M ECHANISM DESIGN FOR SCHEDULING

George Christodoulou Elias Koutsoupias
Max-Planck-Institut fir Informatik, Department of Informatics
Saarbricken, Germany. University of Athens, Greece
gchristo@mpi-inf.mpg.de elias@di.uoa.gr
Abstract

We consider mechanism design issues for scheduling problems and we
survey some recent developments on this important problem in Algorithmic
Game Theory. We treat both the related and the unrelated version of the
problem.

1 The scheduling problem

The problem of scheduling unrelated machines|[21, 14] isafrilee most funda-
mental algorithmic problems: There argnachines anan taskH and machiné

can execute taskin timet;;. These times can be totally unrelated (thus the name
of the problem). The objective is to allocate the tasks tohimas to minimize the
makespan (the time needed to finish all tasks). Thus the bistgimply a parti-
tion of themtasks inton sets. A convenient way to express it is to use indicator
variablesx;; € {0,1}: x;; is 1 iff task] is allocated to machine Each taskj is
allocated to exactly one machine, therefore we must R&vex; = 1 for everyj.
With this notation, the computational problem can be exggdsnore precisely:
givenn x mvaluest;;, find appropriate; € {0, 1} which satisfy these constraints
and minimize ma%, > x;ti;.

From the traditional algorithmic point of view, the unreldtmachines schedul-
ing problem is one of the most important open problems. Wenktiat the
problem is NP-hard; it is even NP-hard to approximate it witB/2 [21]; this
lower bound applies also to some special cases [11]. On thiéiaoside, there
is a polynomial-time approximation algorithm with appnmstion ratio 2 [[21].

*Partially supported by IST-15964 (AEOLUS) and IST-200%240 (FRONTS).
“We opt for the game-theoretic notation here and we denoteuhwder of machines and tasks
with n andm respectively. In the scheduling literature, they usuadlg the opposite notation.

gchristo@mpi-inf.mpg.de
elias@di.uoa.gr

Closing the gap between the lower and upper bounds on thexap@tion ratio
remains a long-standing major algorithmic problem.

There are many interesting variants of the problem. Whenexfample, the
timest;; are inversely proportional to the speed of the machine jishathen there
are speeds; and timesp; such that;; = p;/s, we have the special case of the
problem called the related machines scheduling problerso,Alhen we allow a
task to be split across the machines, which is to sayxhate nonnegative reals
instead of integers, we call this the fractional schedufiraplem. The computa-
tional complexity of these problems is completely settl€dere is a polynomial
time approximation scheme (PTAS) [13] for the related maehiproblem and
a fully-PTAS (FPTAS) [[15] when the number of machines is fixdee general
case is strongly NP-complete, so we don't expect to find arAERInless PNP.
For the fractional version of the problem, there is a polyratime algorithm
(because it can be expressed as a linear program).

Nisan and Ronen in their seminal wolk [27] 28] which startedatea of Al-
gorithmic Mechanism Design considered the unrelated mashproblem from a
game-theoretic point of view: suppose that each madhma rational agent who
is the only one knowing the values of raw Suppose further that the machines
want to minimize their execution time. Without any incestithe machines will
lie in order to avoid getting any task. To coerce the machinesooperate, we
pay them to execute the tasks. The payments do not have tamperponal to
the execution times, but can be arbitrary functions. Thelioation of the algo-
rithmic problem of allocating the tasks to machines togetti¢h the incentives
in the form of payments is called a mechanism. In this artisle survey recent
developments in this area of mechanisms for the schedutiiggm.

We consider direct revelation mechanisms with dominarihtal strategies.
Direct revelation means that the players—who know the mashain advance—
declare their hidden values to the mechanism which colteetyalues and com-
putes an allocation of tasks and appropriate payments tpl#yers. In such a
mechanism, a player may have an incentive to lie and declduey other than
his true values. If the mechanism is such that, indepenglenthe values of the
other players, a player has no incentive to lie, we say tlaafrtechanism is truth-
ful (with dominant truthful strategies). These mechanismesvery desirable and
easy to be implemented since there is no reason for machursdsategize. There
other weaker notions of truthfulness but we don’t consitlent in this note.

2 Mechanism design

The mechanism design setting for scheduling is a specialaabe social choice
problem. We define here the more general framework so thataweplace the

scheduling problem within the general picture. In the dadi@ice setting, there
aren players and a set of possible outcomdewhich in most cases is considered
finite. The players may value the outcomeffatently. For each player there
is a valuation functiory, : A — R which gives the value of playerfor every
outcome. The goal of the mechanism designer is to implemawotel choice
function f which assigns a desirable outcome to every set of valuatioctions.
For example, a social choice function selects the outcomw/iicch the median
of the valuations of the players is maximum. More generddly,every set of
valuation functions there may be a set of desirable outcandshe mechanism
designer wants to implement a social choice function whetbds one of these
outcomes.

When we consider problems with finitely many possible outcamee can
recast the above in a more familiar notation. A mechanisngdgsoblem with
n players and = |A| outcomes is defined by a subgiof R™. We callD the
domain of the mechanism design problem. A social choicetiond is simply
a function fromD to {1,...,k} (or more generally to the collection of subsets of
{1,...,Kk}).

An instance of a mechanism design problem is simply a poibt & concrete
way to represent a point @ is by a real-valuedh x k matrix v. Each playei
knows the values of row;; this is private information and it is not known to the
mechanism. In a direct-revelation mechanism, each plageclares values;
of row i. These values may beftirent than. The declarations of the players
form a matrixv. The mechanism takes as input this matriand computes two
guantities: an outcome = o(v) € {1,..., Kk} (the outcome of the mechanism) and
paymentsp = p(v) € R" for the players. The paybof playeri is the value of the
original row at the outcome minus the payment = p;.

In summary, a mechanism design problem is defined by B s¥tn x k real
matrices (a subset &) and a functionf from D to subsets of1, ..., k}. The
mechanism designer must come up with an outcome function

o:D-—-{1,...,k},

and a payment scheme
p: D->R,

such that the outcome is a desirable outcome() € f(V)) and the payment
scheme induces the players to declare values which prodsietle outcomes.
The mechanism iguthful when the outcome and payment functions are such

that the players gain nothing by not declaring their tru@i®sg] i. e., the objective

of each player, for every declared values; of the other players, is maximized
when playeri declaresy; = V. This notion of truthfulness is called dominant-
strategy truthfulness since declaring the true values israirant strategy for
each player.

The Revelation Principlestates that for every mechanism there is an equiv-
alent truthful mechanism which on the same inputas the same outcome and
payments. This frees us to consider only truthful mechasism

Here are a few typical mechanism design domains:

Example (The unrestricted domain): One of the most natural mech-
anism design problems forplayers anck outcomes is wheD is the
whole R™ space.

Example (The combinatorial auction domain): The outcomes are
all allocations ofm items ton players; there ar&k = n™ possible
allocations. The domain is defined by valwes one for each player
and for each allocatior. An allocationx is defined by a matrix where
Xij is a variable indicating whether tagks allocated to player The
valuesy; x satisfy the natural restriction that the valuation of a play
depends only on the items allocated to hwy = vi » when the two
allocations agree on playefthat is, wherx, = x/). In economic terms
this condition says that there are no externalities. Anotfatural
restriction is that the value of a player can only increasemine gets
additional items\x > Vix whenx; > x| for j = 1,...,m). The
values are also nonnegative and they are exactly 0 when argky
allocated no item.

For example, fom = 3 players andn = 2 items the domaird
contains the points d®*° which are of the form:

Uy 12 U1 Uy Uy o Uy 2 0 0 0 0
0 Uz 0 Up1 0 Up1z U1 U2 0o |
0 0 Uz 2 0 Uz 0 Uz 2 Uz U312

where the values are nonnegative aryg > u;; andu; 1o > U ».

For the special case of the single-item auction, the masria i
diagonal one where the valug; is the valuation of player for the
item.

Example (The unrelated machines domain): This is a special case
of the combinatorial auction when the domain is additives Hlso a
cost game (as opposed to a paiyane). The outcomes again are all
allocations oimtasks tan players k = n™). The domain is defined by

Vix = ZT‘zl Xjtij. For example, fon = 2 players andan = 2 tasks the
domainD contains the points d&?*4 for which are of the form:

t11 + 1t t11 t12 0
0 too o1 th1 + 1t

wheret;;’s are nonnegative.

2.1 Known mechanisms

Given a domain, one can ask whether there are any (truthiethamisms. If we
view the payments as the means to implement a social chonida, we can
rephrase the question: For which social choice functioagtere payment func-
tions so that the resulting mechanism is truthful? In thiy wee focus on the
social choice function. For example, for the single-iteratemn domain, are there
payment functions for a mechanism to allocate the item tthger with maxi-
mum (private) value? with the second maximum value? As wedigtuss soon,
the answer to the first question is positive and to the secarstipn negative.

There are few mechanisms that are known to be truthful andebkestudied
one is the VCG mechanism [31,/8,/12].

Example (The VCG mechanism andfme maximizers): The VCG
mechanism implements the social choice function of selgctihe
outcome (column) with the maximum total value:

n
f(v) = argmax) Vvijj.

) ek Z !
A generalization of this mechanism is théime maximizer which
weights with positive multiplierg; the values of each player (row)
and add a constant to the value of each outcome (columjn)

n
f(v) = argmaxz AVij + ;.
]G{l k} i=1

The VCG mechanism is truthful for every domain. The paymeotstiie gen-
eral domain) align the objective of each playavith the social choice function.
This can be achieved when the payments are

pi(v) = —/% [Z AiVij + 7j]~

il

Playerl wants the mechanism to select an outcgm#rich maximizes;; —py(v) =
/I—llzi”:l/livij + ;. This is the same expression with the argmax expressioneabov
and shows that the player’s objective is achieved at thekdaoice function. The
VCG has slightly diferent payments: Because these payments may be negative,
the VCG mechanism adds appropriate values to the paymentbfayer that
depend only on the values of the other players (this keepgldyer truthful).

Another interesting class of mechanisms for the schedylioflem are the
task independent mechanisms: Each task is allocated indep#y of the remain-
ing tasks. Not all task-independent mechanisms are trutfiask-independent
mechanisms are special cases of threshold mechanisms:

Example (Threshold mechanisms): A threshold mechanism for the
scheduling domain is one for which there are threshold fansh;;
such that the mechanism allocates it¢rto playeri if and only if

vij > hij(v5). What distinguishes these mechanisms from general
mechanisms is that the thresholds depend only on the vafube o
other players but not on the other values of the player himdeél

is not true in general that every set of functiams defines a legal
mechanism, as they have to be consistent between them.ticuper,

the threshold functions should be such that every ifemallocated

to exactly one player. In other words, exactly one of the trangs

vij > hij(v_), fori = 1,...,n, should be satisfied.

3 Truthfulness

One of the central questions in mechanism design is to findeaahiaracterization
of truthful mechanisms. In algorithmic terms, we want toedetine which algo-
rithms are implementable, i.e., for which algorithms foe $theduling problem
there exist payments that make the players truthful. It khibe clear that for rich
domains, such as the scheduling domain, not all algoritiregathful. In fact, it
seems that the set of truthful algorithms is very limited,Wwhether this is the case
or not is perhaps the most outstanding open problem in afgoic mechanism
design:

Open Problem. Characterize the set of truthful mechanisms for scheduling.

But what kind of characterization we seek? We are going to Isaevie do
have a necessary andfBcent condition, the so-called Monotonicity Property.
But we want a characterization which is more than a necessargu#fficient con-
dition. An important result in the area of mechanism desikoberts’ Theorem

[16], shows exactly the type of characterization we seek.eRebTheorem ap-
plies to the unrestricted domain and states that the onllgftrlumechanisms for
this domain ok > 3 outcomes are thefine maximizers. In a sense, this is a very
disappointing result, because it says that only very sirafgerithms can be im-
plemented. The question becomes much more interestingétniated domains
and in particular for the auction and scheduling domairs & simple observation
that when we restrict the domain the set of available meshascan only become
richer. More precisely, for domairfd3 c D’, every truthful mechanism fdd’ is
also a truthful mechanism fd.

We discuss below the Monotonicity Property which a simpleessary and
suficient condition for truthfulness. This is true for every eer domain, but we
restrict the discussion to the scheduling domain.

Definition 3.1 (Monotonicity Property) An allocation algorithm is called mono-
tone if it satisfies the following property: for every two sdttagks t and’twhich
differ only on machine i (i.e., on the i-the row) the associatedcations x and x
satisfy

(% —-%)-(ti—-t) <0,
where- denotes the dot product of the vectors, thapi%., (x; - x;)(t; — t;;) < 0.

The property, which sometimes in the literature is calle@kvwamonotonicity,
essentially states that when we increase the times of the fasmachineg, the
allocation for the machine can only become smaller. Notie¢ the Monotonicity
Property involves only the allocation of one player (tkh player).

Theorem 3.2(Saks and Yu) A mechanism is truthful if and only if its allocations
satisfy the Monotonicity Property.

To establish that the Monotonicity Property is necessarytricthfulness is
easy (it was done for example [n |28]) and we show it below.s%aid Yu showed
that it is also a sfiicient condition. In fact, they showed a much more general
result: the property is sficient for every convex domain; this includes the unre-
stricted domain and the combinatorial auction domains.

To show that the property is necessary condition for truthfechanisms, we
observe that the payments cannot depend directly on thardéoht; of player
i, but indirectly through the selected outcox(® and the declarations; of the
other players, that ig(t) = pi(xi(t),t_;). To see this, suppose that there ekigf
such thatx(t, t_j) = x(t/,t), but pi(ti,ti)) < pi(t,t-). Then the player whose
true processing times ate has incentive to declare falsely that its processing
times aret! in order to increase his utility, as we hapgt;,t_;) — Z’j“:ltixij <
pi(t, 1) — X5, tix;j, contradicting the truthfulness of the mechanism.

When playeii has valuations, he has no incentive to declatevhen
tix — pi(x, L) < X — pi(x. L)
Similarly, when we inverse the roles bandt’, we have
5 = P, 1) < 6% — p 06,)

Now if we add the above inequalities and take into accountliganstances tlier
only on thei-th player, that ist’; = t_;, we get the Monotonicity Property.

The implications are that we don't have to consider at allghgment algo-
rithm. This transforms the problem from the realm of Gameodrhé¢o the realm
of Algorithms. To prove lower bounds or to design good med@ras, we can
completely forget about mechanisms, payments, truthésimtc, and simply fo-
cus on the subclass of monotone allocation algorithms.

The Monotonicity Property has a straightforward geomedwien. For sim-
plicity, let us consider 2 tasks and consider the space dSiplesvaluations for
a particular machiné The generalization to more tasks is straightforward. Fix
the values_; of the remaining players. For every(t,), let us consider how
a mechanism which satisfies the Monotonicity Property alieg the tasks. In
particular, letR,,x, denote the set of inputs of playefor which the mechanism
has allocation X1, X;») for the i-th player. The Monotonicity Property is equiv-
alent to the constraint that the boundary betwBgp,, andRy « is of the form
(X, = Xi1tis+ (X, — Xi2)tiz = 0. Since the allocation variableg andx;, are 0-1, the
boundaries have very specific slopes. Therefore the ailtocat the mechanism
should have one the 2 forms of Figlie 1.

ti2 ti2
Rio Roo Rio Roo
Ru | Ron Ri1 Ro1
ti 1 ti 1

Figure 1: The two possible ways to partition the positivédanit.

In other words, a mechanism is truthful if and only if it ptidins theR™?
space so that the appropriate lower dimensional cuts havéotin of Figure 1.
Thus characterizing the truthful mechanisms amounts toacherize the parti-
tions of R™™ that have specific lower dimensional cuts.

Affine minimizers are the special class of algorithms for whirehitoundaries
in Figure[1 are linear functions of the values of the otheyg@ia. The diagonal

part in the picture exist if and only if the additive constapt are not all equal.
On the other hand, threshold mechanisms are exactly thossendiagonal part
has 0 length (i.e., the partition is defined by orthogonakngfanes).

A recent paper by Dobzinski and Sundararajan [10] gives alsitharacter-
ization of mechanisms for 2 machines. They consider onlyhaeisms which
have bounded approximation ratio with respect to makespdrtteey show that
only task-independent mechanisms can be truthful.]In [ipae complete char-
acterization was given which is independent of the appration ratio: for 2
machines only line minimizers and threshold algorithms can be trulthful

In the next 2 sections we consider positive and impossihigsults for the
unrelated machines problem. In the last section, we disgassive results for
the related machines version.

4 Upper bounds for the unrelated case

There are only a few positive results which give approxioratlgorithms for the
unrelated machines scheduling problem. We discuss molsenf here:

Deterministic mechanisms: Nisan and Ronenr [28] gave a mechanism that is
n-approximate. The mechanism is essentially the VCG, i.assigns joh to the
machine with minimunt;;. It runs independent second-price auctions per item,
which is equivalent to the VCG because the valuations in thedwding domain
are additive.

Randomized mechanisms: There are two major notions of truthfulness for
randomized mechanismsiniversally truthfulandtruthful in expectatiormech-
anisms. A universally truthful mechanism is a probabilitstdbution over truth-
ful deterministic mechanisms; this means that even wherplidngers know the
outcome of the random choices (coins), they have no incembiie. This is in
contrast to the truthful in expectation mechanisms wheagegyk has no incen-
tive to lie before the random choices but they may have imneem lie after the
random choices.

Nisan and Ronen [28] suggested the followingStapproximate randomized
mechanism for 2 machines. The mechanism is a universaftifftdiuone and
it works as follows: For every task with probability /2 the algorithm gives
the item to the minimizer ofnin{tlj,g‘tzj}, and with 12 to the minimizer of

"This holds only for decisive mechanisms, that is mechanishere all allocations are pos-
sible; non-decisive algorithms are not very natural and ragrtheir properties is that they have
unbounded approximation ratio.

min{ty;, g‘tlj}. Mu’alem and Schapira[24] extended the mechanism foachines
which gives approximation ratio.875.

Recently, the result of Nisan and Ronen for 2 machines was wegrby
Lu and Yu [22] who gave a 1.67-approximation mechanism; ihgyoved this
later [23] to 1.59.

Fractional mechanisms: Christodoulou et all |[5] gave an algorithm for the frac-
tional version of the problem which allocates each taskpedéeently. The frac-
tions of taskj assigned to machines?2, ..., n are inversely proportional to the
squares of the execution times of tgsk-or example, for 2 machines the alloca-
tion of task] is given by

t, £,

= — X2' = .
2 2 J 2 2
t1j + t2j tlj + t2j

X1j

The mechanism has approximation rd%é and this is optimal for task-independent
mechanisms.

Restricted Domain mechanisms: Lavi and Swamy [20] studied two cases where
the valuation domain is restricted. Instead of allowingo get any positive real
values, they restrict the values to 2: low and high. They stihatiin such domains
there exist algorithms with constant approximation rati@ontrast to general do-
mains where the current best upper bounds are linear wiglecéon.

These domains are not convex and Thedrerh 3.2 of Saks and vdd&6 not
apply. Instead a more complicated property, the cycle nomoity property[[29],
is necessary and ficient for this domain (and every other domain): The cycle
monotonicity property considers closed paths of inputsraqdires that the sum
of a certain expression is nonnegative over every cycle. Mbeotonicity Prop-
erty is the special case when the cycles have length 2.

When the tasks are allowed to havételient low and high values, Lavi and
Swamy gave a 3-approximate algorithm which is truthful ippexstation. The
algorithm computes the optimal fractional solution, itnséorms it to a cycle-
monotone fractional allocation, and finally rounds it usiagdomized rounding.
When all tasks have the same low and high values, an even betdt is possi-
ble: they gave a 2-approximate deterministic cycle-monet@gorithm based on
maxflow.

5 Lower bounds for the unrelated case

In this section we summarize the main impossibility resaiftd techniques for the
unrelated machines problem. It so happens that all the Ibagnds for this prob-

lem (deterministic, fractional, and randomized) are basedhe restrictions of
truthfulness and they hold independently of computaticoabplexity considera-
tions. In other words, the lower bounds apply even to exptialetime algorithms.

Nisan and Ronern [28] gave a lower bound of 2 for any truthfuédeinistic
mechanism for 2 machingsChristodoulou et all[6] improved the lower bound
to 1+ V2 = 2.41 for 3 or more machines, and Koutsoupias and Vidali [17] to
1+ ¢ ~ 261 for n machines where is arbitrarily large. It is a major open
problem to close the gap between the lower and the upper bound

Conjecture (Nisan and Ronen)No mechanism has approximation ratio better
than n.

Mu’alem and Schapira[24] gave a lower bound ef?for randomized truth-
ful in expectation mechanisms (which also applies to usi#y truthful mecha-
nisms). Christodoulou et al.[[5] showed that the same bouldkleven for frac-
tional domains. Notice that while for deterministic andctianal mechanisms we
have tight bounds for 2 machines, for randomized mechartisens is still a gap
between the lower bound of 1.5 and the upper of 1.59. It is taresting open
problem here is to close this gap. Interestingly, even ferréstricted domain of
two values, Lavi and Swamy [20] showed a lower bound ofl01

In the next subsections we discuss the basic ideas behitaltkebounds for
deterministic mechanisms. We don’t consider randomizediactional settings,
but the main ideas are similar (although sometimes more toatgd) [24] 5].

5.1 The case of 2 machines

Recall that every truthful mechanism is monotone. A usefal that comes out
of the Monotonicity Property and is used implicitly or exgilly in most of the
lower bound proofs is the following.

Lemma 5.1. Let t be the input matrix and letx x(t) be the allocation produced
by a truthful mechanism. Suppose that we change only the gsmgetimes of
machine i in such a way that t- t;; when x5 = 0, and f; < tjj when 5 =1. A
truthful mechanism does not change the allocation to machie., x(t") = x;(t).

Proof. By the Monotonicity Property 311, we have that

Dt =04 (1) = %, (1)) < 0.
j=1

#t is almost trivial to see that any lower bound fomachines applies to the case of more than
n machines.

Observe that all terms of the sum are nonnegative (by theipesof the lemma).
The only way to satisfy the inequality is to have all termsado O, that is,

Xij (t) = X (t'). .

Now we will use this lemma to get easily a lower bound of 2, whiicst
appeared in [28].

Theorem 5.2. Any truthful mechanism has approximation ratio of at leasbr
two or more machines.

Proof. Suppose that we have an instance wite 2 andm = 3 andt;; = 1, for
all i, j. Any allocation algorithm can either allocate all tasks &iragle machine
(say the first one), or partition them (say the first two taskbe first machine and
the third task to the second machine). In the former case pply emmd5b.1L to
the first player (where the star symbol indicates allocatamtle is an arbitrarily
small positive number):

f= 1 1+ 1 St l-¢ 1-¢ O
1 1 1 L1 1 1)

The resulting assignment @hhas approximation ratio cﬁ‘(ll;f) ~ 2. In the latter
case, we apply Lemnia 5.1 to the second player:

(o), (o1
{1 1 » “1+e 146 00)

The resulting assignment @hhas approximation ratio of—e ~ 2. n

5.2 The case of 3 or more machines

There is a qualitative fierence between the case of 2 machines and the case
of 3 or more machines. For 2 machines, the allocation of agplagmpletely
determines the allocation of the other player. This is no¢ tior more than 2
players and it complicates the situation.

There are basically two approaches one can follow to prowevar bound.
One approach is to provide a global characterization of@bkfble mechanisms,
such as Roberts’ Theorem. This approach however requiresotbgon of the
characterization problem which is potentially a mor&idult problem. For exam-
ple, Christodoulou et al. [7] use this approach to extenddivet bound of 2[[2]7]
to instances with only 2 tasks.

The other approach is to use an appropriately chosen subget mput in-
stances. The Monotonicity Property implies some relatioetsveen the alloca-
tions of these instances. We can use them to show that one afigtances has

high approximation ratio. A typical application of this appch is forthe lower
bound of 2.41[[6] and 2.61 [17]. In[6] as we will see later tle¢ af instances is
small. It consists of instances of 2 and 3 machines resgdgtnd no more than 5
tasks. In[[17], they use the same principles but apply theamimfinite subset of
inputs using a double induction to keep track of how all thedkscations depend
on each other.

We sketch here the proof of the 2.41 lower bound.

Theorem 5.3. Any truthful mechanism has approximation ratio of at leastv?2
for three or more machines.

The general idea of the proof is the following: We start wiik et of tasks
0 0o 0o a a
t=]o 0 oo a al,
o 0o 0 a a

for some parametea > 1. This set of tasks essentially admits two distinct al-
locations (up to symmetry). This is true because the firgehasks need to be
assigned to a single machine by any mechanism with boundadxmation ra-
tio. For each allocation, we increase or decrease somesvappopriately. Them
is is shown that in order to keep the approximation ratio lbeldw 1+ «), the
following set of tasks must have the allocation indicatedh®ystars (in which the
first machine gets both tasks 4 and 5):

O* 0 0 1* 1*
t=]oo 0* o a al.
o oo 0 a a

Finally, the input of the first player is modified as the foliogy matrix indicates.
By using a lemma that is similar in spirit to Lemimal5.1, but ii&idn takes into
account the fact that there is a unique way to allocate thietfirse tasks, we get

the allocation
¥ oo o0 1l—¢€* 1-—¢*
t=]co 0* o a a |.

o oo 0 a a

This allocation has an approximation ratioé’g%, for arbitrarily small value of
€. Taking into account that the ratio is at most & we get the theorem.

6 Related machines

In this section, we consider the important special casee$tineduling problem,
therelatedmachines version. In this setting, the processing timeseftdsks are

p: > ... > pm, While the machines have speedis.. ., s,. Given an assignment
of the jobs to the machines, k&t denote the workload assigned to machinghe
makespartC(w, s) is maxw;/s. Monotonicity for this special case is very simple.
An algorithm is monotone (truthful) when it has the follogiproperty: when
we decrease the speed of a machjrkeeping all other speeds the same, the new
workload on machinecan only decrease.

The mechanism design version of the problem was first stunigsrcher and
Tardos [3]. It is a very important problem in Algorithmic M&enism Design,
because it's a typical single-parameter problem, whichnmadaat each player has
only one real private value and his objective is proportidoahis value (for a
precise definition see Chapters 9 and 12/ of [26]). Such prableere studied
extensively by Myerson [25]. Furthermore, the optimal edltbon is monotone
and therefore truthful, but it cannot be computed in polyradtime unless BNP.
Itis therefore an appropriate example to explore the itagrpetween truthfulness
and computational complexity. It is a major open problemtiveeadeterministic
monotone PTAS exists for this probl@mA very recent breakthrough result [9]
shows that there exists a randomized truthful-in-expext®® TAS.

In contrast to the scheduling problem of unrelated machimethis special
case there exist truthful mechanisms that output an opaitadation. A concrete
example is the £x-Opr algorithm which outputs the lexicographically first opti-
mal allocation; the lexicographic order is with respectie lbads s, . .., w;,) of
the machines.

Theorem 6.1. [3] Lex-Opt is monotone

Proof. Letw = (ws,...,w,) be the workload vector computed by¥-Opt on
inputs = (sg,...,S). We consider the case when machineports a slower
speeds < s. Letw be the new schedule for inpst = (s, s.j). To show that
Lex-Opt is monotone we need to show thvgt< w;.

Clearly the optimal makespan of the new speed vector can notgase, i.e.
C(w,s) > C(w, s). Let's consider first the case whetdw, s) = C(w, s’). The
workload vectorw is the lexicographically first and therefore{-Opt will se-
lect this for speeds’. Clearly in this casew, = w;. In the other case, when
the makespa(w, s) is greater tharC(w, s), let's assume that machines the

W

bottleneck in scheduley, i.e., C(w,s) = 3 > C(w, s). But sincew is the
lexicographically-first optimal workload fag', we have thaC(w', s') < C(w, S),

and therefore;ﬁ <C(w,S) <C(w,9s) = % Again,w <w,. n

We next consider randomized approximation polynomiaktimechanisms
and then deterministic ones.

$We assume that a mechanism runs in polynomial time when hetallocation algorithm and
the payment algorithm run in polynomial time.

6.1 Randomized mechanisms

We will discuss 2 mechanisms in this section. The first mechans due to
Archer and Tardos [3] and has approximation ratio 3. Latexhar [2] improved
the randomized rounding procedure obtaining a 2-appraeimmechanism. The
second mechanism is due to Dhangwatnotai et al. [9] and isdoraized PTAS.
Both mechanisms are truthful-in-expectation and they hanides approach: they
create first a monotone fractional solution and then appndeomized rounding
procedure. The randomization is useful only to guarantgéftiiness and has no
implication on the approximation ratio.

A 2-approximate truthful in expectation mechanism [3,[2]
Given the speed vect@ = (sy,...,S,), the algorithm first computes the fol-
lowing threshold _
j
T = maxmin max{&, M} (1)
! ! S Z::1 S
which is a lower bound of the optimal makespafw, s).

GivenT_g, the algorithm computes a fractional assignment as folldias-
signs the jobs in non-increasing order with respect to giee, i.e.p; > ... > pm.

It first assigns as many jobs as possible to the fastest nasbithat its load be-
comes equal td g. It may have to assign a fraction of some job to achieve this
(thus the assignment is fractional). It continues the sameegaure for the re-
maining machines. The threshold is such that all jobs willaksigned to the
machines.

We now describe a randomized rounding procedure turn tieidraal alloca-
tion into an integral one: Pick a random numbeuniformly at random in [01].
Assume that task s fractionally assigned to machineandi + 1. If x;; > a then
assign the task to machimeotherwise assign it to machine

Theorem 6.2. The above algorithm is monotone.

Proof. All we need to prove is that the fractional workloads are ntone. This is
because the expected workload of every machine is equaé tivatbtional work-
load (sincex was chosen uniformly).

Assume now that a machingeports a smaller speegi< s and letw andw’
be the workload vectors. To show monotonicity we need to shpw w;. Let
s =pB- 5, forsomes > 1. The new threshold|; can only increase, but it can
be bounded by, < 8- Tig. If machinei had loadT g, thenw/ < T/; -5 <
B-Tg -8 <Tg-S=W.

If machinei was not full (that is, it had load less thapg), then it can at most
take the load that exceeded the previous machines. Nowhbahtesholdl;

has increased, the total workload on those machinesknth can only increase.
Therefore the workload of machimean only decrease. |

A PTAS truthful in expectation mechanism Very recently, Dhangwatnotai et
al. [9] suggested the following randomized PTAS, that ishtiwi in expectation.

The algorithm first groups the jobs of size thaffeli within a factor of 1+ ¢
from each other, for some small Then it smooths the jobs, i.e., it pretends
that every job has a size equal to the average of its groupn e algorithm
constructs a se® of allowable (fractional) partitions of jobs to the machsne
giving also a total ordering of these partitions. Then tlywathm optimizes over
the partitions inP. From the fractional partitio®, we get a fractional schedule
w(P), by giving to machine with theth slowest speed, theth smallest partition
set. Then using randomized rounding we get an integral stéedrinally we
replace the smoothed jobs with the real ones. The algorithes this by random
shufling.

Theorem 6.3. The above randomized PTAS is monotone.

Proof. Again it is enough to show that the fractional schedule ofghmothed
jobs is monotone.

Assume that machinereports a smaller speesl < s and lets = (s, s.)
ands = (s,s.) be the corresponding speed vectors. Let machive thek-th
slowest ins and thek’-th slowest ins’, with k' < k. Let us denote by = P(s)
andP’ = P(S) the corresponding partitions chosen by the algorithm th lbases.
Let us also denote by(P) = (w1(P), ..., wn(P)), the sorted (in increasing order)
workload vector with respect to the partitiéh We need to prove that, (P’) <
Wk(P)

Clearly the makespans satisBfw(P’), s') > C(w(P), s), since machine has
decreased its speed. Let us first assume that the schedutethby the partition
P, does not increase the makespandor.e. C(w(P), s') = C(w(P), s). Therefore
P’ = P and since the playerhas decreased its position in the sorted speed vector
S, itis Wi (P") = wie (P) < wy(P).

If the schedule induced by causes an increase of the makesparsfothen
the bottleneck is one of the machines in the positions betkeandk, say the
machine with index € [K’, K].

The workload of the machine in this position decreases, W) < wi(P)

because /
W';P) < CW(P),§) < CW(P), §) = "@.

Finally we getw (P’) < wi(P’) < wi(P) < w(P), as needed. m

6.2 Deterministic mechanisms

We now consider deterministic mechanisms for the relatedhmas problem.
We distinguish 2 cases: the case of fixed number of machinesvfich there is
a FPTAS for the non-mechanism-design version) and the dasgiable number
of machines (for which there is a PTAS but no FPTAS unlessP).

6.2.1 Fixed number of machines

Auletta et al.[[4] give the first deterministic polynomiake monotone algorithm
for the fixed number of machines problem. Their algorithm 4apfroximate.
The algorithm schedules optimally thdargest jobs, for some parameteand it
assigns the rest of the jobs in a greedy fashion. A centrait @ditheir approach
is that the greedy allocation is monotone for the specia edsen the speeds are
powers of 2. They first round down the originals speeds in kbsest power of 2,
and then apply their monotone algorithm.

This result was improved by Andelman et all [1] who gave a PEAS a
different mechanism FPTAS. The PTAS algorithm first modifies ¢#té/sof the
jobs to a seM’ as follows: It partitions the jobs into a sBtof big jobs, and a set
S of small jobs. A job is inB if its size is above some threshaold Then, jobs in
S are packed into chunks of size i [2, T] (the last chunk may have size than
T/2). Let us call the set of chunk®'. The working set of jobs is the merge of
the two setsM’ = BU S/, for which we find the optimal assignment applying the
lexicographically first optimal algorithmdx-Opr .

The algorithm is trivially monotone, as the constructiontted modified job
setM’ is independent of the speed vector and because kbt algorithm is
monotone, as we showed in Theorem 6.1.

Andelman et al![1] gave aflierent monotone FPTAS for the problem. The al-
gorithm takes any black-box algorithm with approximatiatio c and transforms
it to a monotone algorithm with approximatia(i + €), for everye > 0. They use
this on the FPTAS of [15].

The transformation is performed in 3 steps:

1. In the first step the algorithm produces a modified vectospefedsd as
follows: First it rounds the speeds down to powers of+(%). Then it
normalizes the vector such thét = 1. Finally, it rounds the machines that
are very slow, with respect to some threshbl (1 + €)t.

2. Inthe second step the algorithm performs an enumeratienedl the difer-
ent vectorsl’ with speeds (% €)', withi € {0, L}. For every such vectar’,
it applies the black-box algorithm. Finally it sorts the Wioads such that
the machine with theth smallest speed will get theth smallest workload.

3. In the final step, it tries all the sorted assignmentsl @nd outputs the
assignment that minimizes the makespan (choosing theolgsaphically
firstin case of ties).

6.2.2 Arbitrary number of machines

The following algorithm due to Andelman et &l [1] is basedtbe ideas of the
algorithm of Archer and Tardos (Sectibn6.1) and has appration ratio 5. To
overcome the problem of derandomizing imposed by monotyrticey modify
the speed set.

The currently best deterministic algorithm is due to Kovfi&]. The algo-
rithm first rounds the speeds down to the closest power ok2,d. = 2°9sJ,
Then it runs the well-known algorithm Longest Processingdifirst (LPT) on
the modified speed vectdr Finally, among machines of the same rounded speed,
the algorithm reorders the assigned work such #hat wi,;. The algorithm is
monotone and attains approximation ratio 2.8 [19]. The pobds monotonicity
is complicated and it is beyond the scope of this article.

7 Conclusions

The scheduling problem with its many facets is one of theimlgiproblems of
the area of Algorithmic Mechanism Design. There are mangr@sting open
problems, but we feel that the following are the most impurta

e Characterize the set of truthful mechanisms for unrelatechmas.

e Close the gap between the lower (2.61) and the uppebdund on the
approximation ratio for unrelated machines. Also impadriame the same
guestions about the fractional and randomized case.

e Give a deterministic PTAS mechanism for the related machmeblem or
prove that none exists.

References

[1] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximationamenisms
for scheduling selfish related machindheory of Computing Systey#(4):423—
436, 2007.

[2] Aaron Archer. Mechanisms for Discrete Optimization with Rational AgersD
thesis, Cornell University, January 2004.

[3] Aaron Archer and Eva Tardos. Truthful mechanisms for oneupater agents. In
42nd Annual Symposium on Foundations of Computer Science (FP&®s 482—
491, 2001.

[4] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giusepp@aRe De-
terministic truthful approximation mechanisms for scheduling related machines. |
Volker Diekert and Michel Habib, editorSTACSvolume 2996 ot ecture Notes in
Computer Scienggages 608—619. Springer, 2004.

[5] George Christodoulou, Elias Koutsoupias, and Annamaria Kovaeshihism de-
sign for fractional scheduling on unrelated machinesAutomata, Languages and
Programming: 34th International Colloquium (ICALR)ages 40-52, 2007.

[6] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A loagmd for
scheduling mechanisms. ACM-SIAM Symposium on Discrete Algorithms (SODA)
pages 1163-1170, 2007.

[7] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. Aatt@rization
of 2-player mechanisms for scheduling. Afgorithms - ESA 2008, 16th Annual
European Symposiumpages 297-307, 2008.

[8] E. H. Clark. Multipart pricing of public goodsPublic Choice 11:17-33, 1971.

[9] Peerapong Dhangwatnotai, Shahar Dobzinski, Shaddin DughmiTiamdRough-
garden. Truthful approximation schemes for single-parameter agemtsOCS
pages 15-24, 2008.

[10] Shahar Dobzinski and Mukund Sundararajan. On charactiemnsaof truthful mech-
anisms for combinatorial auctions and schedulingh@M Conference on Electronic
Commercepages 38-47, 2008.

[11] Tomas Ebenlendr, Marek Krcal, and Jiri Sgall. Graph balancirgpegial case of
scheduling unrelated parallel machines. In Shang-Hua Teng, eSiidA pages
483-490. SIAM, 2008.

[12] T. Groves. Incentives in teamEconometrica41:617—-663, 1973.

[13] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximatareme for
scheduling on uniform processors: Using the dual approximation appr&IAM
J. Comput.17(3):539-551, 1988.

[14] D.S. HochbaumApproximation algorithms for NP-hard problen®WS Publishing
Co. Boston, MA, USA, 1996.

[15] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithmsdioeduling
nonidentical processord. ACM, 23(2):317-327, 1976.

[16] Roberts Kevin. The characterization of implementable choice rudggregation
and Revelation of Preferencgsages 321-348, 1979.

[17] E. Koutsoupias and A. Vidali. A lower bound of+phi for truthful scheduling
mechanisms. IMathematical Foundations of Computer Science (ME@@pes
454-464, Krumlov, Czech Republic, 26-31 August 2007.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Annamaria Kovacs. Fast monotone 3-approximation algorithm foediding re-
lated machines. lIAlgorithms - ESA 2005, 13th Annual European Sympogiames
616-627, 2005.

Annamaria Kovacs.Fast Algorithms for Two Scheduling ProblemBhD thesis,
Universitat des Saarlandes, 2007.

Ron Lavi and Chaitanya Swamy. Truthful mechanism design for mutiedsional
scheduling via cycle monotonicity. IACM Conference on Electronic Commerce
(EC), 2007.

J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algoritmmsdheduling
unrelated parallel machineblathematical Programmingt6(1):259-271, 1990.

Pinyan Lu and Changyuan Yu. An improved randomized truthful raeigm for
scheduling unrelated machines.3MACS$pages 527-538, 2008.

Pinyan Lu and Changyuan Yu. Randomized truthful mechanismscfueduling
unrelated machines. WINE, pages 402—-413, 2008.

Ahuva Mu’alem and Michael Schapira. Setting lower bounds on finlriess. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Distgetdtidms
(SODA) pages 1143-1152, 2007.

Roger B. Myerson. Optimal auction desigdathematics of Operations Research
6(1):58-73, 1981.

N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazir&tgorithmic Game Theory
Cambridge University Press, 2007.

Noam Nisan and Amir Ronen. Algorithmic mechanism design (extendsttzaih).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory oigtiting
(STOC) pages 129-140, 1999.

Noam Nisan and Amir Ronen. Algorithmic mechanism desi@ames and Eco-
nomic Behavior35:166—-196, 2001.

Jean-Charles Rochet. A necessary arffigeant condition for rationalizability in a
guasilinear contextJournal of Mathematical Economic$6:191-200, 1987.

Michael E. Saks and Lan Yu. Weak monotonicityfites for truthfulness on convex
domains. IfProceedings 6th ACM Conference on Electronic Commerce, ({gg)es
286-293, 2005.

W. Vickrey. Counterspeculation, Auctions and Competitive Sealedées.Journal
of Finance pages 8-37, 1961.

	The scheduling problem
	Mechanism design
	Known mechanisms

	Truthfulness
	Upper bounds for the unrelated case
	Lower bounds for the unrelated case
	The case of 2 machines
	The case of 3 or more machines

	Related machines
	Randomized mechanisms
	Deterministic mechanisms
	Fixed number of machines
	Arbitrary number of machines

	Conclusions

