
M O N I T O R I N G F I L E E V E N T S

Some applications need to be able to monitor files or directories in order to deter-
mine whether events have occurred for the monitored objects. For example, a
graphical file manager needs to be able to determine when files are added or
removed from the directory that is currently being displayed, or a daemon may
want to monitor its configuration file in order to know if the file has been changed.

Starting with kernel 2.6.13, Linux provides the inotify mechanism, which allows
an application to monitor file events. This chapter describes the use of inotify.

The inotify mechanism replaces an older mechanism, dnotify, which provided a
subset of the functionality of inotify. We describe dnotify briefly at the end of this
chapter, focusing on why inotify is better.

The inotify and dnotify mechanisms are Linux-specific. (A few other systems
provide similar mechanisms. For example, the BSDs provide the kqueue API.)

A few libraries provide an API that is more abstract and portable than inotify
and dnotify. The use of these libraries may be preferable for some applications.
Some of these libraries employ inotify or dnotify, on systems where they are
available. Two such libraries are FAM (File Alteration Monitor, http://
oss.sgi.com/projects/fam/) and Gamin (http://www.gnome.org/~veillard/gamin/).

376 Chapter 19

19.1 Overview

The key steps in the use of the inotify API are as follows:

1. The application uses inotify_init() to create an inotify instance. This system call
returns a file descriptor that is used to refer to the inotify instance in later
operations.

2. The application informs the kernel about which files are of interest by using
inotify_add_watch() to add items to the watch list of the inotify instance created
in the previous step. Each watch item consists of a pathname and an associated
bit mask. The bit mask specifies the set of events to be monitored for the path-
name. As its function result, inotify_add_watch() returns a watch descriptor, which
is used to refer to the watch in later operations. (The inotify_rm_watch() system
call performs the converse task, removing a watch that was previously added to
an inotify instance.)

3. In order to obtain event notifications, the application performs read() opera-
tions on the inotify file descriptor. Each successful read() returns one or more
inotify_event structures, each containing information about an event that
occurred on one of the pathnames being watched via this inotify instance.

4. When the application has finished monitoring, it closes the inotify file descriptor.
This automatically removes all watch items associated with the inotify instance.

The inotify mechanism can be used to monitor files or directories. When monitor-
ing a directory, the application will be informed about events for the directory
itself and for files inside the directory.

The inotify monitoring mechanism is not recursive. If an application wants to
monitor events within an entire directory subtree, it must issue inotify_add_watch()
calls for each directory in the tree.

An inotify file descriptor can be monitored using select(), poll(), epoll, and, since
Linux 2.6.25, signal-driven I/O. If events are available to be read, then these inter-
faces indicate the inotify file descriptor as being readable. See Chapter 63 for fur-
ther details of these interfaces.

The inotify mechanism is an optional Linux kernel component that is config-
ured via the options CONFIG_INOTIFY and CONFIG_INOTIFY_USER.

19.2 The inotify API

The inotify_init() system call creates a new inotify instance.

As its function result, inotify_init() returns a file descriptor. This file descriptor is
the handle that is used to refer to the inotify instance in subsequent operations.

#include <sys/inotify.h>

int inotify_init(void);

Returns file descriptor on success, or �1 on error

Monitor ing F i le Events 377

Starting with kernel 2.6.27, Linux supports a new, nonstandard system call,
inotify_init1(). This system call performs the same task as inotify_init(), but provides
an additional argument, flags, that can be used to modify the behavior of the
system call. Two flags are supported. The IN_CLOEXEC flag causes the kernel to
enable the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. This flag is
useful for the same reasons as the open() O_CLOEXEC flag described in Section 4.3.1.
The IN_NONBLOCK flag causes the kernel to enable the O_NONBLOCK flag on the
underlying open file description, so that future reads will be nonblocking. This
saves additional calls to fcntl() to achieve the same result.

The inotify_add_watch() system call either adds a new watch item to or modifies an
existing watch item in the watch list for the inotify instance referred to by the file
descriptor fd. (Refer to Figure 19-1.)

Figure 19-1: An inotify instance and associated kernel data structures

The pathname argument identifies the file for which a watch item is to be created or
modified. The caller must have read permission for this file. (The file permission
check is performed once, at the time of the inotify_add_watch() call. As long as the
watch item continues to exist, the caller will continue to receive file notifications
even if the file permissions are later changed so that the caller no longer has read
permission on the file.)

The mask argument is a bit mask that specifies the events to be monitored for
pathname. We say more about the bit values that can be specified in mask shortly.

If pathname has not previously been added to the watch list for fd, then
inotify_add_watch() creates a new watch item in the list and returns a new, nonnega-
tive watch descriptor, which is used to refer to the watch item in later operations.
This watch descriptor is unique for this inotify instance.

If pathname has previously been added to the watch list for fd, then
inotify_add_watch() modifies the mask of the existing watch item for pathname and
returns the watch descriptor for that item. (This watch descriptor will be the same
as that returned by the inotify_add_watch() call that initially added pathname to this
watch list.) We say more about how the mask may be modified when we describe
the IN_MASK_ADD flag in the next section.

#include <sys/inotify.h>

int inotify_add_watch(int fd, const char *pathname, uint32_t mask);

Returns watch descriptor on success, or �1 on error

path maskwatch descriptor 1

watch descriptor 2

watch descriptor 3
path mask

path mask

inotify
instance

watch
items

378 Chapter 19

The inotify_rm_watch() system call removes the watch item specified by wd from
the inotify instance referred to by the file descriptor fd.

The wd argument is a watch descriptor returned by a previous call to
inotify_add_watch(). (The uint32_t data type is an unsigned 32-bit integer.)

Removing a watch causes an IN_IGNORED event to be generated for this watch
descriptor. We say more about this event shortly.

19.3 inotify Events

When we create or modify a watch using inotify_add_watch(), the mask bit-mask
argument identifies the events to be monitored for the given pathname. The event
bits that may be specified in mask are indicated by the In column of Table 19-1.

#include <sys/inotify.h>

int inotify_rm_watch(int fd, uint32_t wd);

Returns 0 on success, or �1 on error

Table 19-1: inotify events

Bit value In Out Description

IN_ACCESS h h File was accessed (read())
IN_ATTRIB h h File metadata changed
IN_CLOSE_WRITE h h File opened for writing was closed
IN_CLOSE_NOWRITE h h File opened read-only was closed
IN_CREATE h h File/directory created inside watched directory
IN_DELETE h h File/directory deleted from within watched directory
IN_DELETE_SELF h h Watched file/directory was itself deleted
IN_MODIFY h h File was modified
IN_MOVE_SELF h h Watched file/directory was itself moved
IN_MOVED_FROM h h File moved out of watched directory
IN_MOVED_TO h h File moved into watched directory
IN_OPEN h h File was opened

IN_ALL_EVENTS h Shorthand for all of the above input events
IN_MOVE h Shorthand for IN_MOVED_FROM | IN_MOVED_TO
IN_CLOSE h Shorthand for IN_CLOSE_WRITE | IN_CLOSE_NOWRITE

IN_DONT_FOLLOW h Don�t dereference symbolic link (since Linux 2.6.15)
IN_MASK_ADD h Add events to current watch mask for pathname
IN_ONESHOT h Monitor pathname for just one event
IN_ONLYDIR h Fail if pathname is not a directory (since Linux 2.6.15)

IN_IGNORED h Watch was removed by application or by kernel
IN_ISDIR h Filename returned in name is a directory
IN_Q_OVERFLOW h Overflow on event queue
IN_UNMOUNT h File system containing object was unmounted

Monitor ing F i le Events 379

The meanings of most of the bits in Table 19-1 are evident from their names. The
following list clarifies a few details:

� The IN_ATTRIB event occurs when file metadata such as permissions, ownership,
link count, extended attributes, user ID, or group ID, is changed.

� The IN_DELETE_SELF event occurs when an object (i.e., a file or a directory) that is
being monitored is deleted. The IN_DELETE event occurs when the monitored
object is a directory and one of the files that it contains is deleted.

� The IN_MOVE_SELF event occurs when an object that is being monitored is renamed.
The IN_MOVED_FROM and IN_MOVED_TO events occur when an object is renamed within
monitored directories. The former event occurs for the directory containing the
old name, and the latter event occurs for the directory containing the new name.

� The IN_DONT_FOLLOW, IN_MASK_ADD, IN_ONESHOT, and IN_ONLYDIR bits don�t specify
events to be monitored. Instead, they control the operation of the
inotify_add_watch() call.

� IN_DONT_FOLLOW specifies that pathname should not be dereferenced if it is a sym-
bolic link. This permits an application to monitor a symbolic link, rather than
the file to which it refers.

� If we perform an inotify_add_watch() call that specifies a pathname that is
already being watched via this inotify file descriptor, then, by default, the given
mask is used to replace the current mask for this watch item. If IN_MASK_ADD is
specified, then the current mask is instead modified by ORing it with the value
given in mask.

� IN_ONESHOT permits an application to monitor pathname for a single event. After
that event, the watch item is automatically removed from the watch list.

� IN_ONLYDIR permits an application to monitor a pathname only if it is a direc-
tory. If pathname is not a directory, then inotify_add_watch() fails with the error
ENOTDIR. Using this flag prevents race conditions that could otherwise occur if
we wanted to ensure that we are monitoring a directory.

19.4 Reading inotify Events

Having registered items in the watch list, an application can determine which
events have occurred by using read() to read events from the inotify file descriptor.
If no events have occurred so far, then read() blocks until an event occurs (unless
the O_NONBLOCK status flag has been set for the file descriptor, in which case the read()
fails immediately with the error EAGAIN if no events are available).

After events have occurred, each read() returns a buffer (see Figure 19-2) con-
taining one or more structures of the following type:

struct inotify_event {
 int wd; /* Watch descriptor on which event occurred */
 uint32_t mask; /* Bits describing event that occurred */
 uint32_t cookie; /* Cookie for related events (for rename()) */
 uint32_t len; /* Size of 'name' field */
 char name[]; /* Optional null-terminated filename */
};

380 Chapter 19

Figure 19-2: An input buffer containing three inotify_event structures

The wd field tells us the watch descriptor for which this event occurred. This field
contains one of the values returned by a previous call to inotify_add_watch(). The wd
field is useful when an application is monitoring multiple files or directories via the
same inotify file descriptor. It provides the link that allows the application to deter-
mine the particular file or directory for which the event occurred. (To do this, the
application must maintain a bookkeeping data structure that relates watch descrip-
tors to pathnames.)

The mask field returns a bit mask that describes the event. The range of bits
that can appear in mask is indicated via the Out column of Table 19-1. Note the fol-
lowing additional details about specific bits:

� An IN_IGNORED event is generated when a watch is removed. This can occur for
two reasons: the application used an inotify_rm_watch() call to explicitly remove
the watch, or the watch was implicitly removed by the kernel because the mon-
itored object was deleted or the file system where it resides was unmounted.
An IN_IGNORED event is not generated when a watch that was established with
IN_ONESHOT is automatically removed because an event was triggered.

� If the subject of the event is a directory, then, in addition to some other bit, the
IN_ISDIR bit will be set in mask.

0

cookie

wd
mask

len

name terminating null byte

variable number of
padding null bytes

le
n

by
te

s

re
tu

rn
 v

al
ue

 fr
om

 re
ad

()
 c

ou
nt

s
th

is
 n

um
be

r
of

 b
yt

es

0

cookie

wd
mask

len

name

0

cookie

wd
mask

len

name

Monitor ing F i le Events 381

� The IN_UNMOUNT event informs the application that the file system containing the
monitored object has been unmounted. After this event, a further event con-
taining the IN_IGNORED bit will be delivered.

� We describe the IN_Q_OVERFLOW in Section 19.5, which discusses limits on queued
inotify events.

The cookie field is used to tie related events together. Currently, this field is used
only when a file is renamed. When this happens, an IN_MOVED_FROM event is generated
for the directory from which the file is renamed, and then an IN_MOVED_TO is gener-
ated for the directory to which the file is renamed. (If a file is given a new name
within the same directory, then both events occur for the same directory.) These
two events will have the same unique value in their cookie field, thus allowing the
application to associate them.

When an event occurs for a file within a monitored directory, the name field is
used to return a null-terminated string that identifies the file. If the event occurs
for the monitored object itself, then the name field is unused, and the len field will
contain 0.

The len field indicates how many bytes are actually allocated for the name field.
This field is necessary because there may be additional padding bytes between the
end of the string stored in name and the start of the next inotify_event structure con-
tained in the buffer returned by read() (see Figure 19-2). The length of an individual
inotify event is thus sizeof(struct inotify_event) + len.

If the buffer passed to read() is too small to hold the next inotify_event structure,
then read() fails with the error EINVAL to warn the application of this fact. (In kernels
before 2.6.21, read() returned 0 for this case. The change to the use of an EINVAL
error provides a clearer indication that a programming error has been made.) The
application could respond by performing another read() with a larger buffer. How-
ever, the problem can be avoided altogether by ensuring that the buffer is always
large enough to hold at least one event: the buffer given to read() should be at least
(sizeof(struct inotify_event) + NAME_MAX + 1) bytes, where NAME_MAX is the maximum
length of a filename, plus one for the terminating null byte.

Using a larger buffer size than the minimum allows an application to efficiently
retrieve multiple events with a single read(). A read() from an inotify file descriptor
returns the minimum of the number of events that are available and the number of
events that will fit in the supplied buffer.

The call ioctl(fd, FIONREAD, &numbytes) returns the number of bytes that are
currently available to read from the inotify instance referred to by the file
descriptor fd.

The events read from an inotify file descriptor form an ordered queue. Thus, for
example, it is guaranteed that when a file is renamed, the IN_MOVED_FROM event will be
read before the IN_MOVED_TO event.

382 Chapter 19

When appending a new event to the end of the event queue, the kernel will
coalesce that event with the event at the tail of the queue (so that the new event is
not in fact queued), if the two events have the same values for wd, mask, cookie, and
name. This is done because many applications don�t need to know about repeated
instances of the same event, and dropping the excess events reduces the amount of
(kernel) memory required for the event queue. However, this means we can�t use
inotify to reliably determine how many times or how often a recurrent event occurs.

Example program

Although there is a lot of detail in the preceding description, the inotify API is actu-
ally quite simple to use. Listing 19-1 demonstrates the use of inotify.

Listing 19-1: Using the inotify API
–– inotify/demo_inotify.c
#include <sys/inotify.h>
#include <limits.h>
#include "tlpi_hdr.h"

static void /* Display information from inotify_event structure */
displayInotifyEvent(struct inotify_event *i)
{
 printf(" wd =%2d; ", i->wd);
 if (i->cookie > 0)
 printf("cookie =%4d; ", i->cookie);

 printf("mask = ");
 if (i->mask & IN_ACCESS) printf("IN_ACCESS ");
 if (i->mask & IN_ATTRIB) printf("IN_ATTRIB ");
 if (i->mask & IN_CLOSE_NOWRITE) printf("IN_CLOSE_NOWRITE ");
 if (i->mask & IN_CLOSE_WRITE) printf("IN_CLOSE_WRITE ");
 if (i->mask & IN_CREATE) printf("IN_CREATE ");
 if (i->mask & IN_DELETE) printf("IN_DELETE ");
 if (i->mask & IN_DELETE_SELF) printf("IN_DELETE_SELF ");
 if (i->mask & IN_IGNORED) printf("IN_IGNORED ");
 if (i->mask & IN_ISDIR) printf("IN_ISDIR ");
 if (i->mask & IN_MODIFY) printf("IN_MODIFY ");
 if (i->mask & IN_MOVE_SELF) printf("IN_MOVE_SELF ");
 if (i->mask & IN_MOVED_FROM) printf("IN_MOVED_FROM ");
 if (i->mask & IN_MOVED_TO) printf("IN_MOVED_TO ");
 if (i->mask & IN_OPEN) printf("IN_OPEN ");
 if (i->mask & IN_Q_OVERFLOW) printf("IN_Q_OVERFLOW ");
 if (i->mask & IN_UNMOUNT) printf("IN_UNMOUNT ");
 printf("\n");

 if (i->len > 0)
 printf(" name = %s\n", i->name);
}

Monitor ing F i le Events 383

#define BUF_LEN (10 * (sizeof(struct inotify_event) + NAME_MAX + 1))

int
main(int argc, char *argv[])
{
 int inotifyFd, wd, j;
 char buf[BUF_LEN];
 ssize_t numRead;
 char *p;
 struct inotify_event *event;

 if (argc < 2 || strcmp(argv[1], "--help") == 0)
 usageErr("%s pathname... \n", argv[0]);

q inotifyFd = inotify_init(); /* Create inotify instance */
 if (inotifyFd == -1)
 errExit("inotify_init");

 for (j = 1; j < argc; j++) {
w wd = inotify_add_watch(inotifyFd, argv[j], IN_ALL_EVENTS);

 if (wd == -1)
 errExit("inotify_add_watch");

 printf("Watching %s using wd %d\n", argv[j], wd);
 }

 for (;;) { /* Read events forever */
e numRead = read(inotifyFd, buf, BUF_LEN);

 if (numRead == 0)
 fatal("read() from inotify fd returned 0!");

 if (numRead == -1)
 errExit("read");

 printf("Read %ld bytes from inotify fd\n", (long) numRead);

 /* Process all of the events in buffer returned by read() */

 for (p = buf; p < buf + numRead;) {
 event = (struct inotify_event *) p;

r displayInotifyEvent(event);

p += sizeof(struct inotify_event) + event->len;
 }
 }

 exit(EXIT_SUCCESS);
}

–– inotify/demo_inotify.c

384 Chapter 19

The program in Listing 19-1 performs the following steps:

� Use inotify_init() to create an inotify file descriptor q.

� Use inotify_add_watch() to add a watch item for each of the files named in the
command-line argument of the program w. Each watch item watches for all
possible events.

� Execute an infinite loop that:

� Reads a buffer of events from the inotify file descriptor e.

� Calls the displayInotifyEvent() function to display the contents of each of the
inotify_event structures within that buffer r.

The following shell session demonstrates the use of the program in Listing 19-1.
We start an instance of the program that runs in the background monitoring two
directories:

$./demo_inotify dir1 dir2 &
[1] 5386
Watching dir1 using wd 1
Watching dir2 using wd 2

Then we execute commands that generate events in the two directories. We begin
by creating a file using cat(1):

$ cat > dir1/aaa
Read 64 bytes from inotify fd
 wd = 1; mask = IN_CREATE
 name = aaa
 wd = 1; mask = IN_OPEN
 name = aaa

The above output produced by the background program shows that read() fetched
a buffer containing two events. We continue by typing some input for the file and
then the terminal end-of-file character:

Hello world
Read 32 bytes from inotify fd
 wd = 1; mask = IN_MODIFY
 name = aaa
Type Control-D
Read 32 bytes from inotify fd
 wd = 1; mask = IN_CLOSE_WRITE
 name = aaa

We then rename the file into the other monitored directory. This results in two
events, one for the directory from which the file moves (watch descriptor 1), and
the other for the destination directory (watch descriptor 2):

$ mv dir1/aaa dir2/bbb
Read 64 bytes from inotify fd
 wd = 1; cookie = 548; mask = IN_MOVED_FROM
 name = aaa
 wd = 2; cookie = 548; mask = IN_MOVED_TO
 name = bbb

Monitor ing F i le Events 385

These two events share the same cookie value, allowing the application to link them.
When we create a subdirectory under one of the monitored directories, the

mask in the resulting event includes the IN_ISDIR bit, indicating that the subject of
the event is a directory:

$ mkdir dir2/ddd
Read 32 bytes from inotify fd
 wd = 1; mask = IN_CREATE IN_ISDIR
 name = ddd

At this point, it is worth repeating that inotify monitoring is not recursive. If the
application wanted to monitor events in the newly created subdirectory, then it
would need to issue a further inotify_add_watch() call specifying the pathname of
the subdirectory.

Finally, we remove one of the monitored directories:

$ rmdir dir1
Read 32 bytes from inotify fd
 wd = 1; mask = IN_DELETE_SELF
 wd = 1; mask = IN_IGNORED

The last event, IN_IGNORED, was generated to inform the application that the kernel
has removed this watch item from the watch list.

19.5 Queue Limits and /proc Files

Queuing inotify events requires kernel memory. For this reason, the kernel places
various limits on the operation of the inotify mechanism. The superuser can config-
ure these limits via three files in the directory /proc/sys/fs/inotify:

max_queued_events

When inotify_init() is called, this value is used to set an upper limit on the
number of events that can be queued on the new inotify instance. If this
limit is reached, then an IN_Q_OVERFLOW event is generated and excess events
are discarded. The wd field for the overflow event will have the value �1.

max_user_instances

This is a limit on the number of inotify instances that can be created per
real user ID.

max_user_watches

This is a limit on the number of watch items that can be created per real
user ID.

Typical default values for these three files are 16,384, 128, and 8192, respectively.

386 Chapter 19

19.6 An Older System for Monitoring File Events: dnotify

Linux provides another mechanism for monitoring file events. This mechanism,
known as dnotify, has been available since kernel 2.4, but has been made obsolete by
inotify. The dnotify mechanism suffers a number of limitations compared with inotify:

� The dnotify mechanism provides notification of events by sending signals to the
application. Using signals as a notification mechanism complicates application
design (Section 22.12). It also makes the use of dnotify within a library difficult,
since the calling program might change the disposition of the notification sig-
nal(s). The inotify mechanism doesn�t use signals.

� The monitoring unit of dnotify is a directory. The application is informed when
an operation is performed on any file in that directory. By contrast, inotify can
be used to monitor directories or individual files.

� In order to monitor a directory, dnotify requires the application to open a file
descriptor for that directory. The use of file descriptors causes two problems.
First, because it is busy, the file system containing the directory can�t be
unmounted. Second, because one file descriptor is required for each directory,
an application can end up consuming a large number of file descriptors.
Because inotify doesn�t use file descriptors, it avoids these problems.

� The information provided by dnotify about file events is less precise than that
provided by inotify. When a file is changed inside a monitored directory, dnotify
tells us that an event has occurred, but doesn�t tell us which file was involved
in the event. The application must determine this by caching information
about the directory contents. Furthermore, inotify provides more detailed
information than dnotify about the type of event that has occurred.

� In some circumstances, dnotify doesn�t provide reliable notification of file events.

Further information about dnotify can be found under the description of the
F_NOTIFY operation in the fcntl(2) manual page, and in the kernel source file
Documentation/dnotify.txt.

19.7 Summary

The Linux-specific inotify mechanism allows an application to obtain notifications
when events (files are opened, closed, created, deleted, modified, renamed, and so
on) occur for a set of monitored files and directories. The inotify mechanism super-
sedes the older dnotify mechanism.

19.8 Exercise

19-1. Write a program that logs all file creations, deletions, and renames under the
directory named in its command-line argument. The program should monitor
events in all of the subdirectories under the specified directory. To obtain a list of
all of these subdirectories, you will need to make use of nftw() (Section 18.9). When
a new subdirectory is added under the tree or a directory is deleted, the set of
monitored subdirectories should be updated accordingly.

