
University of Athens
Dept. of Informatics and Telecommunications K22

Named-Pipes

Introduction
A named-pipe is a special type of file (FIFO) that is stored in the local file-system and allows for inter-process
communication through writing to and reading from this file. Every such named-pipe is designated by a path
(in a way similar to a regular file). Hence, every time two processes want to communicate, they can “open”
this FIFO file and while one writes the other reads. Name-pipes must be explicitly removed as they do not
disappear at the end of the process communication.

In order to have two processes communicate, they both have to open the corresponding FIFO file. Opening
up this file for writing, a process can send messages while opening the FIFO for reading, another process can
receive (read) messages lined up in the file. Evidently, the two processes must be part of the same computing
system.

Creating a FIFO file
A name-pipe can be created in your program by invoking the following call:

int mkfifo(const char *pathname , mode_t mode);

The first parameter is the (absolute or relative) path to the file under creation and the second parameter
offer the access rights that the FIFO will have.

Opening a FIFO file
A named-pipe can be opened in a way very simialr to the one used in opening a regular file in Unix. The
open() library system call is used as follows:

int open(const char *pathname , int flags);

int open(const char *pathname , int flags , mode_t mode);

As is the case with opening regular files, if the above call is successful it returns a file descriptor (integer
number). Similarly the following call could be used:

FILE *fopen(const char *path , const char *mode);

When fopen() is invoked a file pointer is returned (instead of the file descriptor). The file descriptor/pointer
is used to either read or write to the named-pipe.

Reading and Writing a FIFO file
The writing and reading of a FIFO file is identical to that of writing and reading of a regular file. The library
calls that can be used to accomplish this are:

ssize_t read(int fd, void *buf , size_t count);

ssize_t write(int fd, const void *buf , size_t count);

The differences between traditional files and named-pipes are as follows:

1. A named-pipe cannot be opened for both reading and writing at the same time. A name-pipe can be
opened with either open() or fopen() by a single process. Should you require bidirectional communi-
cation between two processes then two FIFO files have to be established witch each one implementing
a unidirectional channel of communication.

2. Both reading and writing are by default blocking. This means that if a process tries to read from a
named-pipe that does not have data, it will block. Similarly, if a process write into a named-pipe that
has not yet been opened by another process, the writer will block.

3. Movements of the file “current” position as is the case in regular files is not allowed in named-pipes.

If we want to have a process not-blocking until data appears for reading, the poll() call can be used:

#include <poll.h>

int poll(struct pollfd *fds , nfds_t nfds , int timeout);

Below find an example of how to use this call. With the help of poll(), the program checks when there
is something available for reading. The program reads from the named-pipe only after makes sure there is
something to read.

#define MSG_BUF 256

#include <poll.h>
#include <signal.h>
#include <stdio.h>
#include <fcntl.h>
#include <ctype.h>
#include <stdlib.h>

main(int argc , char *argv []){
char buf[MSG_BUF];
int bytes_in , fd;
struct pollfd fdarray [1];
int rc, i;

if (argc!= 2) {
printf("Usage: %s <name of pipe > \n",argv [0]);
exit (1);
}

if (mkfifo(argv[1], 0666) < 0){
perror("Error creating the named pipe");
exit (1);
}

fd=open(argv[1], O_RDONLY , 0);

for (;;){
/* initialize poll parameters */
fdarray [0].fd = fd;
fdarray [0]. events = POLLIN;

/* wait for incomign data or poll timeout */
rc = poll(fdarray , 1, 300);

if (rc == 0) {
printf("Poll timed -out.\n");
exit (1);
}

else if ((rc == 1) && (fdarray [0]. revents == POLLIN)){
if (fdarray [0].fd == fd){

bytes_in = read(fd, buf , MSG_BUF);
buf[bytes_in]=’\0’;

printf("\nRead from the pipe : %s\n", buf);
fflush(stdout);
}

}
}

}

Removing a FIFO file
A named-pipe can be removed as any other regular file.

Using a FIFO file
In what follows, we provide an example of how a (blocking) FIFO can be used between a program (termed
server) that awaits some input from another program (called client). The client provides a string of characters
and the server as soon as it reads the line of input turns all characters to upper case. A snapshot of the
work of the server is shown below:

ad@serifos :~/Pitt -CS1550/NamedPipes/src$./ server MyNAMEDpipe1

Read from the pipe : This IS the MESSAGE - Alex Delis

Converted String : THIS IS THE MESSAGE - ALEX DELIS

ad@serifos :~/Pitt -CS1550/NamedPipes/src$

The server program that needs to be run first is:

#define MSG_BUF 256

#include <poll.h>
#include <signal.h>
#include <stdio.h>
#include <fcntl.h>
#include <ctype.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>

main(int argc , char *argv []){
int fd, ret_val , count , numread;
char buf[MSG_BUF];

if (argc!= 2) {
printf("Usage: %s <name of (server) pipe > \n",argv [0]);
exit (1);
}

ret_val = mkfifo(argv[1], 0666);

if ((ret_val == -1) && (errno != EEXIST)){
perror("Error creating the named pipe");
exit (1);
}

/* open for reading only */
fd=open(argv[1], O_RDONLY);

numread = read(fd, buf , MSG_BUF);
buf[MSG_BUF]=’\0’;

printf("Read from the pipe : %s\n", buf);

printf("Converted String : ");
count =0;
while(count < numread){

buf[count]= toupper(buf[count]);
putchar(buf[count]);
count ++;
}

putchar(’\n’);
}

The source code for the client-program that needs to be run in a different tty from the server (so that
confusion is avoided) is:

#include <stdio.h>
#include <ctype.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

main(int argc , char *argv []){
int fd;

if (argc!= 3) {
printf("Usage: %s <name of named -pipe > <message > \n",argv [0]);
exit (1);
}

/* open for writing only */
fd = open(argv[1], O_WRONLY);

/* write into the named -pipe */
write(fd, argv[2], strlen(argv [2]));
}

