ate. Large crawls generate many management issues due to queries
or complaints from web site operators and network administrators. It
is important to be able to reconfigure a crawler quickly to avoid web
sites or subnetworks or to modify its behavior, and failure to do so can
result in problems with local administrators or upstream providers.2

Moreover, smart crawling strategies beyond BFS are hard to imple-
ment in a P2P environment without a centralized scheduler.

Thus, we would expect that a handful of powerful crawling clients
would provide most documents, and we plan to use our Polybot crawler
[30] to initially populate the system with data. It might be more fea-
sible to incorporate recrawling into the system, though. Thus, an in-
serted page could be labeled with an expiration date, after which it is
automatically refreshed by the node holding the page. Alternatively,
web sites could also push their pages into the system.

P2P systems and fault tolerance: Utilizing idle remote resources
is one of the main motivations for building P2P systems. However,
there is a fundamental challenge facing applications that use large
amounts of disk space on remote nodes, such as a search engine.
Given current network speeds, it would take days or weeks to transfer
enough data to a newly joined node to utilize any significant frac-
tion of a

�����
GB disk, and during this time the node would probably

consume more resources than it adds to the system. Thus, such ap-
plications are maybe best restricted to the more stable end of the P2P
spectrum, where most nodes remain in the system for longer times.

Our system design relies on this assumption of a more stable sys-
tem. However, we distinguish between nodes that are temporarily
unavailable and nodes that have permanently left the system. When

1This is also known as the database selection problem [21].
2Of course, for certain types of crawling activities, e.g., to surrepti-
tiously monitor certain web sites, a P2P solution may be preferable
for the very same reasons.

a node rejoins after an extended period of unavailability, an interest-
ing problem arises: how do we efficiently synchronize its data struc-
tures, in this case the index structures, with an up-to-date copy held
by another node, to incorporate any updates missed while unavail-
able? Other problems involve distinguishing between failed and un-
available nodes, when to rebuild data on failed or unavailable nodes,
and how quickly data should be pushed to newly joined nodes.

3. QUERY PROCESSING IN ODISSEA
In this section we describe query processing in the proposed sys-

tem. A naive implementation of ranked queries with a global index
structure would result in transfers of many megabytes of data for
many queries from a typical query load. Since realistic bandwidths
in WAN environments are on the order of a few hundred Kb/s, this
would result in response times of many seconds or even minutes. We
now describe how to adapt recent techniques by Fagin and others [12,
13, 14] to our scenario, and give measurements of the expected sav-
ings based on a real search engine query log and a set of � ��� million
web pages from a recent crawl that we have carried out.

3.1 Background and Algorithmic Techniques
Ranking in search engines: We first give some background on

ranking in search engines. Search engines rank pages based on many
criteria, including classical term-based techniques from IR, global
page ranks as provided by Pagerank [5] and similar methods, whether
text is in bold face or within a hyperlink, and distances between the
search terms in the documents, among others. Formally, a ranking
function is a function � that, given a query consisting of a set of
search terms �	��
����	
�����	����� , assigns to each document � a score������
�� �
����
�� ������� . The top-

�
ranking problem is then the prob-

lem of identifying the
�

documents in the collection with the highest
scores. We focus on two families of ranking functions,

����� ��� ������
! �

" ����
��

� and ����� ���$# ��� �&% ������

! �
" ����
'�

�

The first family includes the common families of term-based ranking
functions used in IR, where we add up the scores of each document
with respect to all words in the queries. In particular, this includes the
well-known class of cosine measures; see, e.g., [37]. The second for-
mula adds a query-independent value # ��� � to the score of each page;
this could for example be a suitably normalized Pagerank value. Thus,
these two families include many important ranking functions, and we
could in fact use any other monotone function instead of addition to
combine the various functions in the above formula. Note however
that techniques using the distances between the terms in a document
would lead to an additional function (�����
)� �
���	
�� ������� that depends
on all terms; this would impact the efficiency of our methods.

Queries to search engines have on average less than three terms,
and engines typically evaluate a query by considering all documents
in the intersection of the inverted lists, i.e., all documents that con-
tain all search terms.3 An information-theoretic argument shows that
determining the intersection of two lists located at different nodes re-
quires transmitting an amount of data linear in the size of the shorter
list. However, recent work in the database community [13] shows how
to evaluate top-

�
queries without scanning the entire intersection.

Fagin’s Algorithm (FA): We now describe the first algorithm, which
was originally proposed in [12] for the case of multimedia queries,
e.g., to retrieve images from an image database. We will state them
directly for our scenario, first for the case of the first family of ranking
functions without # ��� � . Intuitively, the algorithm exploits the fact that

3This is in contrast to “traditional” IR systems that tend to consider
the union of the lists, and where typical queries consist of a dozen
terms or more. Our results do not really depend on this choice.

an item that is ranked in the top is likely to be ranked very high in at
least one contributing subcategory.

Consider the inverted lists for a search query with two terms � � and��� . For the moment, assume they are located on the same machine,
and that the postings in the list are pairs ����
 " ����
��

��� , ����� �
	��� ,

where � is an integer identifying the document and
" ����
��

� is real-

valued. Assume each inverted list is sorted by the second attribute, so
that documents with largest

" ����
��

� are at the start of the list. Then

the following algorithm, called FA, computes the top-
�

results:

(1) Scan both lists from the beginning, by reading one element
from each list in every step, until there are

�
documents that

have each been encountered in both of the lists.

(2) Compute the scores of these
�

documents. Also, for each doc-
ument that was encountered in only one of the lists, perform a
lookup into the other list to determine the score of the docu-
ment. Return the

�
documents with the highest score.

It is not difficult to see that this indeed returns the top-
�

results overall.
It is shown in [12] that if the orderings of documents in the two lists
are independent, then the algorithm terminates after looking at only� �	� ��
 � entries in each list, where

is the number of documents

in the collection (not the length of the list). In the case of queries

with � terms, the bound becomes
� �
����� � � � . Thus, for long lists

this significantly improves over scanning the entire list. If terms are
positively correlated, then the result improves, while it gets worse for
negatively correlated terms. Note that the result is independent of the
actual “shapes” of the distributions of the

" ����
��

� , though refinements

could potentially exploit special distributions such as Zipfians.
Threshold Algorithm (TA): The following refinement was pro-

posed by several authors; see [13] for a discussion. We again si-
multaneously scan both lists, so that in each step we read an item����
 " ����
�� ����� from the first and an item �����
 " �����
�� ����� from the sec-
ond list. In each step we compute � � " ����
�� � � % " ��� �
���� � ; note
that � and ��� will usually be different documents. Also, whenever we
encounter a document in one list, we immediately perform a lookup
into the other list to compute its complete score. As soon as we have
found

�
items with score larger than the current � , we return these as

results. It can be shown that TA is correct and always terminates at
least as early as FA, though the asymptotic bounds are the same.

Integrating query-independent scores: We can naively adapt both
algorithms to the second family of ranking functions as follows. In-
stead of sorting each list by

" ����
��

� , we sort by

" ����
��

� % ���� # ��� � ,

so that the total score is the sum of the sort attributes from both lists.
Note that this should increase efficiency, as it introduces significant
correlation between the orderings of the two lists.

However, in reality we cannot combine term-based and link-based
scores simply by adding them up. Instead, it is preferable to normal-
ize the scores in a query-dependent way that minimizes the effect of
outliers. Following [27] we do this by normalizing using the mean of
the top- � ��� term-based and link-based scores that appear in the two
(or more) lists; see [27] for details. This means that the inverted lists
cannot be completely organized in sorted order before the arrival of
the query, though they can usually be kept approximately sorted. In
our distributed setting this is not a problem since we are interested in
minimizing bandwidth consumption rather than CPU cost.

3.2 Experimental Results on Real Data
We run some initial experiments to determine the potential savings

of these schemes. Note that these experiments are in a centralized set-
ting; we consider distributed implementations in the next subsection.
There have been previous evaluations of the FA and TA algorithms on
data sets from other application domains, but not on large-scale web
data or in conjunction with global measures such as Pagerank.

For the experiments, we use queries selected from a log of over� million queries posted to the Excite search engine on December

Top 1 Top 10 Top 100

Lists 1,056,746 1,056,746 1,056,746
Intersect 654 1,536 8,954
FA(cosine only) 7,860 17,087 47,024
TA(cosine only) 2,445 6,353 17,962
CA(cosine only) 932 2,978 13,585
FA(cosine + pagerank) 6,137 11,046 37,991
TA(cosine + pagerank) 1,652 4,651 16,533
CA(cosine + pagerank) 529 1,785 11,025

Table 1: Average costs on a data set of � ��� million pages.

20, 1999. Our document collection consists of about � ��� million web
pages crawled by the Polybot crawler [30] in October 2002, for a total
of about �� � TB of data. The numbers reported here are limited to a
few hundred queries with two terms. Also, stop words were removed,
as done by many engines, and we removed queries with less than � ���
results in the intersection. For the first family of ranking functions,
we used a standard cosine measure. For the second family, we defined# ��� � as an appropriately normalized Pagerank score computed from a
web graph extracted from our crawl.

Table 1 shows the average number of postings that have to be scanned
from each list under the various algorithms. In the first row we have
the number of postings in the shorter of the two inverted lists; this
represents the cost incurred by the unoptimized algorithm where we
transmit the entire list. In the next line, we have the number of post-
ings that are scanned if we are only interested in getting an arbitrary

�
elements that contain both query terms. This is a reasonable lower

bound4 on what we could hope to achieve with the optimized meth-
ods, and was measured by ordering indexes by document ID and scan-
ning from the beginning until

�
elements in the intersection are found.

We note that this cost can in some cases be quite significant, say for
two inverted lists of length ��� �
 � where we might have to scan most
of the lists. In the experiments, we also include an idealized algo-
rithm called CA (Clairvoyant Algorithm) that stops as soon as it has
encountered the top-

�
elements; this shows the cost between finding

the top-
�

results and being certain that we have found them.
We show results for FA, TA, and CA, with and without Pagerank.

All three algorithms perform significantly better than the basic algo-
rithm. The results for TA and CA show that we can usually termi-
nate the scan much earlier without impact on the result. Including the
Pagerank score usually results in improved performance. The results
indicate that an appropriate distributed protocol based on these algo-
rithms might have the potential to achieve interactive response times
in WAN environments even for massive data sets.

3.3 A Simple Distributed Protocol
We now adapt these techniques to a highly distributed environment

with limited bandwidth as well as high latency. Thus, we have to limit
ourselves to one or a few roundtrips between the nodes holding dif-
ferent inverted lists. There is also a potential bottleneck in the random
lookups performed by the FA and TA algorithms. In a high-bandwidth
environment, this is a serious drawback of the algorithms since large
index structures have to reside on disk. As a result, other pruning
methods have been proposed for this case [1, 24] that avoid such ac-
cesses but instead need to scan a significant part of the inverted lists.
In a P2P environment this is less of a concern, and a large set of ran-
dom lookups could be resolved by performing a local scan over the
inverted list. Following is our proposed distributed implementation,
called DPP (Distributed Pruning Protocol), for the case of two search
terms and a ranking function from the first family (i.e., without # ��� �).

(1) The node holding the shorter list, called node � , sends the first� postings of its inverted list to node � . (Assume for the mo-

4If we discount correlations between query terms.

shortest 30% middle 30% longest 30%

Lists 23,620 305,557 3,092,772
Postings A to B 5,105 7,405 4,264
Postings B to A 5,572 7,360 4,183
Tot. bytes sent 85,336 118,120 67,576
Time 400kbps (ms) 2,456 3,151 2,077
Time 2mbps (ms) 977 1,151 882

Table 2: Communication costs and times for top- � � queries.

ment that � somehow knows the best value of � .) Also, let� �

� be the smallest (last) value

" ����
'� ��� transmitted.

(2) Node � receives the postings from � , and performs lookups
into its own list to compute the total scores of the corresponding
documents. Retain the

�
documents with the highest score. Let��� be the smallest score among these.

(3) Node � now transmits to � all postings among its first � post-
ings with

" ����
'� � ��� ������� �

� , together with the total scores

of the
�

documents from Step (2).

(4) Node � performs lookups into its own list for the postings re-
ceived from � , and determines the overall top

�
.

One remaining question is how to choose the value of � . This could
be done by deriving appropriate formulae based on extensive testing.
Alternatively, we could use sampling-based methods [6] to estimate
the number of documents appearing in both prefixes. In either case, a
wrong estimate could be corrected at the cost of an extra roundtrip.

3.4 Evaluation of DPP

In our system, we open a new TCP connection between the partic-
ipating nodes for each query. To model the effect of the TCP conges-
tion window on performance, which is significant in our scenario, we
use a model for file transfer cost under TCP recently proposed in [36]
with typical parameters for a broadband connection between the East
and West coast of the US.5 In particular, we assume a roundtrip sig-
naling delay of 	 � ��
 , and a bandwidth limit between � ��� kbits and�

mbits per second on the first and last leg. For both directions, we
incur the cost due to the congestion window, and for the first message
we have the additional cost of establishing the connection.

We assume each posting is transmitted in � bytes, as follows: We
hash the � � -bit document IDs down to bits, where is chosen such
that the likelyhood of a collision between the transmitted prefix and
the other list is less than, say,

� ��� . We then encode the hashes using
standard gap compression techniques [37]. This results in at most � �
to � � bits per hash; the remaining bits are used for an approximation
of the term value

" ����
��	� � . The protocol could be adapted to recognize
when a collision occurs, in which case an additional roundtrip is used
to fix the problem. (Observe that the scheme is a bit like using a very
precise compressed Bloom filter with one hash function.)

Table 2 shows the estimated cost of the algorithm, using the same
data set as before. There are two assumptions in the measurements.
First, we choose the length � of the prefix that should be sent from �
to � by using the results of the experiments on the TA algorithm. This
is optimistic since the parties do not have these results available; on
the other hand, the results from the CA algorithm indicate that even a
low estimate would often return the correct result (or we could choose
an additional roundtrip to be sure). Second, we do not measure inter-
nal computation within nodes. Of course, this internal computation is
also incurred by standard (non-P2P) search engines, and most of it is
overlapped with communication anyway. We believe that neither of
these assumptions changes the measurements fundamentally.

Large engines such as Google in fact use data sets that are
���

to � �
times larger than ours. According to the theoretical bound of � ���

5The model in [36] is similar to others that have been proposed.

this would result in an additional factor of about 	 on the amount of
data transmitted. Use of more than two keywords would also increase
communication. On the other hand, the above algorithm is really only
a baseline as discussed in the following.

3.5 Optimizing Query Execution Plans
The above protocol is a first step towards efficient query execution.

There are two ways to get further improvements: (1) use of Bloom fil-
ters as studied in [26], and (2) use of a hybrid partitioning where large
inverted lists are split among several nodes [32]. We note that the sec-
ond approach does not actually decrease the total cost of a query, but
it can improve latency by splitting communication and computation
among several nodes. As it turns out, Bloom filters can be combined
in several interesting ways with our protocol. The end result is that
there are a large number of possible ways to execute a query on three
or more search terms. We are currently studying in detail how to de-
rive the best possible plans.

The design of a good query plan is up to the query client in our sys-
tem, and is done in two phases. The client first inquires basic statistics
such as term frequencies, mean values for the normalization, and pos-
sibly samples [6] to estimate term correlations from the system. The
system returns the statistics and the IP addresses of the nodes holding
the lists. This type of information can be very efficiently cached in the
system as it is small compared to the rest of the data. In fact we really
only need to keep statistics for inverted lists of significant length (e.g.,
more than a few thousand postings).

Given the statistics, the client knows which term has the shortest
inverted list, and which of the lists are partitioned between several
nodes. Next, a query plan is designed as a directed labeled graph,
where the nodes are nodes in the network identified by address, and
the edges are labeled with the operation to be performed, e.g., send
complete list if small, send a Bloom filter of the list, send a prefix as
done in the baseline DPP protocol, or send a Bloom filter of a prefix.

4. RELATED WORK
There has been a lot of recent interest in the pruning techniques of

Fagin et. al [12, 14]; see also [13] for a survey and [10] for early re-
lated ideas. Most of the interest has been focused on multimedia and
meta search scenarios, and we are not aware of previous applications
in a peer-to-peer environment. On the other hand, there has also been
significant work in the IR community, much of it preceding the above,
on pruning techniques for vector space queries. Some early work is
described in [7, 17, 24, 35, 38], and more closely related recent work
is in [1, 2]. One difference between these two strains of work is that
in the IR case, a random lookup of a posting is much more expensive
than scanning. Thus, recent pruning techniques from IR typically re-
strict access to scans, resulting in more limited savings. We are mainly
concerned with bandwidth, making this less of an issue.

There has been significant interest in search in distributed and P2P
systems over the last few years. We note, however, that the problem
of full-text search on terabyte-size collections is different from that on
smaller collections or on systems that only index titles and keywords
for multimedia objects (e.g., mp3 files). Some recent work on text
search in P2P systems with local index organization appears in [11,
18, 29, 33]. As explained, the global index organization is one of the
aspects that distinguish our system from others. Another very differ-
ent approach to distributed search is taken by systems such as JXTA
[22], STARTS [16], and the Z39.50 standard [23], which are mainly
concerned with issues of combining outputs from diverse search tools.

Global index organizations in a peer-to-peer environment have re-
cently been discussed in [15, 19, 26]. The work by Reynolds and Vah-
dat [26] considers the benefits of using Bloom filters instead of send-
ing an entire inverted list during query execution. Subsequent work
in [19] estimates the potential benefit of using a combination of tech-
niques, including Bloom filters, clustering, compression, caching, and

adaptive set intersection, compared to the naive algorithm that trans-
fers the entire list. The paper concludes that these techniques together
save a significant constant factor and bring the approach close to fea-
sibility for terabyte data sets. The authors also mention the possibility
of using Fagin’s pruning technique [13] for additional improvements,
but no details are provided. Combining Fagin’s technique with those
in [19] is possible, as indicated in Subsection 3.5, but the details are
tricky and the returns diminish as more techniques are applied.

5. OPEN QUESTIONS AND FUTURE WORK
In this paper, we have given an overview of the ODISSEA sys-

tem, and presented some early results on query processing in the sys-
tem. There are numerous open questions for future work. We are
currently working on a framework for generating optimized query
execution plans for multi-keyword queries based on a combination
of pruning techniques, Bloom filters, and compression. Once this is
complete, we plan to perform a more thorough experimental evalua-
tion for queries with multiple keywords and phrase searches, and for
ranking functions that use term distance within documents.

We are also studying techniques for synchronizing outdated in-
dexes and for load balancing and rebuilding of lost replicas in an
environment where nodes hold large amounts of data but may be tem-
porarily unavailable. Beyond these specific items, the general ques-
tion remains whether the near future will see massive P2P-based sys-
tems for challenging applications such as web search and large-scale
IR, beyond simple applications such as file sharing.

Acknowledgements: We thank Hojun Lee and Malathi Veeraragha-
van for their help with the TCP performance model.

6. REFERENCES
[1] V. Anh, O. Kretser, and A. Moffat. Vector-space ranking with

effective early termination. In Proc. of the 24th Annual SIGIR
Conf., pages 35–42, September 2001.

[2] V. Anh and A. Moffat. Compressed inverted files with reduced
decoding overheads. In Proc. 21st Annual SIGIR Conf., 1998.

[3] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani.
Distributed query processing using partitioned inverted files. In
Proc. of the 9th String Processing and Information Retrieval
Symposium (SPIRE), September 2002.

[4] E. Brewer. Lessons from giant scale services. IEEE Internet
Computing, pages 46–55, August 2001.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proc. of the 7th WWW Conference, 1998.

[6] A. Broder. On the resemblance and containment of documents.
In Compression and Complexity of Sequences, 1997.

[7] C. Buckley and A. Lewit. Optimization of inverted vector
searches. In Proc. 8th SIGIR Conf. on Research and
Development in Information Retrieval, June 1985.

[8] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and
T. Winograd. Power browser: Efficient web browsing for PDAs.
In Proc. of the Human-Computer Interaction Conference, 2000.

[9] B. Cahoon, K. McKinley, and Z. Lu. Evaluating the
performance of distributed architectures for information
retrieval using a variety of workloads. IEEE Transactions on
Information Systems, 18(1):1–43, January 2000.

[10] S. Chaudhuri and L. Gravano. Optimizing queries over
multimedia repositories. Data Engineering Bulletin,
19(4):45–52, 1996.

[11] F. Cuenca-Acuna and T. Nguyen. Text-based content search
and retrieval in ad hoc p2p communities. In Proc. of The Int.
Workshop on Peer-to-Peer Computing, May 2002.

[12] R. Fagin. Combining fuzzy information from multiple systems.
In ACM Symp. on Principles of Database Systems, 1996.

[13] R. Fagin. Combining fuzzy information: an overview.
SIGMOD Record, 31(2):109–118, June 2002.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In Proc. of ACM Symp. on
Principles of Database Systems, 2001.

[15] O. Gnawali. A keyword-set search system for peer-to-peer
networks. Master’s thesis, MIT, 2002.

[16] L. Gravano, C. Chang, H. Garcia-Molina, and A. Paepcke.
STARTS: Stanford Proposal for Internet Meta-Searching. In
ACM SIGMOD Int. Conf. on Management of Data, 1997.

[17] D. Harman and G. Candela. Retrieving records from a gigabyte
of text on a minicomputer using statistical ranking. J. of the
American Society for Information Science, 41(8), August 1990.

[18] A. Kronfol. FASD: a fault-tolerant, adaptive, scalable,
distributed search engine. June 2002. Unpublished manuscript.

[19] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. On the feasibility of peer-to-peer web indexing. In
Proc. of the 2nd Int. Workshop on Peer-to-Peer Systems, 2003.

[20] H. Lieberman, C. Fry, and L. Weitzman. Exploring the web
with reconnaissance agents. Communications of the ACM,
44(8):69–75, August 2001.

[21] W. Meng, C. Yu, and K. Liu. Building efficient and effective
metasearch engines. ACM Computer Surveys, March 2002.

[22] Sun Microsystems. JXTA. http://www.jxta.org.
[23] National Information Standards Organization. Information

Retrieval (Z39.50): Application Service Definition and Protocol
Specification. Technical report, NISO, Bethesda, MD, 1995.

[24] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document
retrieval with frequency-sorted indexes. J. of the American
Society for Information Science, 47(10), May 1996.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proc. of the ACM
SIGCOMM Conference, 2001.

[26] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword
searching. February 2002. Unpublished manuscript.

[27] M. Richardson and P. Domingos. The intelligent surfer:
Probabilistic combination of link and content information in
pagerank. In Advances in Neural Information Processing
Systems, 2002.

[28] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM Int. Conf. on Distributed Systems Platforms,
pages 329–350, November 2001.

[29] Y. Shen and D. L. Lee. An mdp-based peer-to-peer search
server network. In Proc. of the 3th International Conf. on Web
Information Systems Engineering, pages 269–278, 2002.

[30] V. Shkapenyuk and T. Suel. Design and implementation of a
high-performance distributed web crawler. In Proc. of the Int.
Conf. on Data Engineering, February 2002.

[31] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proc. of ACM SIGCOMM
Conference, August 2001.

[32] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi,
X. Long, and K. Shanmugasunderam. Odissea: A peer-to-peer
architecture for scalable web search and information retrieval.
TR-CIS-2003-01, Polytechnic University, 2003.

[33] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information
retrieval in structured overlays. In Proc. of ACM HotNets-I,
October 2002.

[34] A. Tomasic and H. Garcia-Molina. Performance of inverted
indices in distributed text document retrieval systems. In Proc.
of the 2nd Int. Conf. on Parallel and Distributed Information
Systems (PDIS), 1993.

[35] H. Turtle and J. Flood. Query evaluation: strategies and
optimizations. Information Processing and Management,
31(6):831–850, November 1995.

[36] M. Veeraraghavan, H. Lee, and R. Grobler. A low-load
comparison of TCP/IP and end-to-end circuits for file transfers.
In Proc. of INET 2002, June 2002.

[37] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes.
Morgan Kaufmann, second edition, 1999.

[38] W. Wong and D. Lee. Implementations of partial document
ranking using inverted files. Information Processing and
Management, 29(5):647–669, September 1993.

[39] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Tech. Report UCB//CSD-01-1141, UC Berkeley, April 2000.

