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Abstract

We consider the price of anarchy of pure Nash equilibria in congestion games with linear
latency functions. For asymmetric games, the price of anarchy of maximum social cost is @(\/N ),
where IV is the number of players. For all other cases of symmetric or asymmetric games and
for both maximum and average social cost, the price of anarchy is 5/2. We extend the results to
latency functions that are polynomials of bounded degree. We also extend some of the results
to mixed Nash equilibria.

1 Introduction

The price of anarchy [10, 16] measures the deterioration in performance of systems on which re-
sources are allocated by selfish agents. It captures the lack of coordination between independent
selfish agents as opposed to the lack of information (competitive ratio) or the lack of computational
resources (approximation ratio).

The price of anarchy was originally defined [10] to capture the worst case selfish performance
of a simple game of N players that compete for M parallel links. The question is what happens in
more general networks or even in more general congestion games that have no underlying network.
Roughgarden and Tardos [20, 21] gave the answer for the case where the players control a negligible
amount of traffic. But what happens in the discrete case? This is the question that we address in
this paper.

Congestion games, introduced by Rosenthal [17] and studied in [14], is a natural general class of
games that provide a unifying thread between the two models studied in [10] and[20]. The parallel
link model of [10] is a special case of congestion games (with singleton strategies but with weights)
while the selfish routing model of [20] is the special case of congestion games of infinitely many
players each one controlling a negligible amount of traffic. Congestion games have the fundamental
property that a pure Nash equilibrium always exists. It is natural therefore to ask What is the pure
price of anarchy of congestion games?

The price of anarchy depends not only on the game itself but also on the definition of the
social (or system) cost. For the system’s designer point of view, who cares about the welfare of
the players, two natural social costs seem important: the maximum or the average cost among
the players. For the original model of parallel links in [10], the social cost was the maximum cost
among the players. For the Wardrop model studied by Roughgarden and Tardos [20], the social
cost is the average player cost. Here we deal with both the max and the average social cost.

We also consider the price of anarchy of the natural subclass of symmetric congestion games.
(Sometimes in the literature, the symmetric case is called single-commodity while the asymmetric
or general case is called multi-commodity.)
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1.1 Our results

We study the price of anarchy of pure equilibria in general congestion games with linear latency
functions. The latency functions that we consider are of the form f(x) = ax + b for nonnegative
a and b, but for simplicity our proofs consider only the case f(z) = x; they directly extend to the
general case.

We consider both the maximum and the average (sum) player cost as social cost. We also
study both symmetric and asymmetric games. Our results (both lower and upper bounds) are
summarized in the left part of Table 1. For the case of asymmetric games, the values hold also for
network congestion games. We don’t know if this is true for the symmetric case as well.

We extend these results to the case of latency functions that are polynomials of degree p with
nonnegative coefficients. The results (both lower and upper bounds) appear in the right part of
Table 1.

\ | SUM | MAX | \ | SUM | MAX \
Symmetric 5/2 5/2 Symmetric || p©®) pO®)
Asymmetric || 5/2 | ©(VN) Asymmetric || pP® | Q(WVP/@+D) O(N)

Table 1: Price of anarchy of pure equilibria for linear latencies (left) and polynomial latencies of
degree p (right).

We also extend our results on the average social cost to the case of mixed Nash equilibria (with
price of anarchy at most 2.619). However, we feel it is important to clarify that we obtained these
results after we learned from Yossi Azar that he and his collaborators had already similar (and
from what we gather stronger) results. It simply happened that our proofs carried through to the
mixed case as well with minor modifications.

1.2 Related work

The study of the price of anarchy was initiated in [10], where (weighted) congestion games of m
parallel links are considered. The price of anarchy for the maximum social cost, expressed as a
function of m, is O(log m/loglogm)—the lower bound was shown in [10] and the upper bound in
[9, 3]. Furthermore, [3] extended the result to m parallel paths (which is equivalent to links with
speeds) and showed that the price of anarchy is O (log m/logloglogm). In [2], more general latency
functions are studied, especially in relation to queuing theory. For the same model of parallel links,
[6] and [11] consider the price of anarchy for other social costs.

In [22], the special case of congestion games in which each strategy is a singleton set is considered.
They give bounds for the case of the average social cost. For the same class of congestion games
and the maximum social cost, [7] showed that the price of anarchy is ©(log N/loglog N) (a similar,
perhaps unpublished, result was obtained by the group of [22]). On the other end where strategies
have arbitrary size, we show here a ©(v/N) upper bound. An interesting open question is how the
price of anarchy goes from ©(log N/loglog N) to ©(v/N) as a function of the number of facilities
in each strategy. The case of singleton strategies is also considered in [8] and [11].

In [5], they consider the mixed price of anarchy of symmetric network weighted congestion
games, when the network is layered.

The non-atomic case of congestion games was considered in [20, 21] where they showed that for
linear latencies the average price of anarchy is 4/3. They also extended this result to polynomial
latencies. Furthermore, [19, 1] considered the social cost of maximum latency.
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2 The model

A congestion game is a tuple (N, E, (3;)ien, (fe)ecrr) where N = {1,...,n} is the set of players, E
is a set of facilities, 3; C 2% is a collection of pure strategies for player i: a pure strategy A; € %;
is a set of facilities, and finally f. is a cost (or latency) function associated with facility j.

Most of this work is concerned with linear cost functions: f.(k) = a®- k + b, for nonnegative
constants a. and b.. For simplicity, we will only consider the identity latency functions f.(k) = k.
We can ignore the factor a® because we can obtain a similar game when we appropriately replace
the facility e with a set of a. facilities. When a. is not an integer, we can use a similar trick. Also,
in some cases, such as the asymmetric-max case, we can ignore the term b, by adding additional
players who play only on the facility e. For the rest of the results, it can be verified that our proofs
work for nonzero b.’s as well. We leave the details for the full version.

A pure strategy profile A = (A, ..., A,) is a vector of strategies, one for each player. The cost
of player i for the pure strategy profile A is given by ¢;(A) = > 4. fe(ne(A)), where n.(A) is the
number of the players using e in A. A pure strategy profile A is a Nash equilibrium if no player has
any reason to unilaterally deviate to another pure strategy: Vi € N,VS € (X;) ¢i(A) < c¢(A—;, S),
where (A_;,S) is the strategy profile produced if just player ¢ deviates from A; to S.

The social cost of A is either the maximum cost of a player MAX(A) = max;en ¢;(A) or the
average of the players’ costs. For simplicity, we consider the sum of all costs (which is N times the
average cost) SUM(A) = >,y ci(4).

A congestion game is symmetric (or single-commodity) if all the players have the same strategy
set: 3; = X. We use the term “asymmetric” (or multi-commodity) to refer to all games (including
the symmetric ones).

A mized strategy p; for a player i, is a probability distribution over his pure strategy set X,.
The above definitions extend naturally to this case (with expected costs, of course).

For a class of congestion games, the pure price of anarchy of the average social cost is the
worst-case ratio, among all pure Nash equilibria, of the social cost over the optimum social cost,
opt = minpey, SUM(P).

PA = sup 7SUM(A))
A is a Nash eq. opt

Similarly, we define the price of anarchy for the maximum social cost or for mixed Nash equilibria.

3 Linear latency functions

In this section we prove theorems that fill the left part of Table of 1. It should be clear that the
values of each symmetric case are no greater than the corresponding asymmetric case. Similarly,
the price of anarchy for average social cost is no greater than the corresponding price of anarchy
for the maximum social cost. This is useful because we don’t have to give upper and lower bounds
for each entry. For example, a lower bound for the symmetric average case holds for every other
case.

3.1 Asymmetric games - Average social cost

The following is a simple fact which will be useful in the proof of the next theorem.

Lemma 1. For every pair of nonnegative integers v, 3, it holds

1 5
a(f+1) < za® + 5%
33 3



Figure 1: There are three players who want to go from S; to D;. The optimal strategies are for
each player to move in a straight line. At the Nash equilibrium, the players use the dashed lines.
The strategy of player 1 at the Nash equilibrium is shown. The bold (non-dashed) lines are long
(heavy) paths.

Theorem 1. For linear congestion games, the pure price of anarchy of the average social cost is
at most 2.
2

Proof. Let A be a Nash equilibrium and P be an optimal (or any other) allocation. The cost
of player i at the Nash equilibrium is ¢;(A) = ) .4 ne(A), where n.(A) denotes the number
of players that use facility e in A. We want to bound the social cost, the sum of the cost of
the players: SUM(A) = >, ci(A) = Y .cpn?(A), with respect to the optimal cost SuM(P) =
> ci(P) = Yeepni(P).

At the Nash equilibrium, the cost of player i should not decrease when the player switches to
strategy P;:

ci(A) = ne(A) <D ne(A, P) <) (ne(A) +1)
e€A; eeP; ecPl;

where (A_;, P;) is the usual notation in Game Theory to denote the allocation that results when
we replace A; by P;.

If we sum over all players i, we can bound the social cost as

SUM(A) = 37 (4) £ 303 (me(A) + 1) = 3 ne(P)(ne(A) + 1)

iEN i€EN e€P; ecl

With the help of Lemma 1, the last expression is at most > . pn2(A) + 23 . cpn2(P) =
2SuM(A) + 2SuMm(P) and the lemma follows. O

Theorem 2. There are linear congestion games with 8 or more players with pure price of anarchy
for the average social cost equal to %

Proof. We will construct a congestion game for N > 3 players and |E| = 2N facilities with price of
anarchy 5/2. (It is not hard to show that for N = 2 players, the price of anarchy is exactly 2.)
We divide the set E into two subsets Fq = {hi,...,hy} and Ey = {¢1,...,9n}, each of N
facilities. Player i has two pure strategies: {h;, g;} and {g;+1,hi—1, hi+1}. The optimal allocation is
for each player to select the first strategy while the worst-case Nash equilibrium is for each player
to select the second strategy. It is not hard to verify that this is a Nash equilibrium in which each
player has cost 5. Since at the optimal allocation the cost of each player is 2, the price of anarchy

is 5/2.
This example is not a network congestion game, but we can turn it into a network congestion
game as shown in Figure 3.1. U



3.2 Symmetric games - Average social cost

For symmetric congestion games and average social cost the price of anarchy is also 5/2. The upper
bound follows directly from Theorem 1 because symmetric games is a special case of asymmetric
games. The following theorem gives the lower bound. This would have subsumed Theorem 2 had it
not had an additional term which tends to 0 as N tends to infinity. In other words, for asymmetric
games the price of anarchy is exactly 5/2 for every N > 3, but for symmetric games it is somewhat
less: (5N —2)/(2N + 1). This is tight; we include only the lower bound below, leaving the upper
bound for the full version of this work.

Another reason to include the lower bounds for both the symmetric and the asymmetric case
is that in the later case the congestion game is a network congestion game, while in the former it
is not. We don’t know whether the bound 5/2 holds also for symmetric network games.

Theorem 3. There are instances of symmetric linear congestion games for which the price of
anarchy is (5N — 2)/(2N + 1), for both the mazximum and the average social cost.

Proof. We construct a game as follows: We partition the facilities into sets P, P, ..., Py of the
same cardinality and make each P; a pure strategy. At the optimal allocation player i plays P;.

We now define a Nash equilibrium as follows: Each P; contains Naq + (gf ) ay facilities where
a1, g are appropriate constants to be determined later. At the Nash equilibrium, each player ¢
plays alone o of the facilities of each P;. Also, each pair of players i, k play together ay of the
facilities of each P;. At the Nash equilibrium, the cost for player i is ¢;(A) = N (a1 +2(N — 1)as).

We select aq, s so that player ¢ will not switch to P;. (It is trivial that player ¢ will not switch
to the Nash strategy of some other player k.) The cost after switching is

— 3N —2
Ci(A_i,Pj) =a;+2(N —1as + 2(N — Doy + 3( 9 >a2 = (2N — 1)ag + (N — 1)%(12
We want c¢;(A) = c¢;(A—;, Pj), or equivalently a; = %ag, which is satisfied when we select

a1 =N +2 and ay = 2.

With this, the cost of each player i at the Nash equilibrium is ¢;(4) = N(ag + 2(N — 1)ag) =
N (5N —2) and the cost of each player at the optimal allocation is |P;| = Naj+ (g) ag = N(2N+1).
The lemma follows. O

3.3 Asymmetric games - Maximum social cost

Theorem 4. The pure price of anarchy is O(\/ﬁ) where N is the number of players.

Proof. We will make use of Theorem 1 which bounds the average cost. Let A be a Nash equilibrium
strategy profile and let P be an optimal strategy profile. Without loss of generality, the first
player has maximum cost, i.e., MAX(A) = c1(A). It suffices to bound ¢;(A) with respect to
MAX(P) = maxjen ¢j(P).

Since A is a Nash equilibrium, we have

c1(A) <) (ne(A) +1) < > ne(A) + e (P). (1)

ec Py ecPy

Let I C N the subset of players in A that use facilities f € P;. The sum of their costs is

) 2 (ZeePl ne(A))2
2oz 2=



On the other hand, by Theorem 1
ZCZ(A) < §ZCZ(P)
; T2
1EN 1EN
Combining the last two inequalities, we get
5
(D ne(D))? < |PY a(A) < [PYeai(A) < sl > ci(P).
e€Py iel i€EN i€EN

Together with (1), we get

a(d) <aP)+ 2RI aP)
ieN
Since |Pi| < ¢1(P) and ¢;(P) < MAX(P), we get that ¢;(A4) < (1 4+ +/5/2 N)MAX(P). O

The proof above may seem to employ some crude approximations, but it gives the best possible
bound (up to a constant factor), as the following lower-bound lemma shows.

Theorem 5. There are instances of linear congestion games (even network ones) for which the
pure price of anarchy of the maximum social cost is Q(vV N), where N is the number of players.

Proof. For convenience, let the number of players be N = k? — k 4 1 for some integer k. We will
construct a game in which player 1 has the maximum cost among the players at the worst-case
Nash equilibrium.

There are kN facilities in total which are partitioned into N sets P; = {f;,: ¢ =1,...,k}. Each
P, is a strategy for player ¢; the optimal allocation will be for player ¢ to play P;. To construct a
Nash equilibrium we add for each player i > 1 an alternative strategy A; = { fM i1 ]}. Notice that
player 1 has no alternative strategy.

The strategy profile A = (Py, As,..., Ay) is a Nash equilibrium in which player 1 has cost
c1(A) = k2. On the other hand, the optimal strategy profile P = (Py, P, ..., P,) has cost ¢;(P) = k
for every player i. So the price of anarchy is k = VN + O(1).

This is not exactly a network congestion game, but it can be turned into one as shown in
Figure 3.3. ]

3.4 Symmetric games - Maximum social cost

When we restrict the class to symmetric linear congestion games, the price of anarchy of the
maximum social cost drops to 5/2, as the following Theorem shows. This is tight in the limit as
the lower bound of Theorem 3 holds for this case as well.

Theorem 6. The pure price of anarchy of symmetric linear congestion games for the mazrimum
social cost is at most %

Proof. Let A be a Nash equilibrium and P an optimal allocation of a symmetric game. Without
loss of generality, we can assume that player 1 has the maximum cost, i.e., MAX(A) = ¢1(A). As
this game is symmetric, A is a Nash equilibrium only if player 1 has no reason to switch to P;, for
every j € N:
e1(A) < iAo, P) £ 3 (ne(4) +1).
ecP;
6
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Figure 2: There is one player who wants to go from V7 to Vi1 1. For each i, there are k — 1 players
who want to move from V; to V;11. In each layer [V;,V;11], there are k disjoint paths, one has
length 1 and the rest have length k. The optimum allocation is for every player who goes from V;
to Vi41 to use separate length k£ paths and the player who moves from Vj to Vi11, to use the length
1 path. At the Nash equilibrium every player uses only length 1 paths.

If we sum these inequalities for every j, we get:
N-c(A Z Ne(P )+ 1).
eck

Using Lemma 1, the last expression is at most 1 > pn2(A4) + 2>, pn?(P). We can now use
Theorem 1 to further bound Y- . n2(A) < %ZeeE nz(P) and get

N-ci(A Z n2(P) < N MAX(P),
eeE
and the proof is complete. [l

In fact, the exact price of anarchy is (5N +1)/(2N + 2), something less than 5/2, but we leave
the details for the full version of this work.

4 Polynomial latency functions

In this section we turn our attention to latency functions that are polynomials of bounded degree
p, and in particular of the form

P
= Zai(e)]\ﬂ, ai(e) >0
i=0
The cost of a player i in a strategy profile A is
= Z fe(ne(A))
e€A;

and the sum of all costs is

SUM(A) = Z Zne fe ne ))

iEN ecE

The theorems and proofs about linear functions of the previous section can be extended to
polynomials, in most cases with little effort. (Actually, we wrote part of the previous section with
this in mind.) .



4.1 Average social cost

The following lemma corresponds to Lemma 1.

Lemma 2. Let f(x) a polynomial in xz, with nonnegative coefficients, of degree p. Then for every
nonnegative x and y:
x- f(x C Y-
) < 12“( ), Colp) 2y f(y)

where Co(p) = pP1=°M) | The term o(1) hides logarithmic terms in p.

y-flx+1

Theorem 7. For polynomial latency functions of degree p, the pure price of anarchy for the average
social cost is at most pP(t—o(1)

Proof. Let A be a Nash strategy profile and P an optimal strategy profile. Player ¢ has no incentive
to switch to strategy P; when

¢i(A) = Z fe(ne(A4)) < Z fe(ne(A) +1)

eEAi ecP;

If we sum over all i € N, and use Lemma 2, we get

SuM(A) € 3 ne(P)fo(me(4) + 1) < 37 R elA) o Colpnel D] ne(F)

ecE eclR eelR

Sum(A) Co(p)Sum(P
1(4) | Colr)Sm(P)

which is equal to and the proof is complete. O

We give below a matching lower bound. Both the upper and the lower bounds are of the form
pP(=0() but they are not exactly equal.

Theorem 8. There are instances of symmetric congestion games for which the price of anarchy is
at least pP—oL) for both max and sum social cost.

Proof. Let Py, Ps,..., Py be the disjoint strategies of the optimal allocation. We will construct
a bad Nash equilibrium as follows: Each P; has N facilities f; for k = 1,...,n. At the Nash
equilibrium A; = {f;, : k # i}.

So the cost for player i at the Nash equilibrium is

ci(A) = N(N —1)(N —1)?
Player ¢ has no incentive to switch to P; when
CZ(A) < CZ(A_“PJ) = (N — 1)P+1 +Np

So, we select N to satisfy (N — 1)P*2 = NP. Since the optimum has social cost ¢;(P) = N, the
2

price of anarchy is % = pri—o(1)),

The bound holds not only for this particular number of players N but for any integral multiple

of it, by appropriately replicating the above construction. O



4.2 Maximum social cost

Theorem 9. There are instances of congestion games with polynomial latency functions for which
the pure price of anarchy is Q(Np/(p+1)).

Sketch. The proof is very similar to that of Theorem 5. In this case, the number of players is
N = kPt — kP 4+ 1, and the number of facilities NkP. The cost of player 1 is c¢1(A) = (kP)? while
every optimal player has cost kP. The price of anarchy is kP = Q(N v/ (p+1)).

Again, this can be turned into a network congestion game, similar to that of Figure 3.3 with kP
layers where each path inside a layer has also length kP. O

The following upper bound is trivial:
Theorem 10. The pure price of anarchy for polynomial latencies is O(N).
Also, Theorem 6 can be directly extended to the case of polynomial latencies:
Theorem 11. The pure price of anarchy of symmetric congestion games with polynomial latencies

of degree p is O(pP1—0()),

5 The mixed price of anarchy

From Yossi Azar we learned that he and his collaborators had similar results for the case of average
social cost and mixed Nash equilibria. We then realized that some of our proofs apply directly
to the mixed case as well. In particular, Lemma 1 should be relaxed to deal with reals instead of
integers as follows:

Lemma 3. For every non negative real x and non negative integer y, it holds

y(x +1) 1 Z 1

With this, the proof of Theorem 1 gives that the mixed price of anarchy for linear latencies is
at most %

One should be careful how to define the social cost in this case. There are two ways to do it:
The social cost is the average (or sum) of the expected cost of all players SuMm = ),y ¢;(IV). Or,
the social cost is the sum of the squares of the latencies in all facilities: SUM = >°_ (ne(A4))?. The
two are equal for pure Nash equilibria as well as for non-atomic games, but they may be different
for mixed equilibria or for weighted games. From the system’s designer point of view who cares
about the welfare of the players, the first social cost seems to be the right choice. In any case, our

proof applies to both social costs with the same price of anarchy.

Theorem 12. The mized price of anarchy of linear congestion games and for the average social
cost 1s at most 3+T\/5 ~ 2.618.

Similarly, Theorem 7 holds also for mixed Nash equilibria.
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