Unix File Systems !

Alex Delis
alex.delis -at+ nyu.edu

December 2017

1/-\cknowledgements to Prof. T. Stamatopoulos, M. Avidor, A. Deligiannakis, S. Evangelatos, V. Kanitkar and

K. Tsakalozos.
1/42

Low-Level Input/Output

» The stdio library enables the average user carry out |1/Os
without worrying about buffering and/or data conversion.

» The stdio is a user-friendly set of system calls.

» Low-level 1/0 functionality is required when

1. the amenities that stdio are not desirable (for whatever
reason) in accessing files/devices, or

2. interprocess communication (IPC) occurs with the help of
pipes/sockets.

)

)

Low-Level 1/0s

> In low-level /O, file descriptors that identify files, pipes,
sockets and devices are small integers.
» The above is in contrast to what happens in the stdio where
respective identifiers are file pointers (for formatted 1/0).

» Designated (fixed) file descriptors:
0 : standard input
1 : standard output
2 : standrad error (for error diagnostics).

» The above file descriptors 0, 1, and 2 correspond to pointers
to the stdin sdtout and stderr files of the stdio library.

» The file descriptors are parent- “inherited” to any child process
that the parent in question creates.

The open() system call

[int open(char *pathname, int flags [, mode_t mode])]

» The call opens or creates a file with absolute or relative
pathname for reading/writing.

» flags designate the way (i.e., a number) with which the file
can be accessed; the value for £lags may be constructed by a
bitwise-inclusive OR of flags from the following set:

0_RDONLY: open for reading only.

0_WRONLY: open for writing only.

0_RDWR: open for both reading and writing.

0_APPEND: write at the end of the file.

0_CREAT: create a file if it does not already exists.
0_TRUNC: size of file is to be truncated to O, if file exists.

vV VY VY VY VY

The open() system call

> required: #include <fnctl.h>
= fnctl.h defines all these (and more) flags.

» The not-compulsory mode parameter is an integer that
designates the desired access primitives during the creation of
a file (access rights not allowed from the umask are not
allowed).

> open returns an integer that designates the file created and in
case of no success, it returns -1.

createfile.c

#include <stdio.h> // to have access to printf ()
#include <stdlib.h> // to enable ezit calls
#include <fcntl.h> // to have access to flags def
#define PERMS 0644 // set access permissions

char *workfile="mytest";

main () {
int filedes;

if ((filedes=open(workfile ,0_CREAT|O_RDWR,PERMS))==-1){
perror ("creating");
exit (1) ;
}

else {
printf ("Managed to get to the file successfully\n");
}

exit (0) ;

6/42

Running the executable for createfile.c

ad@thales:”/src$ gcc createfile.c
./a.out
Managed to get to the file successfully

ad@thales

ad@thales:~/src$ 1s

total 20

-rWXr -XIr-X
-rw-r--r--
-rw-r--r--
-rw-r--r--

:~/src$

1 ad
1 ad
1 ad
1 ad

ad
ad
ad
ad

-1

8442 2010-04-06
375 2010-04-06
506 2010-04-06

0 2010-04-06

ad@thales:"/src$ cat > mytest
This is Kon Tsakalozos
./a.out
Managed to get to the file successfully

ad@thales:

ad@thales:”/src$ 1s
a.out createfile.c

~/src$

errors_demo.c

ad@thales:~/src$ more mytest
This is Kon Tsakalozos

ad@thales

:~/src$

21
21

21

250
149
16:
:50

24

a.out
createfile.c
errors_demo.c
mytest

mytest

~

)

Setting modes with symbolic names

S_IRWXU | 00700 owner has read, write and execute permission
S_IRUSR | 00400 owner has read permission

S_IWUSR | 00200 owner has write permission

S_IXUSR | 00100 owner has execute permission

S_IRWXG | 00070 group has read, write and execute permission
S_IRGRP | 00040 group has read permission

S_IWGRP | 00020 group has write permission

S_IXGRP | 00010 group has execute permission

S_IRWXO | 00007 others have read, write and execute permission
S_IROTH | 00004 others have read permission

S_IWOTH | 00002 others have write permission

S_IXOTH | 00001 others have execute permission

Working with access modes

#include <fcntl.h>

int £d;

mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *filename = "/tmp/file";

fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, mode);

1. If the call to open() is successful, the file is opened for
reading/writing by the user.

2. Those in the “group” and “others” can read the file.

The creat () call

[int creat(char *pathname, mode_t mode); j

» The creat is an alternative way to create a file (istead of
using open()).

> pathname is any UNIX pathname giving the target location in
which the file is to be created.

» mode helps set up the access rights.

» creat will always truncate (an existing file before returning its
file descriptor).

filedes = creat("/tmp/tsak" ,0644);

is equivalent to:
filedes = open("/tmp/tsak", O_WRONLY|O_CREAT|O_TRUNC, 0644);

10/42

The read () call

[ssize,t read(int filedes, char *buffer, size_t n)]

» Reads at most n bytes from a file, device, end-point of a pipe,
socket that is designated by filedes and place the bytes on
buffer.

» The call returns the number of bytes successfully read, 0 if we
are past the last byte-already read, and -1 if a problem occurs.

e When do we read less bytes?
1. The file has less characters left to be read.
2. The operation is “interrupted” by a signal.
3. Reading on pipe/socket takes place and a character becomes
available (in which case a while-loop is needed to read all
characters).

11/42

Using the read () call (count.c)

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#define BUFSIZE 27

main () {
char buffer [BUFSIZE]; int filedes; ssize_t nread; long total=0;

if ((filedes=open("anotherfile", O_RDONLY))== -1){
printf ("error in opening anotherfile \n");
exit (1) ;

while ((nread=read(filedes,buffer ,BUFSIZE)) > 0)
total += nread;
printf ("Total char in anotherfile %1d \n",total);
exit (0);
¥

Running the executable:

ad@thales:"/src$./a.out
Total char in anotherfile 936
ad@thales:”/src$

e What happens if char *buffer=NULL; is used
instead of char buffer [BUFSIZE]; 7?7

The write() and close() system calls

[ssize,t write(int filedes, char *buffer, size_t n);]

» The call writes at most n bytes of content from the buffer to
the file that is described by filedes.

» write returns the number of bytes successfully written out to
the file or -1 in case of failure.

» use the write call with: #include <unistd.h>

[int close(int filedes);]
> releases the file descriptor filedes; returns 0 in case of
successful release and -1 otherwise.
» use the close call with: #include <unistd.h>

13 /42

Working with open, read, write and close calls

Write a program that appends the content of a file at the very end
of the content of another file.

#include
#include
#include
#include
#include
#include

<stdio.h>
<string.h>
<stdlib.h>
<fcntl.h>
<unistd.h>
<sys/stat.h>

#define BUFFSIZE 1024

int main(int argc, char *argv[]){

int n,

from, to; char buf [BUFFSIZE];

mode_t fdmode = S_IRUSR|S_IWUSR|S_IRGRP| S_IROTH;

if (argec!=3) {
write(2,"Usage: ", 7); write(2, argv[0], strlen(argv([0]));
write(2," from-file to-file\n", 19); exit(1); }

if ((from=open(argv[i], O_RDONLY)) < 0){
perror ("open"); exit(1); }

if ((to=open(argv[2], O_WRONLY|O_CREAT|O_APPEND, fdmode)) < 0){
perror ("open"); exit(1); }

while ((n=read(from, buf, sizeof(buf))) > 0)
write (to,buf ,n);
close(from); close(to); return(l);

14 /42

Execution Outcome:

ad@thales:~/src$ 1s

anotherfile count.c dupdup2file
writeafterend.c

a.out createfile.c errors_demo.c

buffeffect.c dupdup2.c filecontrol.c

ad@thales:~/src$ more mytest

This is Konstantinos Tsakalozos
ad@thales:”/src$ more mytestl

that I use to show something silly
use to show something silly

to show something silly
ad@thales:"/src$./a.out

Usage: ./a.out from-file to-file
ad@thales:"/src$./a.out mytest mytestl
ad@thales:”/src$ cat mytestl

that I use to show something silly
use to show something silly

to show something silly

This is Konstantinos Tsakalozos
ad@thales:~/src$

mytest

mytestl
readwriteclose.c

Using open read, write and close calls

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>

int main(){
int fd, bytes, bytesl, bytes2;
char buf [50];

mode_t fdmode = S_IRUSR|S_IWUSR;

if ((fd=open("t", O_WRONLY | O_CREAT, fdmode)) == -1){
perror ("open");
exit (1) ;
}

bytesl = write(fd, "First write. ", 13);
printf ("%d bytes were written. \n", bytesl);
close (£fd);

if ((fd=open("t", O_WRONLY | O_APPEND)) == -1){
perror ("open");
exit (1);
}

bytes2 = write(fd, "Second Write. \n", 14);
printf ("%d bytes were written. \n", bytes2);
close(£fd);

16 /42

if ((fd=open("t", O_RDONLY)) == -1){

perror ("open");
exit (1) ;
}

bytes=read (fd, buf, bytes

1+bytes2);

printf ("%d bytes were read \n",bytes);

close(fd);

buf [bytes]=>\0";
printf ("%s\n",buf);
return (1) ;

Running the program..

ad@thales:”/src$ 1s
anotherfile count.c
a.out createfile.c
ad@thales:”/src$./a.out
13 bytes were written.

14 bytes were written.

27 bytes were read

First write. Second Write.
ad@thales:”/src$ 1s
anotherfile count.c
a.out createfile.c
ad@thales:~/src$

errors_demo.c
mytest

errors_demo.c
mytest

readwriteclose.c

readwriteclose.c
t

Copying a file with variable buffer size

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>

#define SIZE 30
#define PERM 0644

int mycopyfile(char *namel, char *name2, int BUFFSIZE){
int infile, outfile;
ssize_t nread;
char buffer [BUFFSIZE];

if ((infile=open(namel,0_RDONLY)) == -1)
return(-1);

if ((outfile=open(name2, O_WRONLY|O_CREAT|O_TRUNC, PERM)) == -1){
close (infile);
return(-2);

}

while ((nread=read(infile, buffer, BUFFSIZE)) > 0){
if (write(outfile,buffer ,nread) < nread){
close(infile); close(outfile); return(-3);
}
}

close(infile); close(outfile);

18 /42

Copying a file with variable buffer size

-1) return(-4);
return (0) ;

char *argv[]){
status=0;

status=mycopyfile (argv[1],argv[2],atoi(argv([3]1));

if (nread ==
else
}
int main(int argc,
int
exit (status);
¥

Running the program for various size buffers..

ad@thales:~/src$

real Om0.012s
ad@thales:~/src$
real Om0.010s
ad@thales:~/src$
real Om0.071s
ad@thales:~/src$
real Om0 .454s

ad@thales:~/src$
real
ad@thales:”/src$

time
user
time
user
time
user
time
user
time

Om13.738s user

./a.out /tmp/stuff.ppt /tmp/alexl
Om0.000s sys Om0.012s

./a.out /tmp/stuff.ppt /tmp/alexl
Om0.000s sys Om0.008s

./a.out /tmp/stuff.ppt /tmp/alexl
Om0.000s sys Om0.072s

./a.out /tmp/stuff.ppt /tmp/alexl
O0m0.012s sys Om0 .444s

./a.out /tmp/stuff.ppt /tmp/alexl
0m0 .428s sys Om13.305s

8192

4096

256

32

42

lseek call

[off,t lseek(int filedes, off_t offset, int start_flag);]

> lseek repositions the offset of the open file associated with
filedes to the argument offset according to the directive
start_flag as follows:
1. SEEK_SET: The offset is set to offset bytes; usual actual
integer value = 0

2. SEEK_CUR: The offset is set to its current location plus
offset bytes; usual actual integer value = 1

3. SEEK_END: The offset is set to the size of the file plus
offset bytes. usual actual integer value = 2
off _t newposition;

newposition=1lseek(fd, (off_t)-32, SEEK_END);

Positions the read/write pointer 32 bytes BEFORE the end of the file.

The fnctl() system call

[int

fcntl(int filedes, int cmd);]

[int

fcntl(int filedes, int cmd, long arg);]

[int

fcntl(int filedes, int cmd, struct flock *lock);]

>

provides (some) control over already-opened files; headers
required: <sys/types.h>, <unistd.h>, <fcntl.h>.
fentl () performs one of the operations described below on
the open file descriptor filedes. The operation is determined
by cmd — values for the cmd appear in the <fcntl.h>.

Value of 3rd param (arg) depends on what cmd does.

» Among other operations, fcntl() carries out two commands:

1. F_GETFL: Read file status flags; arg is ignored.
2. F_SETFL: Set file status flags to value specified by arg.

A routine for checking the flags of an open file

#include <fcntl.h>

int filestatus(int filedes){
int myfileflags;

if ((myfileflags = fcntl(filedes,F_GETFL)) == -1){
printf ("file status failure\n"); return(-1);

printf ("file descriptor: %d ",filedes);
switch (myfileflags & O_ACCMODE){ //test against the open file flags
case O_WRONLY:
printf ("write-only"); break;
case O_RDWR:
printf ("read-write"); break;
case O_RDONLY:
printf ("read-only"); break;
default:
printf ("no such mode");
s
if (myfileflags & O_APPEND) printf("- append flag set"); printf("\n");
return (0) ;

= & : bitwise AND operator

= fcntl can be used to acquire record locks (or locks on file segments).

N
N

calls: dup, dup2

(int dup(int oldfd); |
returns the Towest-numbered unused descriptor as the new
descriptor.

[int dup2(int oldfd, int newfd);]
makes newfd be the copy of 01dfd - note:

1. If o1ldfd is not a valid file descriptor, then the call fails, and
newfd is not closed.

2. If 01dfd is a valid file descriptor, and newfd has the same
value as oldfd, then dup2() does nothing, and returns
newfd.

» After a successful return from one of these system calls, the
old and new file descriptors may be used interchangeably.

Example

#include
#include
#include
#include
#include

of dup and dup2

<stdio.h>
<stdlib.h>
<fcntl.h>
<unistd.h>
<sys/stat.h>

int main(){
int fd1, fd2, £d3;

mode_t fdmode = S_IRUSR|S_IWUSR|S_IRGRP| S_IROTH;
if ((fdl=open("dupdup2file", O_WRONLY | O_CREAT | O_TRUNC,
)1
perror ("open");
exit (1) ;
}

printf ("fd1 = %d\n", fdi);
write(fd1l, "What ", 5);
fd2=dup (£d1)

printf ("£d2

%d\n", £d2);

H
write(fd2, "time", 4);
close (0);

£d3=dup (£d1);

printf ("£d3 = %d\n", £d3);
write(fd3, " is it", 6);

dup2 (fd2, 2);

write(2,"?\n",2);

close(£fd1); close(£fd2); close(£d3);

return

1

fdmode)

24 /42

Execution Outcome:

ad@thales:~/src$ 1s

anotherfile count.c dupdup2file
a.out createfile.c errors_demo.
buffeffect.c dupdup2.c filecontrol.
ad@thales:~/src$./a.out

fdl1 = 3

fd2 = 4

fd3 = 0

ad@thales:”/src$ 1s

anotherfile count.c dupdup2file
a.out createfile.c errors_demo.
buffeffect.c dupdup2.c filecontrol.

ad@thales:”/src$ cat dupdup2file
What time is it?
ad@thales:~/src$

mytest
readwriteclose.c

mytest
readwriteclose.c

N
a

)

Accessing inode information with stat ()

> [int stat(char *path, struct stat *buf);j

[int fstat(int fd, struct stat *buf);]

returns information about a file; path points to the file (or £d) and
the buf structure helps “carry” all derived information.

» such information includes:

1.
2.
3.

©OoNOO A

buff—st_dev: ID of device containing file

buff—st_ino: inode number

buff—st_mode: the last 9 bits represent the access rights of owner,
group, and others. The first 4 bits indicate the type of the node (after a
bitwise-AND with the constant S_IFMT, if the outcome is S_IFDIR, the
node is a catalog, if outcome is S_IFREG, the mode is a regular file etc.)
buff—st_nlink: number of hard links

buff—st_uid: user-ID of owner

buff—st_gid: group ID of owner

buff—st_size: total size, in bytes

buff—st_atime: time of last access

buff—st_mtime: time of last modification of content

buff—st_ctime: time of last status change

st_mode is a 16-bit quantity

user group other

]
S

sticky

o | suid

E

1. 4 first bits indicate the type of the file (16 possible values -
less than 10 file types are in use now: regular file, dir,
block-special, char-special, fifo, symbolic link, socket).

2. the next three bits set the flags: set-user-ID,
set-group-ID and the sticky bits respectively.

3. next three groups of 3 bits a piece indicate the
read/write/execute access right for the the groups: owner,
group and others.

4. masking can be used to decipher the permissions each file
system entity is given.

stat-ing inodes

>

The fields st_atime, st_mtime and st_ctime designate
time as number of seconds past since 1/1/1970 of the
Coordinated Universal Time (UTC).
The function ctime helps bring the content of the fileds
st_atime, st_mtime and st_ctime in a more readable
format (that of the date). The call is:

char *ctime(time_t *timep);

» stat returns O if successful; otherwise, -1
> Header files needed: <sys/stat.h> and <sys/types.h>

int fstat(int fd, struct stat *buf); is identical to stat
but it works with file descriptors.

int lstat(char *path, struct stat *buf); is identical to
stat, except that if path is a symbolic link, then the link
itself is stat-ed, not the file that it refers to.

Definitions in <sys/stat.h>

#define
#define
#define
#define
#define
#define
#define
#define

S_IFMT
S_IFREG
S_IFDIR
S_IFBLK
S_IFCHR
S_IFIFO
S_IFLNK
S_IFSOCK

0170000
0100000
0040000
0060000
0020000
0010000
0120000
0140000

/*
/*
/*
/*
/%
/*
/*
/*

type of filex/
regular */

directory */

block special */
character sspecial */
fifo */

symbolic link */
socket */

Testing for a specific type of a file is easy using code fragments of
the following style:

if ((info.st_mode & S_IFMT) ==
printf ("this is a fifo queue.\n");

S_IFIFO)

29 /42

Accessing information from inode

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/stat.h>

int main(int argc, char *argv[]){
struct stat statbuf;

if (stat(argv[1], &statbuf) == -1)
perror ("Failed to get file status");
else {
printf ("Time/Date s",ctime (&statbuf.st_atime));
prinE? (0 coscosssocossosssocosoosssocssoos \n");
printf ("entity name: %s\n",argv[1]);
printf ("accessed : %s", ctime (&statbuf.st_atime)+4);
printf ("modified : %s", ctime (&statbuf.st_mtime));
¥

return (1) ;

}

Running the program..

ad@haiku:”/src-set004$./samplestat git.pdf
Time/Date : Mon Mar 21 10:12:30 2016
entity name: git.pdf

accessed : Mar 21 10:12:30 2016

modified : Mon Mar 21 10:11:55 2016
ad@haiku:”/src-set004$

30 /42

Accessing Catalog Content

>

The catalog content (ie, pairs of inodes and node names) can
be accessed with the help of the calls: opendir, readdir
and closedir.

Accessing of a catalog happens via a pointer DIR * (similar to
the FILE * pointer that is used by the stdio).

Every item in the catalog is weaved around a structure called
struct dirent that includes the following two elements:
1. d_ino: inode number;
2. d_name[]: a character string giving the filename (null
terminated)

Using these calls, it is not feasible to change the content of
the directory or its structure.

Required header files: <sys/types.h> and <dirent.h>

31/42

calls: opendir, readdir, closedir

> [DIR *opendir (char *na.me)]:
1. Opens up the catalog termed name and returns a pointer type
DIR for accessing the catalog.
2. If there is a mistake, the call returns NULL

> [struct dirent *readdir (DIR *dirp) ;]
1. the call returns a pointer to a dirent structure representing
the next directory entry in the directory pointed to by dirp
2. if for the current entry, the field d_ino is 0, the respective
entry has been deleted.
3. returns NULL if there are no more entries to be read.

> (int closedir(DIR *dirp);]
1. closes the directory associated with dirp

2. function returns 0 on success. On error, -1 is returned, and
errno is set appropriately.

Example

Execution QOutcome

ad@haiku:~/src-set004$
inode 11403323 of the
inode 11403324 of the
inode 11403322 of the
inode 11403325 of the
inode 11403326 of the
inode 10883777 of the
inode 11403328 of the
inode 11403310 of the
inode 11403330 of the
inode 11403331 of the
inode 11403332 of the
inode 11403393 of the
inode 10883835 of the
inode 11403335 of the
inode 11403336 of the
inode 11403305 of the
inode 11403337 of the
inode 10883705 of the
inode 11403339 of the

entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry

./openreadclosedir

myreadlink
myctime

dupdup2

signal -example
count
myalarml.c
errors_demo
signal-ignore.c
morewithls.c
myalarm.c
openreadclosedir.c
t

myreadlink.c
samplestat.c

signal -exampleD
createfile
jj.ps

ad@haiku:~/src-set004$./openreadclosedir

34

Creating a program that behaves as 1s -la

Creating a program that behaves as 1s -la

36/42

Creating a program that behaves as 1s -la

ad@haiku: ~/src set004$./morewithls mydir morewithls.c

“YWXT —XIr—-X
“IWXYr -Xr-X
ad@haiku:

1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1000/1000
1 1000/1000
1 1000/1000

“/src-set004$

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

9

-

N €0 © © © © ©©N ©© O ©

.

mydir/.
mydir/b
mydir/e
mydir/d
mydir/a
mydir/..
mydir/f
mydir/h
mydir/j
mydir/g
mydir/k
mydir/c
mydir/i
morewithls.c

38 /42

link and unlink

[int link(char *oldpath, char *newpath)]

> |t creates an new hard link to an existing file.
If newpath exists, it will not be overwritten.

» The created link essentially connects the inode of the
oldpath with the name of the newpath.

Lint unlink(char *pathname)j

» Deletes a name from the file system; if that name is the last
link to a file and no other process have the file open, the file is
deleted and its space is made available.

39 /42

Example on 1ink ()

#include <stdio.h>
#include <unistd.h>

if (1link("/dirA/namel","/dirB/name2")== -1)
prerror ("Failed to make a new hard link in /dirB");

directory entry in /dirA directory entry in /dirB
inode name inode name
12345 name1 12345 name2
inode 12345
5 block 23456
: this is the
text in the
23456 file

40/ 42

chmod, rename calls

[int chmod (char *path, mode_t mode)}
[int fchmod(int fd, mode_t mode)]

» Change the permissions (on files with path name or having an
fd descriptor) according to what mode designates.

» On success, 0 is returned; otherwise -1

[int rename (const char *oldpath, const char *newpath)]

» Renames a file, moving it between directories (indicated with
the help of oldpath and newpath) if required.

» On success, 0 is returned; otherwise -1

41 /42

symlink and readlink calls
[int symlink(const char *oldpath, const char *newpath)]

> Creates a symbolic link named newpath that contains the
string oldpath.

» A symbolic link (or soft link) may point to an existing file or
to a nonexistent one; the latter is known as a dangling link.

» On success, zero is returned. On error, -1 is returned, and
errno is set appropriately.

[ssize,t readlink(char *path, char *buf, size_t bufsiz)]

> Places the content of the symbolic link path in the buffer buf
that has size bufsiz.

» On success, readlink returns the number of bytes placed in
buf; otherwise, -1.

