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1 Diffie-Hellman Key Exchange Protocol

In 1976, Whitefield Diffie and Martin Hellman published their paper New Directions in Cryptogra-
phy, revolutionizing modern cryptography. Prior to this publication, all significant cryptographic
techniques relied on some pre-agreed upon key. In their paper however, Diffie and Hellman proposed
a protocol that enabled two parties, having no prior communication, to jointly establish a secret key
over an insecure channel. Here we will introduce the concrete key exchange protocol and examine
its security in the presence of both passive and active adversaries.

1.1 The Diffie-Hellman Protocol

Figure 1 illustrates the concrete Diffie-Hellman key exchange protocol. To begin, two parties, Alice
and Bob, choose the values xA and xB respectively. These can be determined using the coin flipping
techniques discussed in Section ??. Neither party discloses their value to the other.

Common Input: 〈p, m, g〉
Alice Bob

xA
r←− Zm xB

r←− Zm

yA ← gxA mod p yB ← gxB mod p
yA

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
yB

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
kA ← yxA

B mod p kB ← yxB
A mod p

Output kA Output kB

Figure 1: The Diffie-Hellman key exchange protocol, where p is a large prime and g is a generator
of the group Z∗p of order m.

The notation x r←− Zm means that x is sampled according to the uniform over Zm. Observe that
yxAB = yxBA mod p, so kA = kB and both parties compute the same value in Z∗p.

In Section ?? we mentioned our interest in the goals, designs, primitives, models, and proofs
of cryptography. The goal of a key exchange protocol is to establish a key in the presence of an
eavesdropper. Our design of interest is the Diffie-Hellman protocol, whose primitives rely on the
protocols for sampling random elements. Continuing with this theme, we now naturally want to know
how to model the security of the key exchange protocol and investigate the underlying assumptions
required for the Diffie-Hellman key exchange to be provably secure.

1.2 Related Number-Theoretical Problems

Here we introduce several potentially hard number theory problems that allow the Diffie-Hellman
protocol to reduce. In the following sections, we examine the proper security definition and reduce
the security of the protocol to an appropriate number-theoretical assumption.

Definition 1.2.1. For a suitable cyclic group G = 〈g〉, take y ∈ G of order m. The discrete
logarithm problem (DL) is to find an integer x ∈ Zm such that gx = y.

We have no proof that this problem is hard. To the best of our knowledge, the number of steps
necessary to find a solution is super-polynomial in the size of the group element, assuming the group
is chosen appropriately.
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Definition 1.2.2. Given a cyclic group G = 〈g〉 of order m, ga and gb where a, b
r←− Zm, the

computational Diffie-Hellman problem (CDH) is to compute gab.
An adversary attacking the Diffie-Hellman protocol does not specifically care about DL. His

objective is to solve CDH. It is clear however, that if an adversary could solve DL and derive x from
gx, he could solve CDH with a single exponentiation. This therefore establishes a reduction between
the discrete logarithm problem and the computational Diffie-Hellman problem: CDH ≤ DL.

Lemma 1.2.1. The computational Diffie-Hellman problem is no harder than the discrete logarithm
problem.

It is unknown if the converse holds.

Definition 1.2.3. The decisional Diffie-Hellman problem (DDH) is as follows: given a group
G = 〈g〉 of order m and ga, gb, gc, where a, b, c r←− Zm, decide if c = ab or c r←− Zm.

This is a very weak problem since it only asks an adversary to determine whether or not c is
randomly generated. If an adversary could solve CDH, he could solve DDH by computing gab and
comparing it to gc; thus, DDH ≤ CDH.

Lemma 1.2.2. The decisional Diffie-Hellman problem is no harder than the computational Diffie-
Hellman problem.

Moreover, this last problem is no harder than the discrete logarithm problem.
So far we have been conveniently vague in our choice of a group; in fact, we have carefully

chosen our parameters to ensure that the underlying problems are indeed hard. The next example
demonstrates this by showing that the discrete logarithm problem is solvable in polynomial-time
when we choose an inappropriate group.

Example. Consider Z∗p for a large prime p. By a theorem of Euler, Z∗p has order p − 1. For this
example, consider the case where p− 1 factors into small primes qi: p− 1 = q1q2 · · · qs. Then there
is a subgroup Gi of order qi.1 Define the group homomorphism fi : Z∗p −→ Gi by x 7→ xp−1/qi and
let gi = gp−1/qi for some fixed generator g of Z∗p. Note that gi has order qi.

Take some y = gx mod p. Raising both sides to the p−1/qi power, we have yp−1/qi ≡ (gp−1/qi)x ≡
gx mod qi
i mod p where 1 ≤ i ≤ s. Because qi is a small prime, we can use brute force to solve

the discrete logarithm problem; that is, we can perform an exhaustive search to find the set of
congruences xi ≡ x mod qi. We can then compute x using the Chinese Remainder Theorem.

To avoid this type of attack, we can select Z∗p such that it contains a large subgroup. For example,
if p = 2q + 1 and q is prime, there is a subgroup of size q, called the quadratic residue of Z∗p.

Definition 1.2.4. The quadratic residue of G is the subgroup of all y ∈ G such that there is an
x ∈ G with x2 = y.

When G = Z∗n, we write the quadratic residue as QR(n). In the particular case G = Z∗p for a
prime p, QR(p) = 〈g2〉 for a generator g of G. QR(p) is exactly half the elements of G. This is the
largest proper subgroup of Z∗p.

The mapping x 7→ x
p−1
2 is particularly useful in this context. It is easy to see that the image of

the map is {1,−1}.
We prove the following useful result regarding quadratic residues.

Lemma 1.2.3. Consider some a ∈ Z. It holds that a
p−1
2 = 1 mod p if and only if a ∈ QR(p).

Proof. For the forward direction, suppose that a
p−1
2 = 1 mod p. Let y = a

p+1
4 mod p. Then we have

y2 = a
p+1
2 = a

p−1
2 · a = a mod p

1The existence of such a subgroup is guaranteed by Cauchy’s Theorem.
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Given that y2 = a mod p we obtain a ∈ QR(p).
For the other direction, if a ∈ QR(p), i.e., we have y2 = a mod p we have that a

p−1
2 = yp−1 =

1 mod p.

Observe that the proof of the lemma provides a way to construct the roots of a quadratic residue
modulo p. Indeed, given a the two roots of a modulo p are calculated as ±a

p+1
4 mod p.

1.3 Group Generators

Definition 1.3.1. A group generator GGen is a probabilistic algorithm that produces a description
of a finite group G when given a length λ. At a minimum, the description contains a group element,
the group operation, and a group membership test.

Example. Take Zp to be our group for some prime p of length λ. GGen returns an element g of
order m, where m is some function of λ and p. The group operation is multiplication modulo p, and
if an integer is between 0 and p− 1, it passes the group membership test.

1.4 The Decisional Diffie-Hellman Assumption

Informally, DDH assumes that it is difficult to distinguish between tuples of the form 〈g, ga, gb, gab〉
and 〈g, ga, gb, gc〉, where g belongs to a multiplicative group and a, b, and c are randomly chosen
exponents.

Definition 1.4.1. The group generator GGen is said to satisfy the decisional Diffie-Hellman as-
sumption provided the following probability ensembles {Dλ}λ∈N and {Rλ}λ∈N are computationally
indistinguishable:

Dλ :=
{
〈G,m, g〉 ← GGen(1λ); a, b r←− Zm : (G,m, ga, gb, gab)

}
Rλ :=

{
〈G,m, g〉 ← GGen(1λ); a, b, c r←− Zm : (G,m, ga, gb, gc)

}

where m = ord(g).
Equivalently, if A is a statistical test bounded by probabilistic polynomial-time (PPT), it holds

that

AdvA(λ) =
∣∣∣∣Prob
γ←Dλ

[A(γ) = 1]− Prob
γ←Rλ

[A(γ) = 1]
∣∣∣∣

is negligible in λ. AdvA is called the advantage of A.

1.5 Modeling Security against Passive Adversaries

When defining security, it is important to keep in mind the anticipated adversary. In this section,
we focus on passive adversaries. A passive adversary eavesdrops on the communication channel and
attempts to extract information about the key without interfering. Before we examine the security
definitions, we establish some common notation.

Let transA,B(1λ) be the distribution of the transcripts of the interactions between two players A
and B. In the Diffie-Hellman protocol, the transcript includes the common input and any exchange
of information. The common key produced at the end of a transcript τ is denoted key(τ). Finally,
a predicate V is an algorithm whose only outputs are 1 and 0 (True and False).
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Security Model 1

The most obvious security model for any key exchange defines the protocol to be secure if an
adversary cannot obtain any part of the key. More specifically, for all PPT adversaries2 A,

Prob
τ←transA,B(1λ)

[A(τ) = key(τ)]

is a negligible function in λ. Under this model, it is plausible for an adversary to obtain all but a
small amount of information about the key; it is therefore inadequate. The number of bits protected
by this model can be as few as log2(λ).

Security Model 2

For all PPT adversaries A and predicates V , we define a key exchange to be secure if

Prob
τ←transA,B(1λ)

[A(τ) = V (key(τ))] ≤ 1
2

+ negl(λ)

for some negligible function negl(λ). This model is ideal in that, if our protocol is secure, an
adversary cannot identify any information about the key space. Unfortunately, this is also unrealistic.

Assume this model does define security and there is a PPT adversary A capable of breaking the
key exchange protocol. Then there is a predicate V such that

Prob
τ←transA,B(1λ)

[A(τ) = V (key(τ))] ≥ 1
2

+ α,

where α is nonnegligible. Let B be a DDH distinguisher such that, given γ = 〈G,m, g, a, b, c〉, B
uses γ to form a transcript τγ = 〈G,m, g, a, b〉. B then simulates A on τγ to obtain its output S. B
will return 1 if V (c) = S and 0 if V (c) 6= S. When c is a random element of the cyclic group G, let
Prob[V (c) = 1] = δ.

1. If γ ← Dλ, then c = key(τγ) and Prob
γ←Dλ

[B(γ) = 1] ≥ 1
2

+ α.

2. If γ ← Rλ, then c
r←− G and

Prob
γ←Rλ

[B(γ) = 1]

= Prob
〈G,m,g,a,b,c〉←Rλ

[A(G,m, g, a, b) = V (c)]

= Prob[A(τγ) = V (c)]

= Prob[A(τγ) = V (c) | V (c) = 1] · Prob[V (c) = 1] + . . .

. . . + Prob[A(τγ) = V (c) | V (c) = 0] · Prob[V (c) = 0]

= Prob[A(τγ) = 1] · Prob[V (c) = 1] + Prob[A(τγ) = 0] · Prob[V (c) = 0]

2We say adversary to mean any PPT algorithm.
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In the special case where δ = 1/2, we see

Prob
γ←Rλ

[B(γ) = 1] = (Prob[A(τγ) = 1] + Prob[A(τγ) = 0])
1
2

=
1
2
.

Looking at the DDH assumption,

AdvB ≥
(

1
2

+ α

)
− 1

2
= α.

Because α is nonnegligible, B can break the DDH assumption when it has A and δ = 1/2. When
δ 6= 1/2 however, it is easy to find a V that the adversary can guess with probability better than
1/2 (e.g., V can be the “or” of the first two bits of c). As a result, all schemes fail under this
unreasonably strong model.

Security Model 3

Finally, we explore a model under which the security of the key exchange protocol can be proven.
This will define passive security.

We have to acknowledge that an adversary can distinguish some part of the key, so let

Prob
key←Key(1λ)

[V (key) = 1] = δ,

where Key(1λ) is the key space probability distribution for the protocol with parameter 1λ (i.e.,
the random variable key(transA,B(1λ)). We now define the key exchange protocol is secure provided
that

Prob
τ←transA,B(1λ)

[A(τ) = V (key(τ))] ≤ max {δ, 1− δ}+ negl(λ).

Assume

Prob
γ←Dλ

[B(γ) = 1] ≥ max {δ, 1− δ}+ α

for nonnegligible α. Using this, we can show Prob
γ←Rλ

[B(γ) = 1] ≤ max {δ, 1− δ}:

Prob
γ←Rλ

[B(γ) = 1]

= Prob[A(τγ) = 1] · Prob[V (c) = 1] + Prob[A(τγ) = 0] · Prob[V (c) = 0]

= Prob[A(τγ) = 1]δ + Prob[A(τγ) = 0](1− δ)

≤ Prob[A(τγ) = 1](max {δ, 1− δ}) + Prob[A(τγ) = 0](max {δ, 1− δ})

= (Prob[A(τγ) = 1] + Prob[A(τγ) = 0]) max {δ, 1− δ}

= max {δ, 1− δ} .

Based on the above, we have proved the following theorem.

Theorem 1.5.1. If the DDH assumption is true, the Diffie-Hellman key exchange protocol is secure
against passive adversaries under Security Model 3.
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1.6 Suitable Group Generators for the DDH Assumption

In this section, we examine the DDH assumption over two groups.
First consider 〈g〉 = Z∗p for a large prime p. This group is potentially a poor choice; in fact, we

can construct a PPT algorithm A as in Figure 2 that breaks the DDH assumption.

Algorithm A(p, m, g, a, b, c)

if (am/2 = 1 ∨ bm/2 = 1) ∧ (cm/2 = 1)
then output 1
else output 0

Figure 2: A PPT algorithm that breaks the DDH assumption when 〈g〉 = Z∗p, a, b, c ∈ 〈g〉, and
m = ord(g) is even.

By Euler’s Theorem, Z∗p has order m = p− 1. Since p is odd for all primes greater than 2, m is
even for any nontrivial group.

Let γ = 〈p,m, g, a, b, c〉 where a = gx, b = gy, and c = gxy. If x is even, write x = 2k for some
k ∈ Z. Then

am/2 = (gx)m/2 = gkm = 1. If x is odd, write x = 2j + 1 for some j ∈ Z. Then am/2 =
(g2j+1)m/2 = gm/2 = −1.

The same result holds for gy depending on if y is even or odd. The parity of xy clearly depends
on the parity of x and y, so cm/2 = (gxy)m/2 = 1 as long as one of x or y is even. Thus,

Prob
γ←D

[A(γ) = 1] =
3
4
.

If instead γ ← R, so c = gz for a randomly chosen z, there is an equal probability that z will be
even or odd. So

Prob
γ←R

[A(γ) = 1] =
3
8
.

Based on this information,

AdvA =
3
4
− 3

8
=

3
8
.

In an ideal situation, both probabilities are close to 1/2, so their difference is negligible. Since
AdvA = 3/8, A can distinguish between the two tuples. It is therefore ineffective to build a key
exchange over Z∗p.

One group we can build a key exchange over is the quadratic residue QR(p) of Z∗p. For example,
if p = 2q + 1 for a prime q, QR(p) has order q. To the best of our knowledge, this is an adequate
group. Recall that QR(p) = 〈g2〉 for a generator g of Z∗p, so QR(p) is a cyclic group of odd order.

1.7 Modified Diffie-Hellman Protocol

Under the DDH assumption, the generated key is a random element from a group whose structure
we typically know very little about. This becomes problematic when using the key in cryptographic
applications. Here we look at how to extract a random integer from a random group element. This
is useful in that we do understand the structure of integers.

One approach is to define a predicate V such that Probx←〈g〉[V (x) = 1] = 1/2. V then defines
one unpredictable bit from the adversary’s point of view. It is unclear however, how to find even
one such predicate. One must completely understand the structure of the group in oder to discern
a random bit. Instead, take p = 2m+ 1 and define the map
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H : Zm −→ QR(p)

by x 7→ (x + 1)2 mod p. This is a bijection. To show it is injective, assume H(x) = H(y) for
some x, y ∈ Zm. Then

(x+1)2 ≡ (y + 1)2 mod p

(x+1)2 − (y + 1)2 ≡ 0 mod p

x2 + 2x− 2y − y2 ≡ 0 mod p

(x-y)(x+y+2) ≡ 0 mod p.

So either x − y ≡ 0 mod p or x + y + 2 ≡ 0 mod p. Since x, y ∈ Zm, we have 0 ≤ x, y ≤ m − 1.
Then

x+y+2 ≤ 2(m− 1) + 2 = 2m

¡2m+1 ≡ 0 mod p.

Thus x + y + 2 6≡ 0 mod p, which leaves only x − y ≡ 0 mod p, or equivalently x ≡ y mod p.
Since x, y ∈ Zm ⊂ Zp, it holds that x = y, showing H is injective. H is surjective by the following
pre-image of any y ∈ QR(p),

H−1(y) ={
yp+1/4 mod p− 1, if yp+1/4 mod p ∈ {1, 2, . . . ,m}
p− yp+1/4 mod p− 1, otherwise.

Using this, we can modify the key exchange protocol as is seen in Figure 3.
Under the modified Diffie-Hellman key exchange protocol, we can now use the bijection H to

pass from a random element from a group whose structure we do not fully understand to a random
integer modulo m.

Exercise: We have shown how to derive a random element from Zm. This enables us to access
cryptographic applications requiring a random integer modulo m as a key. Most applications how-
ever, necessitate that the key be a bit string. Determine how to extract the longest possible bit
string from an integer modulo m.

It is interesting to note that in a λ-bit key, the probability that the least significant bit is 1 is
very close to 1/2, while the probability that the most significant bit is 1 can be far from 1/2.
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Common Input: 〈p, m, g〉
Alice Bob

xA
r←− Zm xB

r←− Zm

yA ← gxA mod p yB ← gxB mod p
yA

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
yB

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
kA ← H−1(yxA

B mod p) kB ← H−1(yxB
A mod p)

Output kA Output kB

Figure 3: The modified Diffie-Hellman key exchange protocol where p is a large prime, g generates
the group QR(p) of order m, and H : Zm −→ QR(p) by x 7→ (x+ 1)2 mod p.

1.8 Stronger Adversaries

While the Diffie-Hellman key exchange protocol, as given in Section 1.7, is secure against an eaves-
dropper, it does not remain so against a more active adversary. In Figure 3, we show the man-in-
the-middle attack in which the adversary, Malorie, participates in the exchange of information
between Alice and Bob. The adversary is now the communication channel itself. Malorie can inject
messages into the conversation and impersonate the identity of each party to the other. In doing so,
Malorie creates two keys, one to share with Alice and one to share with Bob.

This attack exemplifies the need to authenticate and verify authentication on each exchange.
Next we introduce a digital signature, which is an important cryptographic primitive, essential in
defending against tactics like the man-in-the-middle attack.

Common Input: 〈p, m, g〉

Alice Malorie Bob

xA
r←− Zm xM , xM′

r←− Zm xB
r←− Zm

yA ← gxA mod p yM ← gxM mod p yB ← gxB mod p
yM′ ← gxM′ mod p

yA
−−−−−→

yM′
−−−−−→

yM
←−−−−−

yB
←−−−−−

kA ← H−1(yxA
M mod p) kM ← H−1(yxM

A mod p) kB ← H−1(yxB
M′ mod p)

kM′ ← H−1(y
xM′
B mod p)

Output kA Output kM , kM′ Output kB

Figure 4: The “man-in-the-middle” attack on the Diffie-Hellman key exchange protocol.

Notes by S. Pehlivanoglu, J. Todd, & H.S. Zhou
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