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Abstract

Scheduling on unrelated machines is one of the most general and classical variants of the task schedul-
ing problem. Fractional scheduling is the LP-relaxation of the problem, which is polynomially solvable
in the non-strategic setting, and is a useful tool to design deterministic and randomized approximation
algorithms.

The mechanism design version of the scheduling problem was introduced by Nisan and Ronen. In
this paper, we consider the mechanism design version of the fractional variant of this problem. We give
lower bounds for any fractional truthful mechanism. Our lower bounds also hold for any (randomized)
mechanism for the integral case. In the positive direction, we propose a truthful mechanism that achieves
approximation 3/2 for 2 machines, matching the lower bound. This is the first new tight bound on the
approximation ratio of this problem, after the tight bound of 2, for 2 machines, obtained by Nisan and
Ronen. For n machines, our mechanism achieves an approximation ratio of n+1

2
.

Motivated by the fact that all the known deterministic and randomized mechanisms for the problem,
assign each task independently from the others, we focus on an interesting subclass of allocation algo-
rithms, the task-independent algorithms. We give a lower bound of n+1

2
, that holds for every (not only

monotone) allocation algorithm that takes independent decisions. Under this consideration, our truthful
independent mechanism is the best that we can hope from this family of algorithms.

1 Introduction

Mechanism design is an important branch of Microeconomics and in particular of Game Theory. The
objective of a mechanism designer is to implement a goal, e.g., to sell an object to a set of potential buyers.
The problem derives from the fact that the designer may not be informed about some parameters of the
input. These values are controlled by selfish agents that may have incentive to misinform the designer, if
this can serve their atomic interests. The mechanism design approach concerns the construction of a game,
so that the outcome (equilibrium) of the game is the goal of the designer.

Task scheduling is one of the most important and well-studied problems in Computer Science, as it often
arises, in numerous forms, as a subproblem in almost every subfield of Computer Science. One of its most
classical and general variants is the scheduling on unrelated machines. In this setting, there are n machines1

and m tasks, and the processing time needed by machine i to perform task j is determined by the tij entry
of an n × m matrix t. A common objective is to assign the tasks to the machines in such a way, that the
maximum load of the machines (i.e., the makespan) is minimized.

[25] initiated the study of the mechanism design version of scheduling on unrelated machines. In this
form of the problem, the processing times that a machine i needs in order to execute the tasks (vector ti),

∗A preliminary version of this work appeared in [10]. The second author was partially supported by IST programs IST-
2005-15964 (AEOLUS) and IST-2008-215270 (FRONTS).

1In game-theoretic settings n is used to denote the number of the players, while in scheduling literature, usually m is used to
denote the cardinality of the machines set. In our case, the aforementioned sets coincide. We prefer to use the former notation,
in order to be compatible with the original paper [25].
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are private values that are known only to the corresponding machine. The machines are controlled by selfish
agents that aim at satisfying their own interests, and in the particular case they are unwilling to perform any
task. In order to motivate them to reveal their actual values, the classical approach adopted by mechanism
design is to introduce side payments, i.e., to hire the machines. A mechanism for this problem consists of an
allocation algorithm and a payment scheme. We are interested in bounding the approximation ratio of the
mechanism’s allocation algorithm.

In the classical version of the problem, each task must be assigned to exactly one machine. The LP-
relaxation of the problem, also known as fractional scheduling, concerns the version where instead of being
assigned to a single machine, each task can be split among the machines. Fractional variations of combina-
torial problems have been studied extensively in network optimization, e.g., routing splittable traffic or flow
problems.

The fractional scheduling problem can be formulated as a linear program and hence it can be solved
in polynomial time. LP-relaxation turns out to be a useful tool in the design of approximation algorithms
(both deterministic and randomized)2. Furthermore, it turned out to be a powerful technique to provide
randomized truthful mechanisms (see e.g. [19, 20, 3]). It is natural to ask how powerful LP-relaxation is in
the mechanism design framework.

In this paper we consider the mechanism design version of the fractional scheduling on unrelated machines.
An interesting fact is that while the non-strategic version of the problem is polynomially solvable, it turns
out that in the mechanism design version of the problem it cannot be solved exactly, even by non-polynomial
mechanisms (see Section 3). This means, that the additional properties that the allocation of a mechanism
needs to satisfy in contrast to a simple algorithm (cf. Section 2), do not allow us to achieve an exact
solution, even in non-polynomial time. Lower bounding fractional mechanisms is a nice approach to lower
bound randomized (and deterministic) mechanisms of the integral case. Our lower bound easily extends for
those cases (cf. Remark 3).

Task-Independence We are especially interested in a family of mechanisms that we call task-independent.
A task-independent algorithm is any algorithm that in order to allocate task j, only considers the processing
times tij , that concern the particular task. Such a consideration is motivated by the fact that (to the best of
our knowledge) all the known positive results for this problem (e.g., see the mechanisms in [22, 25]), and in
addition the mechanism that we propose in this paper, belong to this family of mechanisms. The question
that we address here is: how far can we go with task-independent algorithms?

1.1 Related Work

Scheduling on unrelated machines is a classical NP-hard problem. [21] gave a 2-approximation polynomial
time algorithm, while they also proved that the problem cannot be approximated (in polynomial time) within
a factor less than 3/2. The mechanism design version of the problem originates in the seminal work of [25].
They gave an n-approximation truthful mechanism and a lower bound of 2, while they conjectured the actual
bound to be n. [11] improved the lower bound to 1+

√
2 for 3 or more machines, and [15] to 1+φ ≈ 2.618 for

n machines. Narrowing the gap between the lower and the upper bound still remains a big open question.
[20] studied the case where for every task there are two possible running times for every machine. They
came up with a 2-approximation truthful mechanism, while they showed a lower bound of 1.14.

Randomization usually reduces the approximation ratio and that is also the case for this problem. [25]
proposed a randomized mechanism for 2 machines with approximation ratio 7/4. [22] generalized this to a
7
8n-approximation randomized truthful mechanism for n machines. In the same work, they also gave a lower
bound of 2 − 1/n for randomized mechanisms. Notice that all the known lower bounds for this problem
(both deterministic and randomized) follow due to the infrastructure of truthful mechanisms, and do not
reside in any computational assumption; consequently they hold even for non-polynomial time mechanisms.

From the mechanism design point of view, scheduling on related machines, was first studied by [4]. In this
variant of the problem, the private parameter for each machine, is a single value (its speed). [4] characterized
the class of truthful mechanisms for this setting, in terms of a monotonicity condition of the mechanism’s
allocation algorithm. A similar characterization for one-parameter mechanism design problems (single item

2In fact, it has been used in order to obtain the 2-approximation algorithm in [21].
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auction) can also be found in [23]. For this problem, it turns out that the optimal allocation algorithm can
be modified to be a truthful mechanism. [4] gave a randomized truthful 3-approximation algorithm, which
was later improved to a 2-approximation by [2]. For a fixed number of machines, [5] gave a deterministic
truthful 4-approximation algorithm, and [1] improved this by giving an FPTAS. [1] gave the first deterministic
polynomial mechanism for the problem, for any number of machines, with an approximation ratio of 5. [16]
improved this by giving a 3-approximation deterministic truthful mechanism, while finally the ratio was
reduced to 2.8 [17].

In the field of Combinatorial Auctions, a wide variety of combinatorial optimization problems has been
considered from the mechanism design point of view (see for example [3, 7, 9, 12, 13, 6] and references
within). In this context, [26] characterized the class of truthful mechanisms for combinatorial auctions with
convex valuations, generalizing results of [8, 14, 18].

1.2 Our results

In this paper, we consider the mechanism design version of fractional scheduling on unrelated machines. We
give a 2 − 1/n lower bound on the approximation ratio that can be achieved by any truthful mechanism.
This result shows that even in the case of such a problem, for which the non-strategic version can be solved
exactly in polynomial time, its mechanism design analog may turn out to be impossible to be solved exactly,
even by non-polynomial mechanisms. Notice that giving a lower bound for fractional mechanisms is another
way to obtain lower bounds for randomized mechanisms for the integral case. Our 2 − 1/n lower bound
extends the lower bound of [22] to the class of fractional mechanisms. Note that a fractional mechanism is
more powerful than a randomized mechanism for the integral case, since it has the flexibility to split a task
among many machines, while a randomized mechanism, finally, has to assign the whole task to a machine,
and this affects its approximation ratio. Based on the above observation, Remark 3 explains how the lower
bound for the fractional mechanisms, can be extended for the randomized mechanisms for the integral case.

In the positive direction, we give a truthful mechanism with approximation ratio 3/2 for 2 machines,
which matches our lower bound. This is the first new tight bound that we have for any variant of the
problem, after the tight bound of 2 in the integral case, obtained for 2 machines in the original paper of [24].
The generalization of our mechanism for n machines gives us an approximation ratio of n+1

2 .
Next we turn our attention to a family of mechanisms that we call task-independent. This family consists

of mechanisms, where the decision for the assignment of a task, depends only on the processing times that
concern the particular task (time column that corresponds to the task). Considering task-independence is
motivated by the fact that all known ’reasonable’ deterministic and randomized mechanisms for this problem
are task-independent. Furthermore, this sort of independence has attractive properties: easy to design by
applying methods for one-parameter auctions, fits well with on-line settings, where tasks may appear one-
by-one. It is natural to ask if there is room for improvement on the approximation ratio by use of such
mechanisms. We extend this question for the class of task-independent algorithms that need not satisfy the
additional properties imposed by truthfulness. We give a lower bound of n+1

2 on the approximation ratio
of any algorithm that belongs to this class. Our mechanism is also task-independent, and hence is optimal
over this family of algorithms.

2 Problem definition

In this section we fix the notation that we will use throughout the paper, furthermore we give some prelim-
inary definitions and cite relevant results.

There are n machines and m tasks. Each machine i ∈ [n] needs tij units of time to perform task j ∈ [m].
We denote by ti the row vector corresponding to machine i, and by tj the column vector of the running times
of task j. We assume that each machine i ∈ [n] is controlled by a selfish agent that is ’lazy’, and therefore
reluctant to perform any operation, and vector ti is private information known only to her. The vector ti
is also called the type of agent i. In the most general version of the problem, the set Ti of possible types of
agent i consists of all vectors bi ∈ R

m
+ .

Any mechanism defines for each player i a set Ai of available strategies, the player (agent) can choose
from. We will consider direct revelation mechanisms, i.e., Ai = Ti for all i, meaning that the players strategies

3



are to simply report their types to the mechanism. A player may report a false vector bi 6= ti, if this serves
his interests.

A mechanism M = (x, p) consists of two parts:

An allocation algorithm: The allocation algorithm x, depends on the players’ bids b = (b1, . . . , bn), with
0 ≤ xij ≤ 1 denoting the fraction of task j that is assigned to the machine i. In the unsplittable case,
these variables take only integral values xij = {0, 1}. Every task must be completely assigned to the
machines’ set, so

∑

i∈[n] xij = 1, ∀j ∈ [m].

A payment scheme: The payment scheme p = (p1, . . . , pn), also depends on the bid values b. The functions
p1, . . . , pn stand for the payments that the mechanism hands to each agent.

The utility ui of a player i is the payment that he gets minus the actual time that he needs in order to
execute the set of tasks assigned to her, ui(b) = pi(b) −

∑

j∈[m] tijxij(b).
We are interested in truthful mechanisms. A mechanism is truthful, if for every player, reporting his true

type is a dominant strategy. Formally,

ui(ti, b−i) ≥ ui(t
′
i, b−i), ∀i ∈ [n], ti, t

′
i ∈ Ti, b−i ∈ T−i,

where T−i denotes the possible types of all players disregarding i.
We remark here, that once we adopt the solution concept of dominant strategies, focusing on direct

revelation and in particular on truthful mechanisms is not at all restrictive, due to the Revelation Principle.
Roughly, the Revelation Principle states that any problem that can be implemented by a mechanism with
dominant strategies, can also be implemented by a truthful mechanism (cf. [23, 25]).

The objective function that we consider in order to evaluate the performance of a mechanism’s allocation
algorithm, is the maximum load of a machine (makespan). The makespan of the allocation algorithm x with
respect to a given input t is

Mech(t)
def
= max

i∈[n]

∑

j∈[m]

tijxij(t).

Since we aim at minimizing the makespan, the optimum is

Opt(t) = min
x

max
i∈[n]

∑

j∈[m]

tijxij .

We are interested in the approximation ratio of the mechanism’s allocation algorithm. A mechanism M is

c-approximate, if the allocation algorithm is c-approximate, that is, if c ≥ Mech(t)
Opt(t) for all possible inputs t.

Although our mechanism is polynomially computable, we do not aim at minimizing the running time of
the algorithm; we are looking for mechanisms with low approximation ratio. Our lower bounds also don’t
make use of any computational assumptions.

A useful characterization of truthful mechanisms in terms of the following monotonicity condition, helps
us to get rid of the payments and focus on the properties of the allocation algorithm.

Definition 1. An allocation algorithm is called monotone3 if it satisfies the following property: for every
two input matrices t and t′ which differ only on machine i (i.e., on the i-th row) the associated allocations
x and x′ satisfy

(xi − x′
i) · (ti − t′i) ≤ 0,

where ’·’ denotes the dot product of the vectors, that is,

∑

j∈[m]

(xij − x′
ij)(tij − t′ij) ≤ 0.

The following theorem states that every truthful mechanism has to satisfy the monotonicity condition.
It was used by [25] in order to obtain their lower bounds.

Theorem 1. [25] Every truthful mechanism is monotone.

3Also known as weakly monotone.
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[26] proved that in the combinatorial auctions setting with convex valuations, monotonicity is also a suf-
ficient condition (i.e., there exist payments that can make a monotone algorithm into a truthful mechanism).

For the one-parameter case, that is when every agent has a single value to declare (e.g., the speed of
her machine), [23] (for auction setting) and [4] (for scheduling setting), showed that the monotonicity of the
(allocation) algorithm is a necessary and sufficient condition for the existence of a truthful payment scheme.
In this case they also provide an explicit formula for the payments. In their theorem cited below, the notion
of a decreasing output function corresponds to a monotone algorithm in the one-parameter setting.

Theorem 2. [23, 4] The output function admits a truthful payment scheme if and only if it is decreasing.
In this case the mechanism is truthful if and only if the payments pi(bi, b−i) are of the form

hi(b−i) + bixi(bi, b−i) −
∫ bi

0

xi(u, b−i) du

where the hi are arbitrary functions.

In the original notation of [4], bi is the declared load (running time) per unit work of agent i, and xi

would stand for the work allocated to the agent. Observe that this conforms to our notation: given a single
job, bi is the declared running time of ’one unit of’ this job, while the fraction xi is, indeed, the amount that
agent i gets from the job.

3 Lower bound for truthful mechanisms

Here we will give a lower bound on the approximation ratio of any fractional truthful mechanism.

Theorem 3. There is no deterministic truthful mechanism that can achieve an approximation ratio better
than 2 − 1

n , where n is the number of the machines.

Proof. Let m = n + 1, and t be the actual time matrix of the players as below

tij =







0, j = i
1, j = n + 1
A, otherwise.

Let x = x(t) be the corresponding allocation that a truthful mechanism M = (x, p) gives with respect to t.
Clearly, there is a player k ∈ [n], with xk,n+1 ≥ 1

n . Now, consider the behaviour of the allocation mechanism
for the following time matrix as an input

t′ij =







1
n−1 , i = j = k

1 − ε, i = k, j = n + 1
tij , otherwise.

For significantly large values of A, with both inputs t and t′, player k gets substantially the whole portion
of task k, otherwise the approximation ratio is high, e.g., for A = 2

δ , both xkk and x′
kk are at least 1−(n−1)δ,

otherwise the approximation ratio is at least 2. Consequently, |xkk − x′
kk| ≤ (n − 1)δ.

The following claim states that due to monotonicity, the mechanism cannot assign to player k a substan-
tially smaller portion of the n + 1st task than 1

n .

Claim 1. If xk,n+1 ≥ 1
n , then for the allocation x′ = x(t′) on input t′ it holds that x′

k,n+1 ≥ 1
n − ε.

Proof. Due to the monotonicity condition (Theorem 1), for every player i ∈ [n] holds that

∑

j∈[m]

(tij − t′ij)(xij − x′
ij) ≤ 0

and by applying this to the k-th player we get

(0 − 1

n − 1
)(xkk − x′

kk) + (1 − 1 + ε)(xk,n+1 − x′
k,n+1) ≤ 0,
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from which we get

x′
k,n+1 ≥ xk,n+1 +

x′
kk − xkk

ε(n − 1)
≥ xk,n+1 −

δ

ε
≥ 1

n
− δ

ε

and for δ = ε2 we finally obtain

x′
k,n+1 ≥ 1

n
− ε.

On the other hand, an optimal allocation x∗ for t′ is

x∗
ij =















1, j = i
0, i = k, j = n + 1

1
n−1 , i 6= k, j = n + 1

0, otherwise

providing optimal makespan 1
n−1 , while the mechanism gives player k a total load of at least

(1 − (n − 1)δ)
1

n − 1
+

(

1

n
− ε

)

(1 − ε) >
1

n − 1
+

1

n
− δ − ε

(

n + 1

n

)

.

For arbitrary small ε, this finally gives an approximation ratio of at least 2 − 1
n .

Remark. Consider a randomized (integral) mechanism. Let t be any input, and xij denote the probability
that machine i receives job j from the mechanism. The expected execution time of i is then given by
∑

j∈[m] tijxij . If the mechanism is truthful in expectation, then formally the monotonicity requirement of
Definition 1 has to be fulfilled.

Observe that in a randomized mechanism the expected makespan is at least the maximum expected finish
time over the machines (i.e., the makespan of the corresponding fractional mechanism). Still, a lower bound
for fractional mechanisms does not automatically imply the same bound for randomized mechanisms, since
in the latter case the (integral) optimum makespan may be higher. However, our lower bound can be easily
modified so as to hold for any mechanism that is truthful in expectation. The only modification one needs
to make is to substitute the n + 1-st job of the construction with n · (n − 1) jobs of the same value tij = 1;
our new instance will have n + n(n− 1) tasks in total. Following the lines of the previous proof, there exists
a player k with

∑

j>n xkj ≥ n − 1. Modify the input as follows

t′ij =







n, i = k, j = i
1 − ε, i = k, j > n

tij , otherwise.

By using a claim analogous to Claim 1 in a straight-forward manner, we can deduce that essentially player
k will take the same fraction of jobs n + 1, . . . , n(n + 1), while he has to keep also task k, and therefore the
makespan of the mechanism is at least 2n − 1, while the optimum makespan is n. Note that there exists an
integral optimum in this instance, and therefore the lower bound holds for randomized mechanisms.

4 The truthful mechanism

We describe a truthful mechanism, called Square, for the fractional scheduling problem, with approximation
ratio n+1

2 . On two machines this ratio becomes 3/2, so in this case Square has the best possible worst case
ratio w.r.t. truthful mechanisms. Furthermore, in Section 5 we will show that for arbitrary number of
machines, our mechanism is optimal among the so called task-independent algorithms.

Next, we define the mechanism4 Square= (xSq, pSq). Recall that bij is the reported value for tij , the
actual execution time of task j on machine i.

4In most of the section we will omit the superscripts Sq
.
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Definition 2 (The mechanism Square= (xSq, pSq)).

Allocation algorithm: Let bj = (b1j , b2j , . . . , bnj)
T be the jth column-vector of the input matrix. If bj

has at least one zero coordinate, then Square distributes the jth task among machines having zero
execution time arbitrarily. If bij 6= 0 (i ∈ [n]), then the fraction of the jth task allocated to machine i
is

xSq
ij (b) = xij(b) =

∏

k 6=i b2
kj

∑n
l=1

∏

k 6=l b
2
kj

. (1)

Payment scheme: Let the constants cij be defined as

cij =

∏

k 6=i bkj
√

∑

l 6=i

∏

k 6=l,i b2
kj

,

then the payments pSq = (p1, . . . , pn) to the agents are

pi(b) =
m
∑

j=1

pij(b),

where

pij(b) = bij ·
c2
ij

b2
ij + c2

ij

+ cij ·
π

2
− cij arctan

bij

cij
.

The algorithm xSq of Square allocates the tasks individually (independently), and so that the fractions
of task j assigned to machines 1, 2, . . . , n are inversely proportional to the squares of (declared) execution
times of j on the respective machines. For instance, for two machines (1) boils down to

x1j =
b2
2j

b2
1j + b2

2j

; x2j =
b2
1j

b2
1j + b2

2j

.

For arbitrary n it is obvious that 0 ≤ xij ≤ 1, and
∑n

i=1 xij = 1. It is easy to see that Square is monotone:
Let the input matrix b be changed only on the ith row, that is, for any fixed task j, just the entry bij may
change. Assume first that in the column-vector bj all execution times are nonzero. Observe that the variable
bij appears only in the denominator of the expression (1), namely as b2

ij , having a positive coefficient. Thus,

xij does not increase when bij increases, and vice versa. It is easy to see that the same holds if in bj there are
zero entries other than bij , and similarly, if bij was, or just became the only zero entry. Thus, we obtained
that for every single one-parameter problem bj , the assignment is monotone, and this, in turn, implies weak
monotonicity (see Definition 1) for xSq.

Now consider pSq. For two machines, the constant cij is simply the bid of the other machine for this job,
that is, c1j = b2j and c2j = b1j . In general, for any number of machines it holds that xij = c2

ij/(b2
ij + c2

ij);
so to speak cij would be the ’bid’ of a single other machine, if we replaced the machines [n]\{i} with one
machine.

Let us fix a machine i. The payment pi(b) is defined to be the sum of the payments that agent i would get
for performing each (fractional) task independently, as determined for truthful mechanisms for one-parameter
agents by Theorem 2:

pi(bi, b−i) = hi(b−i) + bixi(bi, b−i) −
∫ bi

0

xi(u, b−i) du.

Here the hi(b−i) are arbitrary constants. If we want that the so called voluntary participation [4] of the players
is ensured (i.e., it is worth taking part in the game), then hi can be chosen to be hi =

∫∞

0
xi(u, b−i) du, so

that eventually we get
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pi(bi, b−i) = bixi(bi, b−i) +

∫ ∞

bi

xi(u, b−i) du, (2)

for the one-parameter case. We show that applying this formula for each task individually, leads to the
payments specified by Definition 2. Assume now that task j is fixed. For this task, the reported execution
time bi becomes bij , whereas the assigned fraction of work xi, becomes xij . Now it is straightforward to
check that for task j the formula (2) yields

pij(b) = bijxij +

∫ ∞

bij

xij(u) du

= bij ·
c2
ij

b2
ij + c2

ij

+

∫ ∞

bij

c2
ij

u2 + c2
ij

du

= bij ·
c2
ij

b2
ij + c2

ij

+

[

cij arctan
u

cij

]∞

bij

= bij ·
c2
ij

b2
ij + c2

ij

+ cij ·
π

2
− cij arctan

bij

cij
.

Theorem 4. The mechanism Square is truthful.

Proof. To put it short, truthfulness follows from the fact that Square is the sum of m independent truthful
mechanisms for the one-parameter problem. Here, we give an elementary proof for strong truthfulness. We
need to show that for any machine i, true time vector ti, and bid vectors of the other machines b−i, it holds
that

ui(ti, b−i) ≥ ui(bi, b−i) ∀bi ∈ Ti,

and the inequality is strict for bi 6= ti. Substituting the definition of utility ui, and then considering the
payments for each job separately, now our goal is to prove

pi(ti, b−i) −
∑

j∈[m]

tijxij(ti, b−i) ≥ pi(bi, b−i) −
∑

j∈[m]

tijxij(bi, b−i)

∑

j∈[m]

(pij(ti, b−i) − tijxij(ti, b−i)) ≥
∑

j∈[m]

(pij(bi, b−i) − tijxij(bi, b−i)).

We claim that the inequality holds for every task j ∈ [m], that is,

pij(ti, b−i) − tijxij(ti, b−i) ≥ pij(bi, b−i) − tijxij(bi, b−i),

with strict inequality if tij 6= bij . Assume that there exist i, j, ti, b−i and bi so that

pij(ti, b−i) − tijxij(ti, b−i) ≤ pij(bi, b−i) − tijxij(bi, b−i).

Plugging in the formulae for the payments pij and the assigned work xij ,

tij ·
c2
ij

t2ij + c2
ij

+ cij ·
π

2
− cij arctan

tij
cij

− tij
c2
ij

t2ij + c2
ij

≤

bij ·
c2
ij

b2
ij + c2

ij

+ cij ·
π

2
− cij arctan

bij

cij
− tij

c2
ij

b2
ij + c2

ij

,

which reduces to

arctan
bij

cij
− arctan

tij
cij

≤ (bij − tij) ·
cij

b2
ij + c2

ij

.
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Equality holds if bij = tij . Now suppose that bij > tij . Applying the Mean-Value theorem, we obtain that
for some tij < η < bij ,

(

arctan
y

cij

)′

y=η

=
arctan

bij

cij
− arctan

tij

cij

(bij − tij)
≤ cij

b2
ij + c2

ij

.

And this solves to

1
η2

c2

ij

+ 1
· 1

cij
≤ cij

b2
ij + c2

ij

,

1

η2 + c2
ij

≤ 1

b2
ij + c2

ij

,

a contradiction, since η < bij . If bij < tij , then we obtain 1
η2+c2

ij

≥ 1
b2

ij
+c2

ij

, which contradicts bij < η < tij .

Thus, our mechanism is strongly truthful, since any bid b 6= t leads to strictly less utility, than truth
telling.

4.1 Approximation ratio

Let Squ(t) be the makespan of the schedule produced by Square on input t, and Opt(t) denote the optimum

makespan. In what follows, we show that Squ(t)
Opt(t) ≤ n+1

2 for any matrix t. The next lemma will largely simplify

the upper-bound proof:

Lemma 1. If there exists an input instance t, such that Squ(t)/Opt(t) = α, then there also exists an
instance t∗, for which Squ(t∗)/Opt(t∗) = α, such that there is an optimal allocation of t∗ that does not split
any job.

Proof. Suppose that t is an input matrix and there is a task (i.e., column-vector) tj = τ = (τ1, τ2, . . . , τn)T

in t that is distributed by some optimal allocation Opt according to ν = (ν1, ν2, . . . , νn)T where νi < 1 ∀i,
and

∑n
i=1 νi = 1. We can assume that τi > 0 for every machine i, otherwise it is trivial to assign the job

to only one machine in an optimal allocation. Now we construct the new instance t∗, by introducing n new
tasks in place of task τ, namely tasks corresponding to the column-vectors ν1 · τ, ν2 · τ, . . . , νn · τ.

We claim that Opt(t) = Opt(t∗), and this optimum can be obtained without splitting the new jobs.
Notice first, that it yields the original optimum makespan Opt(t), if we allocate the first task completely
to the first machine, the second one completely to the second machine, and so on. Indeed, the execution
times on the machines due to the new jobs are then (ν1 · τ1, ν2 · τ2, . . . , νn · τn)T , which is the same as the
execution times due to job τ in the allocation Opt.

On the other hand, suppose that on input t∗ some schedule Opt∗ yields a better makespan than Opt(t),
where Opt∗ splits the new jobs according to the distributions











ξ11

ξ21

...
ξn1











,











ξ12

ξ22

...
ξn2











, · · · ,











ξ1n

ξ2n

...
ξnn











.

In this case, on input t keeping Opt∗ for the unchanged jobs, and then splitting τ according to the distribution
(
∑n

s=1 ξ1sνs,
∑n

s=1 ξ2sνs, . . . ,
∑n

s=1 ξnsνs)
T would yield a lower makespan than Opt(t) as well. Observe that

the distribution of τ is valid, since

n
∑

k=1

n
∑

s=1

ξksνs =

n
∑

s=1

νs · (
n
∑

k=1

ξks) =

n
∑

s=1

νs · 1 = 1.

Moreover, it would result in the same execution times as Opt∗ for the set of new jobs in t∗.
Finally, a straightforward calculation shows that Squ(t) = Squ(t∗) also holds. Given the input t∗, let us

consider the fraction of the sth new job on machine i as determined by the formula (1) for xSq. We get
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∏

k 6=i(νsτk)2
∑n

l=1

∏

k 6=l(νsτk)2
=

∏

k 6=i τ2
k

∑n
l=1

∏

k 6=l τ
2
k

.

Therefore, the execution time of this (fractional) task on machine i is

∏

k 6=i τ2
k

∑n
l=1

∏

k 6=l τ
2
k

· νsτi;

and the execution times of all new tasks on this machine total to

n
∑

s=1

(

∏

k 6=i τ2
k

∑n
l=1

∏

k 6=l τ
2
k

· νsτi

)

=

∏

k 6=i τ2
k

∑n
l=1

∏

k 6=l τ
2
k

· τi

n
∑

s=1

νs =

∏

k 6=i τ2
k

∑n
l=1

∏

k 6=l τ
2
k

· τi · 1.

This is the same as the running time of the fraction of task τ on machine i given the original input t.

Theorem 5. For the approximation ratio of Square, Squ(t)
Opt(t) ≤ n+1

2 holds, where n denotes the number of

machines, and t is an arbitrary set of input tasks.

Proof. Consider the input t. Due to the previous lemma, we can assume that the (indices of) tasks are
partitioned into the sets J1, J2, . . . , Jn, so that there is an optimal allocation Opt where job tj is allocated
completely to machine i, if and only if j ∈ Ji. We can also assume that tij > 0 for all i and j. Otherwise
we would have a job that adds zero execution time to the makespan in both the allocation of Square, and
of Opt, and removing this job from the input would not affect the approximation ratio. For the optimum
makespan it holds that

Opt(t) = max
i∈[n]

∑

j∈Ji

tij . (3)

For the running time of an arbitrary machine i in Square, we have

Squi(t) =

n
∑

r=1

∑

j∈Jr

xij(t)tij ,

where the xij(t) are defined by (1). We decompose the above expression as follows:

Squi(t) =
∑

j∈Ji

xijtij +
∑

r 6=i

∑

j∈Jr

xijtij .

We can upper bound the first sum using (3), and the fact that xij ≤ 1 :

∑

j∈Ji

xijtij ≤
∑

j∈Ji

1 · tij ≤ Opt(t).

Next we upper bound every sum of the form
∑

j∈Jr
xijtij (r 6= i), by 1

2 ·Opt(t). Since there are n− 1 such
sums, this will prove that

Squi(t) ≤ Opt(t) + (n − 1) · 1

2
· Opt(t) = (1 +

n − 1

2
) · Opt(t).

Since i was an arbitrary machine, eventually this implies

Squ(t) = max
i∈[n]

Squi(t) ≤ (1 +
n − 1

2
) · Opt(t).

The bound
∑

j∈Jr
xijtij ≤ 1

2 · Opt(t) can be proven as follows:
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∑

j∈Jr

xijtij =
∑

j∈Jr

∏

k 6=i t2kj
∑n

l=1

∏

k 6=l t
2
kj

· tij

=
∑

j∈Jr

tijtrj

∏

k 6=i,r t2kj
∑n

l=1

∏

k 6=l t
2
kj

· trj

=
∑

j∈Jr

tijtrj

t2ij + t2rj +
∑

l 6=i,r t2ijt
2
rj/t2lj

· trj

≤
∑

j∈Jr

tijtrj

t2ij + t2rj

· trj

≤
∑

j∈Jr

1

2
· trj (4)

=
1

2

∑

j∈Jr

trj

≤ 1

2
· Opt(t).

The inequality (4) follows from αβ
α2+β2 ≤ 1

2 , which holds for any two positive real numbers. The last

inequality is implied by (3).

Corollary 1. For two machines the truthful mechanism Square has approximation ratio 3/2, which is the
best worst case ratio we can expect from any truthful mechanism for the fractional scheduling problem.

5 Lower bound for independent algorithms

In this section we prove a lower bound of n+1
2 for the worst case ratio of independent fractional algorithms.

An algorithm is independent, if it allocates the tasks independently of each-other, or formally:

Definition 3. An allocation algorithm x is called task-independent, or simply independent, if the following
holds: If t and t′ are two n × m input matrices, such that for the jth task tij = t′ij (∀i ∈ [n]), then for this
task it also holds that xij = x′

ij (∀i ∈ [n]).

It is remarkable, that the currently known best mechanisms (in fact, any ’reasonable’ mechanism we
know of) are all independent, in the integral, the randomized, and the fractional case. It is not difficult to
come up with independent (suboptimal) algorithms, which are also weakly monotone. However it seems to
be an intriguing question, whether there exist non-inependent, and still monotone algorithms having better
approximation ratio than the best independent ones. We note that in the integral case it is easy to construct
an instance with n machines and n2 tasks, that proves a lower bound of n (i.e., tight bound) for independent
algorithms: Consider a task-independent algorithm for the integral problem, and the input matrix where
tij = 1 for all i ∈ [n] and j ∈ [n2]. By the pigeonhole principle, the algorithm allocates at least n jobs to
one of the machines. Assume w.l.o.g. that this is the first machine, and it receives (at least) the first n
jobs. Now we set every tij = 0 for all jobs j > n, and keep tij = 1 if j ≤ n. Due to the independence, the
first machine still receives the first n tasks, and the makespan becomes n, whereas the optimum makespan
is obviously 1.

Theorem 6. If x is an independent fractional allocation algorithm for the unrelated machines problem, then
it has approximation ratio of at least n+1

2 , where n denotes the number of machines.

Proof. In order to obtain the lower bound, consider the following input matrix with n ≥ 2 machines and
m = 1 +

(

n
2

)

tasks. The first task has execution time 0 on every machine; furthermore, for all
(

n
2

)

possible
pairs of machines (i1, i2) there is a task j with ti1j = ti2j = 1 and tij = A for i 6∈ {i1, i2} :
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t =



















0 1 1 · · · 1 A · · · A
0 1 A · · · A 1 · · · A
0 A 1 · · · A 1 · · · A
...

...
...

0 A A · · · A A · · · 1
0 A A · · · 1 A · · · 1



















.

By setting A to a large enough number, we can ensure – similar to the proof of Theorem 3 – that the
corresponding share of a player of a certain task is arbitrarily small, otherwise the approximation ratio gets
too large. That is, we can assume that the bulk of any job is allocated to the machines having execution
time 1 for this job.

Let us consider an arbitrary independent algorithm x. Observe that no matter how x allocates the above
tasks, the total running time of all the jobs cannot be less than

(

n
2

)

. Thus, there exists a machine, say the

first one, with running time at least
(

n
2

)

/n = n−1
2 . Now we modify the instance t to t′ as follows: we keep

the original execution times of tasks that had running time 1 on the first machine, and zero out all other
tij ; furthermore, the very first task will now have execution time 1 on the first machine, and A on other
machines.

t′ =



















1 1 1 · · · 1 0 0 · · · 0
A 1 A · · · A 0 0 · · · 0
A A 1 · · · A 0 0 · · · 0
...

...
...

...
...

...
A A A · · · A 0 0 · · · 0
A A A · · · 1 0 0 · · · 0



















As noted above, on instance t at least n−1
2 − ε running time on the first machine was due to jobs that

have execution time 1 on this machine, i.e., to the jobs 2, . . . , n. Since the algorithm x is task-independent,
on input instance t′ the first machine gets the same allocation over jobs 2, . . . , n, and also gets a (1 − ε)
fraction of job 1, achieving a running time of at least 1 + (n − 1)/2 − 2ε, for any ε > 0. On the other hand,
it is clear that the optimal allocation has makespan 1.

Corollary 2. The mechanism Square has optimal approximation ratio among all independent mechanisms.

It can be shown that among all allocations where the distribution of task j is proportional to (t−α
1j , t−α

2j , . . . , t−α
nj )

for some α > 0, the above optimal approximation ratio is obtained if and only if α = 2. We sketch the proof
of this statement next. In the general case

xij(t) =

∏

k 6=i tαkj
∑n

l=1

∏

k 6=l t
α
kj

.

Consider the proof of Theorem 5, and denote by c the quotient tij/trj in the inequality (4). Now the
same argument implies a worst case ratio of 1 + (n − 1) · B, where B is an upper bound on c/(cα + 1) for
all c > 0. The function f(c) = c/(cα + 1) is unbounded for α < 1 (B = ∞), resp. is bounded by B = 1 for
α = 1; for α > 1 it has its only maximum in c = (α − 1)−1/α (that is, B = f((α − 1)−1/α).

The worst case ratio obtained this way is ’tight’ as shown by the following input to the mechanism:

t =



















1 C C · · · C
∞ 1 ∞ · · · ∞
∞ ∞ 1 · · · ∞
...

...
...

∞ ∞ ∞ · · · ∞
∞ ∞ ∞ · · · 1
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The optimal allocation of this input has makespan 1, while our mechanism assigns a running time of
1 + (n − 1) · 1

Cα+1 · C to the first machine. Setting C −→ ∞ proves that the mechanism has unbounded
worst case ratio for α < 1, respectively a worst case ratio of 1 + (n − 1) · 1 = n for α = 1. If α > 1, then let

C = (α − 1)−1/α. This implies a makespan of 1 + (n − 1) · [(α − 1)
α−1

α /α]. The term (α − 1)
α−1

α /α has its
minimum (of value 1

2 ) at α = 2. For any other α, the approximation ratio on the given input is larger than
1 + (n − 1) · 1

2 .

6 Conclusion

In this paper, we discuss the application of mechanism design for the fractional scheduling problem on
unrelated machines. We give a lower bound on the approximation ratio of truthful mechanisms, and we
come up with a matching upper bound for 2 machines. The generalization of our mechanism gives us an
upper bound that is linear in the number of the machines. After that, we focus on an interesting class of
mechanisms with appealing properties, i.e. task-independent mechanisms. We obtain a lower bound on the
approximation ratio of any algorithm in this class. This bound shows that our mechanism is optimal w.r.t.
this class.

In all the versions of the scheduling on unrelated machines (i.e. fractional, randomized, integral), we have
a constant lower bound and an upper bound that is linear in the number of the machines. [25], conjectured
that for the integral case, there is no deterministic mechanism that can achieve a better approximation ratio.
For special cases, we know that fractional and randomized mechanisms can attain a better preformance. But
is this asymptotically true? Can we hope to construct fractional and randomized mechanisms with sublinear
approximation factor, even in exponential running time? Our lower bound for task-independent algorithms,
shows that in order to improve the performance, we need to consider more sophisticated mechanisms, that
exploit the input information in a more global way. Thus, we also need to come up with new techniques
that overcome the monotonicity constraints imposed by truthfulness.
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[16] Annamária Kovács. Fast monotone 3-approximation algorithm for scheduling related machines. In
Algorithms - ESA 2005, 13th Annual European Symposium, pages 616–627, 2005.
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