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Abstract

The k-server problem is one of the most fundamental online problems. The problem
is to schedule k mobile servers to visit a sequence of points in a metric space with
minimum total mileage. The k-server conjecture of Manasse, McGeogh, and Sleator
states that there exists a k-competitive online algorithm. The conjecture has been
open for over 15 years. The top candidate online algorithm for settling this conjec-
ture is the Work Function Algorithm (wfa) which was shown to have competitive
ratio at most 2k − 1. In this paper we lend support to the conjecture that wfa is
in fact k-competitive by proving that it achieves this ratio in several special metric
spaces: the line, the star, and all metric spaces with k + 2 points.

1 Introduction

The k-server problem [12] together with its special case, the paging problem, is
probably the most influential online problem. The famous k-server conjecture
has been open for over 15 years. Yet, the problem itself is easy to state: There
are k servers that can move in a metric space. Their purpose is to service
a sequence of requests. A request is simply a point of the metric space and
servicing it entails moving a server to the requested point. The objective is to
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minimize the total distance traveled by all servers. In the online version of the
problem, the requests are presented one-by-one. The notorious k-server con-
jecture states that there is an online algorithm that has competitive ratio k on
any metric space. The top candidate online algorithm for settling the k-server
conjecture is the Work Function Algorithm (wfa) which was shown [8,10,9]
to have competitive ratio at most 2k − 1. The only two cases where wfa was
previously known to be k-competitive are the case of k = 2 [6] and the special
case where k = 3 and the metric is `2

1 [1].

In this paper we prove three results that support the conjecture that the
wfa is k-competitive. The first and second result establish that the wfa is k-
competitive for the line and for the “symmetric weighted cache” (represented
by weighted star instances). It was known [4,5] that the k-server conjecture
holds for these instances, but the algorithm employed was not the wfa, but
the elegant Double Coverage algorithm, which has no natural extension for
non-tree like metric spaces. Our third result is a new proof of the wfa is k-
competitive for metric spaces of k + 2 points. This was first shown in [8,11]
using an involved potential. Our proof here uses a simpler potential.

There is an interesting underlying connection between the three results of
this work. In all cases, the number of minimizers (to be defined later) is at
most k + 1. Although this fact by itself cannot guarantee that the wfa is
k-competitive, it is at the heart of our proofs.

2 Preliminaries

We summarize here our notation, conventions and definitions. For a more
thorough discussion that includes the history of the problem see [10,3]. Let
ρ = r1 . . . rn be a request sequence. The work function wi(X) is defined for
each multiset X of k points (any such multiset is called a configuration).
The value wi(X) is the optimal cost for servicing r1 . . . ri starting at some
fixed initial configuration A0 and ending at the configuration X. The Work
Function Algorithm (wfa) works as follows: Let Ai be its configuration just
before servicing request ri+1. To service ri+1, it moves to configuration Ai+1

that contains ri+1 and minimizes wi+1(Ai+1) + d(Ai, Ai+1).

Chrobak and Larmore [6] introduced the concept of extended cost of the wfa
(which they call pseudocost): The extended cost for request ri+1 is equal to
the maximum increase of the work function: maxX{wi+1(X)− wi(X)}. They
showed that the extended cost is greater than or equal to the online plus the
off-line cost (see also [10]). Consequently, to prove that the Work Function
Algorithm is c-competitive, it suffices to bound the total extended cost by
(c + 1)opt(ρ) + I, where opt(ρ) is the optimal (off-line) cost to service ρ and
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I a constant that is independent of the request sequence.

For general metric spaces, the best known upper bound on the competitive
ratio for the k-server problem is 2k−1 [8,10] (see also [9] for a simpler proof),
which improved the previous exponential (in k) bounds [7,2]. The algorithm
employed in [8,10] to establish the 2k − 1 bound is the wfa. The proof is
based on some fundamental properties (Quasiconvexity and Duality) of work
functions. Here we will make use of the Duality property which characterizes
the configurations that achieve the maximum maxX{wi+1(X)− wi(X)}.

Lemma 1 (Duality Lemma [8,10]) Let X be a configuration that mini-
mizes

wi(X)−
∑
x∈X

d(ri+1, x).

Then X minimizes also

wi+1(X)−
∑
x∈X

d(ri+1, x)

and maximizes the extended cost

max
X

{wi+1(X)− wi(X)}.

A configuration X that minimizes wi(X)−∑
x∈X d(p, x) will be called a min-

imizer of p with respect to wi.

3 The wfa for the line

In this section, we will show that the wfa is k-competitive in the line. To
simplify the presentation, we assume that all requests are in a fixed interval
[a, b]. Let us denote the configuration that contains m copies of a and k −m
copies of b as ambk−m. We shall call these configurations extreme. Observe that
there are exactly k+1 extreme configurations that correspond to m = 0, . . . , k.
The next lemma shows that we can generally assume that minimizers are
extreme configurations.

Lemma 2 Assume that all initial points and all requests are in the interval
[a, b]. For any point p ∈ [a, b] and any work function wi, there is m ∈ {0, . . . , k}
such that ambk−m is a minimizer of p with respect to wi.

PROOF. Clearly, there is a minimizer X of p with respect to wi that contains
only requested or initial points. This minimizer contains only points in the
interval [a, b]. Assume that there is a point x ∈ X in the interval [a, p]. What
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will happen if we slide x to a? The work function wi(X) can increase by at
most d(a, x) while the distance of x from p will increase by exactly d(a, x).
Therefore X − x + a is also a minimizer of p. More precisely,

wi(X − x + a)−
∑

y∈X−x+a

d(p, y) ≤ (wi(X) + d(a, x))− (
∑
y∈X

d(p, y) + d(a, x))

= wi(X)−
∑
y∈X

d(p, y)

Similarly, we can slide all points of X to either a or b. If X has m points in
[a, p], then ambk−m is a minimizer of p. 2

Theorem 3 The wfa is k-competitive in the line.

PROOF. We first show the somewhat simpler result that the wfa is k-
competitive in an interval [a, b] and then extend it to the infinite line.

We define a potential Φi to be the sum of wi on all extreme configurations:

Φi =
k∑

j=0

wi(a
jbk−j).

We will show that Φn is an upper bound (within a constant) of the extended
cost. By Lemma 2, there is m such that ambk−m is a minimizer of ri+1 with
respect to wi. The increase of the potential, Φi+1−Φi, is equal to the increase
of the work function on all extreme configurations. Since the work function
increases monotonically, i.e., wi+1(X) ≥ wi(X), the increase Φi+1 − Φi of the
potential is at least wi+1(a

mbk−m) − wi(a
mbk−m), which is the extended cost

to service ri+1. It follows, by telescoping, that the total extended cost, i.e., the
sum of the extended cost for all requests, is bounded from above by Φn −Φ0.

For a fixed interval [a, b], the values of a work function cannot differ too much:
for any work function w and any configurations X and Y : w(X) − w(Y ) ≤
d(X, Y ) ≤ kd(a, b). This allows us to conclude that Φn is equal (within a
constant) to (k + 1)opt(ρn) = (k + 1) minX{w(X)} and that Φ0 is constant.
The total extended cost is therefore bounded above by (k + 1)opt(ρn) + I
which implies the k-competitiveness of wfa.

We now turn to the case of the infinite line. The calculations of the previous
paragraph are not sufficient for this case. The reason is that the definition of
competitiveness requires that the term I in the expression (k + 1)opt(ρn) + I
is a constant independent of the request sequence. This is not the case when
I depends on the length of the interval [a, b]. We can again assume that all
requests are in an interval [a, b] where a is the leftmost request of ρn and b
is the rightmost one. But the interval [a, b] is no longer independent of the
request sequence.
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We now calculate the difference Φn − Φ0 more accurately and show that the
additive term I is independent of [a, b]. We first compute the initial potential

Φ0 =
∑k

j=0 w(ajbk−j) =
∑k

j=0 d(ajbk−j, A0). This is equal to k(k+1)
2

d(a, b) −
cl(A0), where cl(A0) is the sum of the distances between all pairs of points in
A0: cl(A0) = 1

2

∑
a1,a2∈A0

d(a1, a2). Similarly, if An is the final configuration of

the optimal off-line algorithm, then Φn =
∑k

j=0 w(ajbk−j) ≤ (k + 1)wn(An) +∑k
j=0 d(ajbk−j, An) = (k + 1)wn(An) + k(k+1)

2
d(a, b) − cl(An). The only term

that depends on [a, b] is k(k+1)
2

d(a, b) and appears in both Φn+1 and Φ0. This
is exactly what we want. We can now calculate Φn − Φ0 ≤ (k + 1)wn(An) −
cl(An)+cl(A0) ≤ (k+1)wn(An)+cl(A0). Therefore the extended cost —which
is bounded above by Φn−Φ0— is at most (k +1)opt(ρn)+ I and the additive
term is indeed a constant that depends only on the initial configuration and
not on the request sequence. 2

4 The wfa for weighted cache

It is well known that the problem of accessing pages in a weighted cache can
be modeled by the k-server problem on weighted star instances (trees of depth
1). The leaves of the star represent pages and the leaves where servers reside
correspond to the pages in the cache. The weight on the edge from the leaf
to the center is half of the cost for fetching the corresponding page into the
cache (since the server has to pay this cost twice per passing thru that leaf).
The center of the star is denoted c. We show that wfa is k-competitive on
such instances.

Recall that a minimizer of x is a configuration A that minimizes mi(A, x) =
wi(A) − ∑

a∈A d(a, x). It is easy to see that there is always a minimizer that
does not include x (otherwise we can slide it away from x as in the case of the
line in the previous section). Define µi(A, x) as follows:

µi(A, x) =

wi(A)−∑
a∈A d(a, c)− d(c, x) if x /∈ A

wi(A)−∑
a∈A−x d(a, c) otherwise

Alternatively we can define µi(A, x) to be equal to mi(A, x) + (k − 1)d(c, x)
(it is trivial to check that the two definitions are equivalent). It follows that a
configuration A is a minimizer if and only if it minimizes µi(A, x).

Let the configuration of an adversary after request ri be Ui = {u1, . . . , uk}.
We define:

Φ(Ui, wi) =
k∑

l=1

min
A

µi(A, ul).

Assume that the adversary services the next request ri+1 using the server at
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uj. The new adversary configuration is Ui−uj +ri+1. The next lemma bounds
the change in Φ.

Lemma 4 For any configuration Ui, any uj ∈ Ui, and any ri+1

Φ(Ui − uj + ri+1, wi)− Φ(Ui, wi) ≥ −d(uj, ri+1).

PROOF. Let A be an arbitrary configuration that does not contain ri+1.
We first show that there exists a configuration A′ such that µi(A, ri+1) ≥
µi(A

′, uj)− d(uj, ri+1).

If uj /∈ A then let A′ = A. We have

µi(A, ri+1) = wi(A)−
∑
a∈A

d(a, c)− d(c, ri+1)

≥wi(A)−
∑
a∈A

d(a, c)− d(c, uj)− d(uj, ri+1)

= µi(A
′, uj)− d(uj, ri+1).

If uj ∈ A then let A′ = A− uj + ri+1. We have

µi(A, ri+1) = wi(A)−
∑
a∈A

d(a, c)− d(c, ri+1)

= wi(A)−
∑

a∈A−uj+rj+1

d(a, c)− d(c, uj)

≥wi(A− uj + ri+1)− d(uj, ri+1)−
∑

a∈A−uj+ri+1

d(a, c)− d(c, uj)

= µi(A
′, uj)− d(uj, ri+1).

It follows that

Φ(Ui−uj+ri+1, wi)−Φ(Ui, wi) = min
A

µi(A, ri+1)−min
A

µi(A, uj) ≥ −d(uj, ri+1).

2

Lemma 5 For any configuration Ui+1 that contains the last request ri+1 of
wi+1

Φ(Ui+1, wi+1)− Φ(Ui+1, wi) ≥ max
X

{wi+1(X)− wi(X)}.

PROOF. Let B be a minimizer of ri+1 with respect to wi that does not
contain ri+1. Then by the Duality Lemma (Lemma 1), B is also a minimizer
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of ri+1 with respect to wi+1. From the monotinicity property of work functions
we have:

µi+1(A, ul) ≥ µi(A, ul)

for all A and ul. It follows that

Φ(Ui+1, wi+1)− Φ(Ui+1, wi)≥min
A

µi+1(A, ri+1)−min
A

µi(A, ri+1)

= wi+1(B)−

∑
b∈B

d(b, c)

− d(c, ri+1)

−

wi(B)−

∑
b∈B

d(b, c)

− d(c, ri+1)


= wi+1(B)− wi(B)

The proof is complete, since by the Duality Lemma:

wi+1(B)− wi(B) = max
X

{wi+1(X)− wi(X)}.

2

We can now combine the two above lemmata to get the main result of this
section.

Theorem 6 The work function algorithm is k-competitive for the weighted
star.

PROOF.

Let w0, wn be the initial and final work functions, and U0, Un be the initial
and final adversary configurations respectively.

Let ext and opt denote the total extended cost and the optimal offline cost.

Combining Lemmas 4 and 5 we get that

Φ(Ui+1, wi+1)− Φ(Ui, wi) ≥ max
X

{wi+1(X)− wi(X)} − d(uj, u
′
j),

where u′j = ri+1. The distance d(uj, u
′
j) = d(Ui, Ui+1) is the cost of the adver-

sary to service ri+1.

Summing for all requests and assuming that the adversary moves optimally,
we get

Φ(Un, wn)− Φ(U0, w0) ≥ ext − opt.
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Since Φn = Φ(Un, wn) ≤ k · wn(Un), and Φ0 = Φ(U0, w0) = −cl(U0) (the sum
of the distances between all pairs of points in U0), we obtain

ext ≤ Φn − Φ0 + opt ≤ (k + 1) · opt + cl(U0).

The total extended cost is bounded above by k+1 times the optimal cost plus
a constant depending only on the initial configuration. We conclude that the
work function algorithm is k-competitive for weighted star metric spaces. 2

5 Metric spaces with k + 2 points

In this section, we show that the k-server conjecture holds for metric spaces of
k + 2 points. This result was first shown in [8,11], but we give a simpler proof
here. As in [8,11], instead of studying the k-server problem on k + 2 points, it
is simpler to consider the “dual” problem which is called the 2-evader problem.
In the 2-evader problem, 2 evaders occupy distinct points of a metric space
M of k + 2 points. The evaders respond to a sequence of ejections (requests)
which is simply a sequence of points. If an evader occupies the point of an
ejection, it has to move to some other point. The objective is to minimize the
total distance traveled by the 2 evaders.

The 2-evader problem is equivalent to the k-server problem: servers occupy the
points not occupied by evaders, and an ejection for the evaders is a request
for the servers. This equivalence allows the theory of the k-server problem
and in particular the notion of the extended cost and the Duality Lemma to
be transfered to the evader problem. See [11] for a more extensive discussion
of the evader problem and its equivalence to the k-server problem. The ex-
tended cost is again equal to the maximum increase of the work function. The
corresponding Duality Lemma is:

Lemma 7 (Duality Lemma for the 2-evader problem) Assume that {x, y}
minimizes the expression wi(x, y) + d(ri+1, x) + d(ri+1, y). Then {x, y} mini-
mizes also wi+1(x, y)+d(ri+1, x)+d(ri+1, y) and maximizes the extended cost:

max
x,y

{wi+1(x, y)− wi(x, y)}.

As in the k-server problem, a configuration {x, y} that minimizes wi(x, y) +
d(p, x) + d(p, y) is called a minimizer of p with respect to wi. Recall also that
for the k-server problem there is always a minimizer for the k-server problem
of a point x that does not contain x. Similarly, in the case of the 2-evader
problem, there is a minimizer of a point x that contains x. In particular, such
a minimizer of ri+1 is a configuration {ri+1, x} that minimizes wi(ri+1, x) +
d(ri+1, x).
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Using the Duality Lemma we are ready to prove the main theorem of this
section. We will make use of the following notational convenience: whenever
we write w(x, y), we implicitly mean that x and y are distinct.

Theorem 8 The wfa algorithm is k-competitive in every metric space of k+2
points.

PROOF. The argument again is based on a potential. We want to find a
potential Φi that “includes” a minimizer of ri+1. It is easy to see that the
potential Φ̂i =

∑
a minx{wi(a, x) + d(a, x)} includes a minimizer of ri+1 and

can be used to prove that the wfa algorithm is (k + 1)-competitive. This
follows from Φ̂i+1− Φ̂i ≥ minx{wi+1(ri+1, x)+d(ri+1, x)}−minx{wi(ri+1, x)+
d(ri+1, x)}; by the Duality Lemma, the last expression is equal to the extended
cost to service ri+1. Clearly, the total extended cost is Φ̂n − Φ̂0. Since Φ̂n is
within a constant from (k + 2)opt(ρ) and Φ̂0 is constant, it follows that the
wfa has competitive ratio at most k + 1.

How should we change Φ̂i to reduce the competitive ratio to k? Fix a configura-
tion {b1, b2} which minimizes w(x, y)+d(x, y). The crucial observation is that
{b1, b2} is a minimizer of both b1 and b2. Thus, the number of distinct minimiz-
ers is at most k+1. Equivalently, even if we subtract minx,y{wi(x, y)+d(x, y)}
from Φ̂i, the resulting expression still contains a minimizer for every point and
in particular of ri+1. This suggests the following potential:

Φi =
∑
a

min
x
{wi(a, x) + d(a, x)} −min

x,y
{wi(x, y) + d(x, y)}. (1)

Notice that Φi =
∑

a 6=b1 minx{wi(a, x) + d(a, x)} =
∑

a 6=b2 minx{wi(a, x) +
d(a, x)}. Since b1 and b2 are distinct, at least one of them is not equal to ri+1;
without loss of generality, say b1 6= ri+1. By expressing

Φi =
∑
a 6=b1

min
x
{wi(a, x) + d(a, x)},

we observe that the sum includes the term corresponding to ri+1. For the
potential Φi+1, we also get

Φi+1 =
∑
a

min
x
{wi+1(a, x) + d(a, x)} −min

x,y
{wi+1(x, y) + d(x, y)}

≥
∑
a

min
x
{wi+1(a, x) + d(a, x)} −min

y
{wi+1(b1, y) + d(b1, y)}

=
∑
a 6=b1

min
x
{wi+1(a, x) + d(a, x)}.

Therefore, by subtracting, we get Φi+1−Φi ≥ minx{wi+1(ri+1, x)+d(ri+1, x)}−
minx{wi(ri+1, x) + d(ri+1, x)} which is equal to the extended cost to service
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ri+1. By applying to Φi the same argument we used for Φ̂i, we establish that
the wfa algorithm is k-competitive. 2

There is an important difference between the expressions in the potential of the
above proof and the potential in the proof in [11] —which is equal to the weight
of the minimum spanning tree of the graph with weights wi(x, y) + d(x, y).
The potential here involves a max operator (the minus min part of (1)) while
the potential of [11] has only a min operator.

6 Conclusions

We showed that the wfa algorithm is k-competitive for the line, the weighted
cache and for all metric spaces of k + 2 points. In all cases, we exploited the
fact that the number of different minimizers is k +1 —this was explicit in the
case of the line and metric spaces of k + 2 points and implicit in the proof
of the weighted cache. This suggests that it may be worth investigating the
cardinality of the set of minimizers for other special metric spaces, even for
general metric spaces. This suggestion should be considered with care, given
that each of the results in this paper uses this fact in a different way. Even if
a metric space is guaranteed to have at most k +1 minimizers, we don’t know
how to use this fact in general to establish that the wfa is k-competitive for
this metric space. Is there a simple sufficient condition for this? Finally, as an
intermediate step towards establishing the k-server conjecture, can we show
that the wfa is k-competitive for trees?
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