sed and awk Programming

March 2017

1/1

sed

» Character Stream Processor for ASCII files
— not really an editor!

» Operational model: sed scans the input ASCII file on a
line-by-line fashion and applies a set of rules to all lines.

» sed has three options:

-e : script is on the command line (default case)
-f : finds all rules that are applied in a specific (script) file.
-n : suppresses the output

input
ASCII
file

sed —> |:|
£ P

script

\4

Invoking sed

» bash > sed -e ’address command’ inputfile

v

bash > sed -f script.sed inputfile

v

each instructions given to sed consists of an address and
command.

v

Sample sed-script file:

#Thtis line ©s a comment
2,14 s/A/B/

30d

40d

1. From lines 2 to 14 substitute the character A with B
2. Line 30 - delete it!
3. Line 40 - delete it!

sed ’s/[0-9]//g’

gympie:~/Samples$ cat lista

john 32 london
eduardo 19 brazilia
winnie 97 cordoba
jean 21 athens
marco 7 buenosaires
filip 23 telaviv
dennis 15 brisbane
louis 31 heraclion
dimi 34 heraclion
ji 27 washington
hyseyin 33 izmir

gympie:~/Samples$

gympie:~/Samples$ cat lista | sed ’s/[0-91//g’

john london
eduardo brazilia
winnie cordoba
Jjean athens
marco buenosaires
filip telaviv
dennis brisbane
louis heraclion
dimi heraclion
ji washington
hyseyin izmir

gympie:~/Samples$

Substitution at the front and at the end of a line

gympie:~/Samples$ cat lista |

john 32
eduardo 19
winnie 97
Jjean 21
marco 7
£filip 23
dennis 15
louis 31
dimi 34
ji 27
hyseyin 33

gympie:~/Samples$ cat lista |

<<<john 32
<<<eduardo 19
<<<winnie 97
<<<jean 21
<<<marco 7
<<<filip 23
<<<dennis 15
<<<louis 31
<<<dimi 34
<<<ji 27
<<<hyseyin 33

gympie:~/Samples$

’s/$/>>>/°

sed

london>>>
brazilia>>>
cordoba>>>
athens >>>
buenosaires>>>
telaviv>>>
brisbane>>>
heraclion>>>
heraclion>>>
washington>>>
izmir>>>

sed

sed ’s/"/<<</g’
london>>>
brazilia>>>
cordoba>>>
athens>>>
buenosaires >>>
telaviv>>>
brisbane >>>
heraclion>>>
heraclion>>>
washington>>>
izmir>>>

’s/$/>>>/g’

\

Entire-Pattern and Numbered-Buffer Substitutions

» & : designates the entire pattern (just matched).

» \(and \): designate a numbered pattern later on identified by
its respective number-id such as: \1, \2, \3, etc.

&
O

12 \3
SA(-= A\ (=== A\ (remmmmec) oo\ Lo\ 2o\ 3o/

6/1

Examples with Entire/Numbered-Buffers Substitutions

gympie:~/Samples$ cat tilefona

Alex Delis 6973304567
Mike Hatzopoulos 6934400567
Thomas Sfikopulos 6945345098
Stavros Kolliopulos 6911345123
Aggelos Kiagias 6978098765

gympie:~/Samples$

gympie:~/Samples$ cat tilefona | sed \
>s/\NCLO=-91\{4\}I\) N ([0-91\{2\}\) \ ([0-91\{4\}\) /\1-\2-\3/"

Alex Delis 6973-30-4567
Mike Hatzopoulos 6934-40-0567
Thomas Sfikopulos 6945-34-5098
Stavros Kolliopulos 6911-34-5123
Aggelos Kiagias 6978-09-8765

gympie:~/Samples$

Another Example

gympie:~/Samples$ cat pricelist

**This is the price list*x
of good today

Breakfast 10.03
Lunch 11.45
Dinner 7.56

gympie:~/Samples$ sed ’s/[0-91/$&/’ pricelist

*xThis is the price list*x*
of good today

Breakfast $10.03
Lunch $11.45
Dinner $7 .56

gympie:~/Samples$ sed ’s/[0-9]1/$&/3° pricelist

This is the price list
of good today

Breakfast 10.$03
Lunch 11. $45
Dinner 7.5%6

gympie:~/Samples$

Local and global substitutions

gympie:~/Samples$ cat text2

I had a black dog, a white dog, a yellow dog and
a fine white cat and a pink cat as well as a croc.
These are my animals: dogs, cats and a croc.

gympie:~/Samples$ cat text2 | sed ’1 s/dog/D0G/g’

I had a black DOG, a white DOG, a yellow DOG and
a fine white cat and a pink cat as well as a croc.
These are my animals: dogs, cats and a croc.

gympie:~/Samples$ cat text2 | sed ’1 s/dog/D0G/’

I had a black DOG, a white dog, a yellow dog and
a fine white cat and a pink cat as well as a croc.
These are my animals: dogs, cats and a croc.

gympie:~/Samples$ cat text2 | sed ’s/dog/D0G/g’

I had a black DOG, a white DOG, a yellow DOG and
a fine white cat and a pink cat as well as a croc.
These are my animals: DOGs, cats and a croc.

gympie:~/Samples$ cat text2 | sed ’1,2 s/cat/CAT/2’

I had a black dog, a white dog, a yellow dog and
a fine white cat and a pink CAT as well as a croc.
These are my animals: dogs, cats and a croc.
gympie:~/Samples$

Suppressing the outpur (-n) -

gympie:~/Samples$ 1ls -1

total 48

-rw-r--r-- 1 ad
drwxr-xr-x 2 ad
drwxr-xr-x 2 ad
-rw-r--r-- 1 ad
-rw-r--r-- 1 ad
-rwxr-xr-x 1 ad
-rw-r--r-- 1 ad
-rw-r--r-- 1 ad
sry=r=—w== i sl

ad
ad

328
4096
4096
0
112
51
1603
146

165

gympie:~/Samples$ 1s -1

-rw-r--r-- lista
-rw-r--r-- outl
-rw-r--r-- pricelist
-rWXr-xr-x scripti
-rw-r--r-- textl
-rw-r--r-- text2
-rw-r--r-- tilefona

gympie:~/Samples$

gympie:~/Samples$ 1s -1

sed

-n

2010-03-05
2010-03-05
2010-03-05
2010-03-04
2010-03-05
2010-03-03
2010-03-04
2010-03-05
2010-03-05

creating new (p/w)

lista
MyDir1l
MyDir2
outl
pricelist
scriptl
textl
text2
tilefona

| sed -n "/~-/s/\([-rwx]*\).*:..\(C.*\)/\1\2/p"

I\

"/"=/s/\(

.......... \) ok N Co*\) /\1\2/w 2alex1"

10

Transforming Characters (option y)

gympie:~/Samples$ more text2

I had a black dog, a white dog, a yellow dog and
a fine white cat and a pink cat as well as a croc.
These are my animals: dogs, cats and a croc.

gympie:~/Samples$ cat text2 | sed ’y/abcdt/ADCBQ/’

I hAB A D1ACk Bog, A whiQe Bog, A yellow Bog AnB
A fine whiQe CAQ AnB A pink CAQ As well As A CroC.
These Are my AnimAls: Bogs, CAQs AnB A CroC.
gympie:~/Samples$

11

Additional sed Input and Output Commands

» Next (n): forces sed to read the next text line from input file.

» Append Next (N): adds the next input line to the current
content of the pattern space.

» Print (p): copies the current content of the pattern space to
the standard output.

» Print First Line (P): prints the cotent of the pattern space
upto and including a newline character.

» List (1): displays “hidden” characters found in the lines of the
file.

» Read (r): reads from a file

» Write (w): writes to a file

12

The Next Command (n)

gympie:~/Samples$ cat -n text2
I had a black dog, a white dog, a yellow dog and

a fine white cat and a pink cat as well as a croc.

N O WN e

These are my animals: dogs, cats and a croc.
gympie:~/Samples$ sed -f sedn text2

I had a black dog, a white dog, a yellow dog and

a fine white cat and a pink cat as well as a croc.

These are my animals: dogs, cats and a croc.
gympie:~/Samples$

—n forces sed to read the next line from input. Before reading the next line, sed
copies the current content of the pattern space to the output, deletes the current text
in the pattern space, and then refills it with the next input line. After reading, it

applies the script. 13/1

Append Next (N) command

gympie:~/Samples$ cat text3
11111111
22222222
bbbbbbbb

cccecccev
jhdskjhj
1djlkjds
1kdjsja4
gympie:~/Samples$

gympie:~/Samples$!sed
sed -f sedN text3
11111111 22222222
bbbbbbbb cccccccv
jhdskjhj 1djlkjds
1kdjsja4

— While n clears the pattern space before inputting the next line, append (N)

does not; it adds the next input line to the current content of the pattern

space.
14/1

A more interesting example with command N

gympie:~/Samples$ cat text2
I had a black dog, a white dog, a yellow dog and

a fine white cat and a pink cat as well as a croc.

These are my animals: dogs, cats and a croc.

This is a test
gympie:~/Samples$

gympie:~/Samples$ sed -f sednotN text2
I had a black dog, a white dog, a yellow dog and

a fine white cat and a pink cat as well as a croc.
These are my animals: dogs, cats and a croc.

This is a test
gympie:~/Samples$

15/1

Understading the script

e What happens, should you replace D with d7

v

$!N means “if line is not the last line"

$N means “if line is the last line in the text”

v

v

D command: delete up to the first embedded newline in the
pattern space. Start next cycle, but skip reading from the
input if there is still data in the pattern space.

v

d command: delete pattern space. Start next cycle.

16/1

The p command

22222222
bbbbbbbb

11111111
11111111
22222222
22222222
bbbbbbbb
bbbbbbbb
cccceccecceccev
ccccccev
jhdskjhj
jhdskjhj
1djlkjds
1djlkjds
1kdjsja4
1kdjsja4
gympie:~/Samples$

17/1

P command: prints content of the pattern-space upto including a newline char

gympie:~/Samples$ cat text4d
I had a black dog, a white dog,
a yellow dog and a pink lion
a fine white cat and
a pink cat as well as a croc.
These are my animals:
dogs, cats and a croc.
This is a test
gympie:~/Samples$

gympie:~/Samples$ sed -f setprintkt textéd
a yellow dog and a pink lion

a fine white cat and
gympie:~/Samples$

18/1

A good way to see "invisible” characters

I had a black dog, a white dog, $
a yellow dog and a pink lion$

\ta fine white cat and §$

\ta pink cat as well as a croc.$
These are my animals: $

dogs, cats and a croc.$

This is a test$

gympie:~/Samples$

19/1

Reading files in a text with r

gympie:~/Samples$ cat maintext

This is blah blah blah...

and more blah blah blah blah..

and even more....

blah blah blah...

gympie:~/Samples$ cat mainheader
THIS IS THE TEXT

gympie:~/Samples$ cat maindate

Sat Mar 6 18:17:14 EET 2010
gympie:~/Samples$

gympie:~/Samples$ sed -f sedread maintext

THIS IS THE TEXT
This is blah blah blah...
and more blah blah blah blah..
and even more....
blah blah blah...

Sat Mar 6 18:17:14 EET 2010
gympie:~/Samples$
20/1

Separating lines to different files with w command

Mon 7
Tue 7
Wed 7
Thu 7
Fri 7

7

7

gympie:

/Mon/w
/Tue/w
/Wed/w
/Thu/w
/Fri/w
gympie

Tue

:00 Get up!
:00 Get up!
:00 Get up!
:00 Get up!
:00 Get up!

~/Samples$ cat sedwrite
Mon .

log

.log
Wed .
Thu .
Fri.

log
log
log

:“/Samples$ 1ls *log
Fri.log Mon.log Thu.log Tue.log Wed.log
gympie:~/Samples$

21/1

The awk Pattern Scanning and Processing Language

> scans text files line-by-line and searches for patterns.

» works in a way similar to sed but it is more versatile.

» Sample runs:

2/1

awk Pattern Morphing and Processing

» General invocation options:
1. awk -f filewithawkcommands inputfile

2. awk ’{awk-commands}’ inputfile

23/1

awk basic file-instruction layout

BEGIN {declarations; action(s);}
pattern; { action(s); }
pattern; { action(s); }
patterns { action(s); }
pattern, { action(s); }
END { action(s); }

> Either pattern or action may be left out.
» If no action exists, simply the input matching line is placed on
the output.

Records and Fields

Input is divided into “records” — ended by a terminator
character whose default value is \n.

FILENAME: the name of the current input file.

Each record is divided into “fields” separated by white-space
blanks OR tabs.

Fields are referred to as $1, $2, $3, ...
The entire string (record) is denoted as $0
NR: is the number of current record.

NF: number of fields in the line

FS: field separator (default " ")

RS: record separator (default \n)

Printing in awk

1.

{print}
= print the entire input file to output.

. {print $2, $1}

= print field> and field; from input file.

{ print NR, NF, $0 }
= print the number of the current record, the number of its
fields, and the entire record.

{ print $1 > "foo"; print $2 > "bar" }

= print fields into multiple output files; >> can be also used.

{ print $1 > $2 }

= the name of field, is used as a file (for output).
{ printf("%8.2f %-20s \n",$1, $2); }

= pretty-printing with C-like notation.

Patterns in awk

» patterns in front of actions act as selectors.

> awk file: special keywords BEGIN and END provide the means
to gain control before and after the processing of awk:

BEGIN { FS=":" }
{ print $2 }
END { print NR }

» Qutput:

gympie:~/Samples$ cat awkfilel
alex:delis

mike:hatzopoulos
dimitris:achlioptas
elias:koutsoupias
alex:eleftheriadis
gympie:~/Samples$ awk -f awkl awkfilel
delis

hatzopoulos

achlioptas

koutsoupias

eleftheriadis

5

gympie:~/Samples$

Regular Expressions (some initial material)

> /simth/
= find all lines that contains the string “smith”

» /[Aalho| [Ww]einberger| [Kk]ernigham/

= find all lines containing the strings “Aho’ or “Weinberger’

or "Kernighham" (starting either with lower or upper case).

o | : alternative
© + : one or more
© 7 zero or one

[a-2zA-Z0-9] : matches any of the letters or digits

<o

» /\/.*\// : = matches any set of characters enclosed
between two slashes.

» $1~/[jJ]lohny/ or $1!~/[jI]ohny/
= matches (or not!) all records whose first field in Johny or
Johny.

Relational Expressions: <, <=, ==, 1 =, >=, >

> ’$2 > $1 + 100°
= selects lines whose records comply with the condition.
> ’NF%2 == 0’
= project lines with even number of records.
> °$1 >= "kitsos"’
= display all lines whose first parameter is alphanumerically
greater or equal to "kitsos".
> 281 > $2°
= similarly as above but arithmetic comparison.

Combinations of Patterns:
> || (OR), && (AND) and ! (not).

» Expressions evaluated left-to-right

> Example: ($1 >= "s") && ($1 < "t")
& ($1 !="smith")

Pattern Ranges:

» ’/start/,/stop/’ : prints all lines that contain string
start or stop.

Built-in Functions

v

{print (length($0)),$0 } OR {print length,$0}

sqrt, log (base e), exp, int, cos(x), sin(x),
srand(x), atan2(y,x)

substr(s,m,n): produces the string s that starts at position
m and is at most n characters.

index(s1,s2): return the position in which s2 starts in the
string s1.

x=sprintf ("%8.3f %104 \n", $1, $2);
= sets string x to values produced by $1 and $2.

Variables, Expressions and Assignments

e awk uses int/char variables based on context.

>

>

v

v

x=1

x=’smith’

x="3"+"4" (x is set to 7)

variable are set in the BEGIN section of the code but by
default, are initialized anywhere to NULL (or implicitly to zero)
{ s1 +=8$1 ; s2 += $2 }

END { print s1, s2 }

if $1 and $2 are floats, s1, s2, also function as floats.

32

Regular Expressions and Metacharacters

» Regular-expression Metacharacters are:

\»

/\s $, [,]: |’ (,), *, +, ?

» A basic regular expression (BRE) is:

| 4

>

vV vy vy VvVYyy

a non-metacharacter matches itself such as A.

an escape character that matches a special symbol. \t (tab),

\b (backspace), \n (newline) etc.

a quoted metacharacter (matching itself): * matches the
star symbol.

N matches the beginning of a string.

$ matches the end of a string.

. matches any single character.

a character class [ABC] matches a single A, B, or C.
character classes abbreviations [A-Za-z| matches any single
character.

a complementary class of characters [*0-9] matches any
character except a digit

(what would the pattern /" [*0-9]1/ match?)

33

More Complex Regular Expressions using BREs

o Operators that can combine BREs (see below A, B, r) into
larger regular expressions:
A|B matches A or B (alternation)

AB A followed by B (concatenation)

A* zero or more As (closure)

A+ at least one A or more (positive closure)

A7 matches the null string or A (zero or one)

(r) matches the same string as r (parentheses)

34

Examples:

>

/" [0-91+8/

matches any input lines that consists of only digits.

/M [+-1700-91+[.17[0-9]x$/

matches a decimal number with an optional sign and optional
fraction.

/" [A-Za-z]|" [A-Za-z] [0-9]$/

a letter or a letter followed by a digit.

/" [A-Za-z] [0-9]7$/

a letter or a letter followed by a digit.

/N\/ . *\//

matches any set of characters enclosed between two slashes
$1~/[jJ]ohny/

matches all records whose first field is Johny or johny
$1!~/[jJI]ohny/

matches all records whose first field is not Johny or johny.

Dealing with Field Values

gympie:~/Samples$ cat awk2
{ if ($2> 1000)
$2 = "too big";
print;
}
gympie:~/Samples$

gympie:~/Samples$ awk -f awk2 testb

ddd 100
eee too big
rrr 99
f£ff 899
f11 too big
£2 992

gympie:~/Samples$

36/1

Splitting a string into its Elements using an array

e The function split() helps separate a string into a number of token
(each token being part of the resulting array).

BEGIN{ sep= ";" }
{ n = split ($0, myarray, sep); }
END {

print "the string is:"$0;
print "the number of tokens is="n;
print "The tokens are:"
for (i=1;i<=n;i++)
print myarrayl[il;

}

gympie:~/Samples$ cat data3
alexis;delis;apostolos;nikolaos
gympie:~/Samples$ awk -f awk3 data3
the string is:alexis;delis;apostolos;nikolaos
the number of tokens is=4

The tokens are:

alexis

delis

apostolos

nikolaos

gympie:~/Samples$

Arrays

> Feature: Arrays are not declared - they are simply used!
» ’X[NR]=$0" assigns current line to the NR element of array X
» Arrays can be used to collect statistics:

gympie:~/Samples$ awk -f awk4 texth

Apple Occurrences = 8
Orange Occurrences = 5
Grape Occurrences = 4

gympie:~/Samples$

38/1

Control Flow Statements

>

vV v v .Y

vVvy VvVYy

{ statements }
if (expression) statement
if (expression) statementl else statement2
while (expression) statement
for (expressionl; expression2; expression3)
statement
for (var in array) statement
do statement while (expression)
break // immediately leave innermost enclosing while, for or do
continue //start next iteration of innermost
enclosing while, for or do

> next //start next iteration of main input loop

> exit

> exit expression //return expression value as program status

39

Example with while

gympie:~/Samples$ cat awkb
{ i=1
while (i <= NF) {

print $i;
i++;
}

}

gympie:~/Samples$

gympie:~/Samples$ cat data4d

mitsos kitsos mpellos

alexis mitsos apostolos nikolaos
aggeliki ourania eleftheria mitsos
gympie:~/Samples$ awk -f awk5 data4
mitsos

kitsos

mpellos

alexis

mitsos

apostolos

nikolaos

aggeliki

ourania

eleftheria

mitsos

gympie:”/Samples$

40

Similar effect with for-loop

gympie:~/Samples$ cat awk6

{ for (i=1; i<=NF; i++)
print $i;

}

gympie:~/Samples$

gympie:~/Samples$ awk -f awk6 datad
mitsos

kitsos

mpellos

alexis

mitsos

apostolos
nikolaos

aggeliki

ourania
eleftheria

mitsos
gympie:~/Samples$

41

Population Table

Asia

Asia

Asia

Asia

Asia
Europe
Europe
N.America
N.America
S.America
S.America

Indonesia
Japan
India
PRChina
Russia
Germany
UKingdom
Mexico
Canada
Brazil
Chile

376
154
1267
3705
6567
178

743
3852
3286
112

42/1

Outcome

gympie:~/Samples$ awk -f

awkgeo continents

COUNTRY AREA POP CONTINENT
Indonesia 376 230 Asia
Japan 154 160 Asia
India 1267 1024 Asia
PRChina 3705 1532 Asia
Russia 6567 175 Asia
Germany 178 81 Europe
UKingdom 120 65 Europe
Mexico 743 130 N. America
Canada 3852 41 N.America
Brazil 3286 150 S.America
Chile 112 8 S.America
TOTAL: in 20360 km~2 3596 mil people live

gympie:~/Samples$

Computing and Graphing Deciles - User-defined Functions

input: numbers from O to 100 - one at a line
output: decile population graphed

{ x[int($1/10)1++ ; }

END {
for (i=0; i<10; i++)
printf ("%2d - %2d: %3d %s\n",
10%i, 10*i+9, x[i], rep(x[il,"*"));
printf ("100: %#3d %s\n",x[10], rep(x[10],"*"));
}

#returns string of n s’s
function rep(n,s) {
t= uu;
while (n-- > 0)
t =t s
return t

}

44 /1

Outcome (deciles)

gympie:~/src-set003$ awk -f awk.deciles data6
9:
19
29:
39:
49:
59:
69:
79:
89:
99:

0
10
20
30
40
50
60
70
80
90

100:
gympie:~/src-set003$

3
3
5
6
12
14
14
12
6
5
2

% % *k

* %k *x

% % % % %

%k % %k % %k k

% %k %k %k %k %k %k %k %k %k % k

%k %k %k %k %k %k %k %k %k %k %k %k *k %
%k %k %k %k %k %k 5k %k %k % %k *k X
% %k 3k >k 3k 3k %k 3k %k %k % k

% % %k % %k k

% % %k % %

* %

45/1

User-defined Functions

» Function definitions may occur anywhere a pattern-action
statement can.

» Functions often are listed at the end of an awk script and are
separated by either newlines or semicolons.

» They contain a return expression statement that returns
control along with the value of the expression.

> Example:

function mymax(a, b) {
return a > b 7 a : b

}

» Recursive invocation:

{ print mymax($1, mymax($2,$3)) 1}

46/1

Function Name

Built-in String Functions

Description

gsub(r,s)
gsub(r,s,t)
index(s,t)

length(s)

match(s,r)
split(s,a)
split(s,a,fs)
sprintf (ftm,exprlst)
sub(r,s)

sub(r,s,t)

substr(s,p)

substitute s for r globally in $0;

return number of substitutions made

substitute s for r globally in string t;

return number of substitutions made

return first position of t in s; otherwise zero
return number of characters in s

test whether s contains a substring matched by r;
return index or 0.

split s into array a on FS; return number of fields
as above — £s is the defined field seperator

format an expression list

substitute s for the leftmost longest substring of $0
matched by r; return number of subs made.
substitute s for the leftmost longest substring of t
matched by r; return number of subs made.
return suffix of s starting at position p

47

