Mechanism design for fractional scheduling on
unrelated machines

GEORGE CHRISTODOULOU
Max-Planck-Institut fiir Informatik

ELIAS KOUTSOUPIAS

Department of Informatics, University of Athens
and

ANNAMARIA KOVACS

Max-Planck-Institut fiir Informatik

Scheduling on unrelated machines is one of the most general and classical variants of the task
scheduling problem. Fractional scheduling is the LP-relaxation of the problem, which is poly-
nomially solvable in the non-strategic setting, and is a useful tool to design deterministic and
randomized approximation algorithms.

The mechanism design version of the scheduling problem was introduced by Nisan and Ronen.
In this paper, we consider the mechanism design version of the fractional variant of this problem.
We give lower bounds for any fractional truthful mechanism. Our lower bounds also hold for any
(randomized) mechanism for the integral case. In the positive direction, we propose a truthful
mechanism that achieves approximation 3/2 for 2 machines, matching the lower bound. This is
the first new tight bound on the approximation ratio of this problem, after the tight bound of
2, for 2 machines, obtained by Nisan and Ronen. For n machines, our mechanism achieves an
approximation ratio of "TH

Motivated by the fact that all the known deterministic and randomized mechanisms for the
problem, assign each task independently from the others, we focus on an interesting subclass of
allocation algorithms, the task-independent algorithms. We give a lower bound of "T'H, that holds
for every (not only monotone) allocation algorithm that takes independent decisions. Under this
consideration, our truthful independent mechanism is the best that we can hope from this family
of algorithms.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]|: Se-
quencing and scheduling

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: truthful mechanisms, scheduling, unrelated machines

Authors’ address: G. Christodoulou, Max-Planck-Institut flir Informatik, Campus E1 4, 66123
Saarbriicken, Germany, email: gchristo@mpi-inf.mpg.de.

E. Koutsoupias, Department of Informatics, University of Athens, Panepistimiopolis, Ilissia,
Athens 15784, Greece, elias@di.uoa.gr.

A. Kovacs, Max-Planck-Institut fiir Informatik, Campus E1 4, 66123 Saarbriicken, Germany,
email: panni@mpi-inf.mpg.de.

A preliminary version of this work appeared in [Christodoulou et al. 2007]. The second au-
thor was partially supported by IST programs IST-2005-15964 (AEOLUS) and IST-2008- 215270
(FRONTS).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY /0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-18.

2 : George Christodoulou et al.

1. INTRODUCTION

Mechanism design is an important branch of Microeconomics and in particular of
Game Theory. The objective of a mechanism designer is to implement a goal, e.g.,
to sell an object to a set of potential buyers. The problem derives from the fact
that the designer may not be informed about some parameters of the input. These
values are controlled by selfish agents that may have incentive to misinform the
designer, if this can serve their atomic interests. The mechanism design approach
concerns the construction of a game, so that the outcome (equilibrium) of the game
is the goal of the designer.

Task scheduling is one of the most important and well-studied problems in Com-
puter Science, as it often arises, in numerous forms, as a subproblem in almost every
subfield of Computer Science. One of its most classical and general variants is the
scheduling on unrelated machines. In this setting, there are n machines’ and m
tasks, and the processing time needed by machine i to perform task j is determined
by the ¢;; entry of an n x m matrix ¢t. A common objective is to assign the tasks
to the machines in such a way, that the maximum load of the machines (i.e., the
makespan) is minimized.

Nisan and Ronen [2001] initiated the study of the mechanism design version of
scheduling on unrelated machines. In this form of the problem, the processing times
that a machine i needs in order to execute the tasks (vector t;), are private values
that are known only to the corresponding machine. The machines are controlled by
selfish agents that aim at satisfying their own interests, and in the particular case
they are unwilling to perform any task. In order to motivate them to reveal their
actual values, the classical approach adopted by mechanism design is to introduce
side payments, i.e., to hire the machines. A mechanism for this problem consists of
an allocation algorithm and a payment scheme. We are interested in bounding the
approximation ratio of the mechanism’s allocation algorithm.

In the classical version of the problem, each task must be assigned to exactly one
machine. The LP-relaxation of the problem, also known as fractional scheduling,
concerns the version where instead of being assigned to a single machine, each task
can be split among the machines. Fractional variations of combinatorial problems
have been studied extensively in network optimization, e.g., routing splittable traffic
or flow problems.

The fractional scheduling problem can be formulated as a linear program and
hence it can be solved in polynomial time. LP-relaxation turns out to be a useful
tool in the design of approximation algorithms (both deterministic and random-
ized)?. Furthermore, it turned out to be a powerful technique to provide random-
ized truthful mechanisms (see e.g. [Lavi and Swamy 2005; 2007; Archer et al.

In Game-theoretic settings n is used to denote the number of the players, while in scheduling
literature, usually m is used to denote the cardinality of the machines set. In our case, the
aforementioned sets coincide. We prefer to use the former notation, in order to be compatible
with the original paper [Nisan and Ronen 2001].

2In fact, it has been used in order to obtain the 2-approximation algorithm in [Lenstra et al. 1990].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines : 3

2003]). It is natural to ask how powerful LP-relaxation is in the mechanism design
framework.

In this paper we consider the mechanism design version of the fractional schedul-
ing on unrelated machines. An interesting fact is that while the non-strategic
version of the problem is polynomially solvable, it turns out that in the mechanism
design version of the problem it cannot be solved exactly, even by non-polynomial
mechanisms (see Section 3). This means, that the additional properties that the
allocation of a mechanism needs to satisfy in contrast to a simple algorithm (cf.
Section 2), do not allow us to achieve an exact solution, even in non-polynomial
time. Lower bounding fractional mechanisms is a nice approach to lower bound
randomized (and deterministic) mechanisms of the integral case. Our lower bound
easily extends for those cases (cf. Remark 3.3).

1.0.0.1 Task-Independence. We are especially interested in a family of mecha-
nisms that we call task-independent. A task-independent algorithm is any algorithm
that in order to allocate task j, only considers the processing times ¢;;, that concern
the particular task. Such a consideration is motivated by the fact that (to the best
of our knowledge) all the known positive results for this problem (e.g., see the mech-
anisms in [Mu’alem and Schapira 2007; Nisan and Ronen 2001]), and in addition
the mechanism that we propose in this paper, belong to this family of mechanisms.
The question that we address here is: how far can we go with task-independent
algorithms?

1.1 Related Work

Scheduling on unrelated machines is a classical NP-hard problem. Lenstra et al.
[1990] gave a 2-approximation polynomial time algorithm, while they also proved
that the problem cannot be approximated (in polynomial time) within a factor
less than 3/2. The mechanism design version of the problem originates in the
seminal work of Nisan and Ronen [2001]. They gave an n-approximation truthful
mechanism and a lower bound of 2, while they conjectured the actual bound to
be n. Christodoulou et al. [2007] improved the lower bound to 1 + /2 for 3 or
more machines, and Koutsoupias and Vidali [2007] to 1+ ¢ = 2.618 for n machines.
Narrowing the gap between the lower and the upper bound still remains a big open
question. Lavi and Swamy [2007] studied the case where for every task there are two
possible running times for every machine. They came up with a 2-approximation
truthful mechanism, while they showed a lower bound of 1.14.

Randomization usually reduces the approximation ratio and that is also the case
for this problem. Nisan and Ronen [2001] proposed a randomized mechanism for 2
machines with approximation ratio 7/4. Mu’alem and Schapira [2007] generalized
this to a %n—approximation randomized truthful mechanism for n machines. In
the same work, they also gave a lower bound of 2 — 1/n for randomized mecha-
nisms. Notice that all the known lower bounds for this problem (both deterministic
and randomized) follow due to the infrastructure of truthful mechanisms, and do
not reside in any computational assumption; consequently they hold even for non-
polynomial time mechanisms.

From the mechanism design point of view, scheduling on related machines, was
first studied by Archer and Tardos [2001]. In this variant of the problem, the pri-

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 : George Christodoulou et al.

vate parameter for each machine, is a single value (its speed). Archer and Tardos
[2001] characterized the class of truthful mechanisms for this setting, in terms of a
monotonicity condition of the mechanism’s allocation algorithm. A similar charac-
terization for one-parameter mechanism design problems (single item auction) can
also be found in [Myerson 1981]. For this problem, it turns out that the optimal
allocation algorithm can be modified to be a truthful mechanism. Archer and Tar-
dos [2001] gave a randomized truthful 3-approximation algorithm, which was later
improved to a 2-approximation by Archer [2004]. For a fixed number of machines,
Auletta et al. [2004] gave a deterministic truthful 4-approximation algorithm, and
Andelman et al. [2005] improved this by giving an FPTAS. Andelman et al. [2005]
gave the first deterministic polynomial mechanism for the problem, for any number
of machines, with an approximation ratio of 5. Kovdces [2005] improved this by
giving a 3-approximation deterministic truthful mechanism, while finally the ratio
was reduced to 2.8 [Kovécs 2007].

In the field of Combinatorial Auctions, a wide variety of combinatorial optimiza-
tion problems has been considered from the mechanism design point of view (see for
example [Archer et al. 2003; Bartal et al. 2003; Briest et al. 2005; Dobzinski et al.
2005; 2006; Babaioff et al. 2005] and references within). In this context, Saks and
Yu [2005] characterized the class of truthful mechanisms for combinatorial auctions
with convex valuations, generalizing results of [Bikhchandani et al. 2006; Gui et al.
2005; Lavi et al. 2003].

1.2 Our results

In this paper, we consider the mechanism design version of fractional scheduling
on unrelated machines. We give a 2 — 1/n lower bound on the approximation ratio
that can be achieved by any truthful mechanism. This result shows that even in the
case of such a problem, for which the non-strategic version can be solved exactly
in polynomial time, its mechanism design analog may turn out to be impossible
to be solved exactly, even by non-polynomial mechanisms. Notice that giving a
lower bound for fractional mechanisms is another way to obtain lower bounds for
randomized mechanisms for the integral case. Our 2—1/n lower bound extends the
lower bound of [Mu’alem and Schapira 2007] to the class of fractional mechanisms.
Note that a fractional mechanism is more powerful than a randomized mechanism
for the integral case, since it has the flexibility to split a task among many ma-
chines, while a randomized mechanism, finally, has to assign the whole task to a
machine, and this affects its approximation ratio. Based on the above observation,
Remark 3.3 explains how the lower bound for the fractional mechanisms, can be
extended for the randomized mechanisms for the integral case.

In the positive direction, we give a truthful mechanism with approximation ratio
3/2 for 2 machines, which matches our lower bound. This is the first new tight
bound that we have for any variant of the problem, after the tight bound of 2
in the integral case, obtained for 2 machines in the original paper of Nisan and
Ronen [1999]. The generalization of our mechanism for n machines gives us an
approximation ratio of ”7“

Next we turn our attention to a family of mechanisms that we call task-inde-
pendent. This family consists of mechanisms, where the decision for the assign-
ment of a task, depends only on the processing times that concern the particular

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines : 5

task (time column that corresponds to the task). Considering task-independence
is motivated by the fact that all known ’reasonable’ deterministic and random-
ized mechanisms for this problem are task-independent. Furthermore, this sort of
independence has attractive properties: easy to design by applying methods for
one-parameter auctions, fits well with on-line settings, where tasks may appear
one-by-one. It is natural to ask if there is room for improvement on the approx-
imation ratio by use of such mechanisms. We extend this question for the class
of task-independent algorithms that need not satisfy the additional properties im-
posed by truthfulness. We give a lower bound of ”7“ on the approximation ratio of
any algorithm that belongs to this class. Our mechanism is also task-independent,
and hence is optimal over this family of algorithms.

2. PROBLEM DEFINITION

In this section we fix the notation that we will use throughout the paper, further-
more we give some preliminary definitions and cite relevant results.

There are n machines and m tasks. Each machine ¢ € [n] needs t;; units of time
to perform task j € [m]. We denote by t¢; the row vector corresponding to machine
i, and by #/ the column vector of the running times of task j. We assume that each
machine i € [n] is controlled by a selfish agent that is 'lazy’, and therefore reluctant
to perform any operation, and vector ¢; is private information known only to her.
The vector t; is also called the type of agent i. In the most general version of the
problem, the set T; of possible types of agent i consists of all vectors b; € R

Any mechanism defines for each player i a set A; of available strategies, the
player (agent) can choose from. We will consider direct revelation mechanisms, i.e.,
A; = T; for all i, meaning that the players strategies are to simply report their
types to the mechanism. A player may report a false vector b; # t;, if this serves
his interests.

A mechanism M = (z,p) consists of two parts:

An allocation algorithm:. The allocation algorithm z, depends on the players’
bids b = (b1,...,b,), with 0 < z;; < 1 denoting the fraction of task j that is
assigned to the machine . In the unsplittable case, these variables take only integral
values z;; = {0,1}. Every task must be completely assigned to the machines’ set,

S0 Y e Tij =1, Vj € [m].
A payment scheme:. The payment scheme p = (p1,...,pn), also depends on the

bid values b. The functions p1,...,p, stand for the payments that the mechanism
hands to each agent.

The wutility u; of a player ¢ is the payment that he gets minus the actual time
that he needs in order to execute the set of tasks assigned to her, u;(b) = p;(b) —

> jetm) tiiij ().
We are interested in truthful mechanisms. A mechanism is truthful, if for every
player, reporting his true type is a dominant strategy. Formally,

ul(tl,b_l) Z ’Uq'(t;,b_i), VZ S [n], ti,t; e E, b—i S T_l',
where T_; denotes the possible types of all players disregarding i.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 : George Christodoulou et al.

We remark here, that once we adopt the solution concept of dominant strategies,
focusing on direct revelation and in particular on truthful mechanisms is not at
all restrictive, due to the Rewelation Principle. Roughly, the Revelation Principle
states that any problem that can be implemented by a mechanism with dominant
strategies, can also be implemented by a truthful mechanism (cf. [Myerson 1981;
Nisan and Ronen 2001]).

The objective function that we consider in order to evaluate the performance of a
mechanism’s allocation algorithm, is the maximum load of a machine (makespan).
The makespan of the allocation algorithm x with respect to a given input ¢ is

def
Mech(t) = max tiiwii(t).
0 s 3t

Since we aim at minimizing the makespan, the optimum is

Opt(t) = min gré?n)]c Z tijTij-
JEIm]
We are interested in the approximation ratio of the mechanism’s allocation algo-
rithm. A mechanism M is c-approzimate, if the allocation algorithm is c-appro-
Aé‘;i}gt()t) for all possible inputs ¢.

Although our mechanism is polynomially computable, we do not aim at mini-
mizing the running time of the algorithm; we are looking for mechanisms with low
approximation ratio. Our lower bounds also don’t make use of any computational
assumptions.

A useful characterization of truthful mechanisms in terms of the following mono-
tonicity condition, helps us to get rid of the payments and focus on the properties
of the allocation algorithm.

ximate, that is, if ¢ >

Definition 2.1. An allocation algorithm is called monotone? if it satisfies the
following property: for every two input matrices ¢ and ¢’ which differ only on
machine ¢ (i.e., on the i-th row) the associated allocations x and z’ satisfy

(xi - :U;) ’ (ti - t;) <0,
where ’-” denotes the dot product of the vectors, that is,
> (@i — aly) (b — ti;) < 0.
j€[m]
The following theorem states that every truthful mechanism has to satisfy the

monotonicity condition. It was used by Nisan and Ronen [2001] in order to obtain
their lower bounds.

THEOREM 2.2. [Nisan and Ronen 2001] Every truthful mechanism is mono-
tone.

Saks and Yu [2005] proved that in the combinatorial auctions setting with convex
valuations, monotonicity is also a sufficient condition (i.e., there exist payments that
can make a monotone algorithm into a truthful mechanism).

3 Also known as weakly monotone.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines . 7

For the one-parameter case, that is when every agent has a single value to declare
(e.g., the speed of her machine), Myerson [1981] (for auction setting) and Archer
and Tardos [2001] (for scheduling setting), showed that the monotonicity of the
(allocation) algorithm is a necessary and sufficient condition for the existence of a
truthful payment scheme. In this case they also provide an explicit formula for the
payments. In their theorem cited below, the notion of a decreasing output function
corresponds to a monotone algorithm in the one-parameter setting.

THEOREM 2.3. [Myerson 1981; Archer and Tardos 2001] The output func-
tion admits a truthful payment scheme if and only if it is decreasing. In this case
the mechanism is truthful if and only if the payments p;(b;,b_;) are of the form

b;
hi(b_i) + bll‘l(bz, b_l) - / xi(u, b_l) du
0

where the h; are arbitrary functions.

In the original notation of [Archer and Tardos 2001], b; is the declared load
(running time) per unit work of agent ¢, and x; would stand for the work allocated
to the agent. Observe that this conforms to our notation: given a single job, b; is
the declared running time of 'one unit of’ this job, while the fraction x; is, indeed,
the amount that agent ¢ gets from the job.

3. LOWER BOUND FOR TRUTHFUL MECHANISMS

Here we will give a lower bound on the approximation ratio of any fractional truthful
mechanism.

THEOREM 3.1. There is no deterministic truthful mechanism that can achieve
an approximation ratio better than 2 — %, where n is the number of the machines.

PROOF. Let m =n+ 1, and t be the actual time matrix of the players as below

0, j=1
tij = 1, j =n-+ 1
A, otherwise.

Let « = x(t) be the corresponding allocation that a truthful mechanism M = (z, p)
gives with respect to t. Clearly, there is a player k € [n], with z3,41 > . Now,
consider the behaviour of the allocation mechanism for the following time matrix
as an input

i=j=k
tij=9 1—¢€ i=kj=n+1
t;j, otherwise.

For significantly large values of A, with both inputs ¢ and ¢’, player k gets substan-
tially the whole portion of task k, otherwise the approximation ratio is high, e.g.,
for A =2, both @y, and x},, are at least 1 — (n — 1)§, otherwise the approximation
ratio is at least 2. Consequently, |xgr — x},| < (n —1)4.

The following claim states that due to monotonicity, the mechanism cannot assign
to player k a substantially smaller portion of the n + 15 task than %

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 : George Christodoulou et al.
Claim 3.2. If xf py1 > %, then for the allocation 2/ = z(¢') on input ¢ it holds
that x?wH_l > % — €.

PROOF. Due to the monotonicity condition (Theorem 2.2), for every player i €
[n] holds that

Z (tij — t;j)(xij - mig) <0
j€lm]

and by applying this to the k-th player we get

1
(0— m)(l‘kk —2p) + (1 =1+) (@png1 — T ppyy) <0,
from which we get

/
X — Tkk
/ kk
Thnt1 = Thont1 + en=1) > Tpntl —

and for § = €2 we finally obtain

/
x > — — €.
kn+1l = n
|

On the other hand, an optimal allocation z* for ¢’ is

1, j=i
o 0, i=kj=n+1
i Ay, i kj=n+l

0, otherwise

providing optimal makespan ﬁ, while the mechanism gives player k a total load
of at least

(1= (n—1)5)— +(Tlle)(le)>nl+i56<n+1>.

n—1

For arbitrary small €, this finally gives an approximation ratio of at least 2 — %

Remark 3.3. Consider a randomized (integral) mechanism. Let ¢ be any input,
and z;; denote the probability that machine i receives job j from the mechanism.
The expected execution time of i is then given by 3 jem) tijTij- If the mechanism
is truthful in expectation, then formally the monotonicity requirement of Defini-
tion 2.1 has to be fulfilled.

Observe that in a randomized mechanism the expected makespan is at least the
maximum expected finish time over the machines (i.e., the makespan of the cor-
responding fractional mechanism). Still, a lower bound for fractional mechanisms
does not automatically imply the same bound for randomized mechanisms, since
in the latter case the (integral) optimum makespan may be higher. However, our
lower bound can be easily modified so as to hold for any mechanism that is truthful

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines : 9

in expectation. The only modification one needs to make is to substitute the n 4 1-
st job of the construction with n - (n — 1) jobs of the same value ¢;; = 1; our new
instance will have n 4+ n(n — 1) tasks in total. Following the lines of the previous
proof, there exists a player k with jon Thj =0 — 1. Modify the input as follows

n, i=kj=i

tiyj=q 1—¢ i=kj>n
t;j, otherwise.
By using a claim analogous to Claim 3.2 in a straight-forward manner, we can
deduce that essentially player k will take the same fraction of jobs n+1, ..., n(n+1),
while he has to keep also task k, and therefore the makespan of the mechanism is at
least 2n — 1, while the optimum makespan is n. Note that there exists an integral
optimum in this instance, and therefore the lower bound holds for randomized
mechanisms.

4. THE TRUTHFUL MECHANISM

We describe a truthful mechanism, called SQUARE, for the fractional scheduling
problem, with approximation ratio % On two machines this ratio becomes 3/2,
so in this case SQUARE has the best possible worst case ratio w.r.t. truthful mech-
anisms. Furthermore, in Section 5 we will show that for arbitrary number of ma-
chines, our mechanism is optimal among the so called task-independent algorithms.

Next, we define the mechanism? SQUARE= (257,p%7). Recall that b;; is the

reported value for ¢;;, the actual execution time of task j on machine 4.
Definition 4.1 The mechanism SQUARE= (57, p9).

Allocation algorithm:. Let b = (b1j,ba;,...,bs;)T be the jth column-vector of
the input matrix. If b7 has at least one zero coordinate, then SQUARE distributes the
jth task among machines having zero execution time arbitrarily. If b;; # 0 (i € [n]),
then the fraction of the jth task allocated to machine i is

2
o Hk;éi bk:j
= =g
2121 Hk# bij

Payment scheme:. Let the constants c;; be defined as

Hk;ﬁi bk

Cij = 5
\/ Zl;ﬁi Hk;él,i bkj

then the payments p°? = (p1,...,p,) to the agents are

2 (b) = 245(b)

ij

(1)

pi(b) = pij(b).
j=1
where
2
(D) = by - 9 4~ s arctan 2
pij(b) J bfj-i-c,gj—i_cj 5 cjarcanCij

4In most of the section we will omit the superscripts 59.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 : George Christodoulou et al.

The algorithm %7 of SQUARE allocates the tasks individually (independently),
and so that the fractions of task j assigned to machines 1,2,...,n are inversely
proportional to the squares of (declared) execution times of j on the respective
machines. For instance, for two machines (1) boils down to

b b2

T e +b R R +b

For arbitrary n it is obvious that 0 < z;; < 1, and Zi:l x;; = 1. It is easy to see
that SQUARE is monotone: Let the input matrix b be changed only on the ith row,
that is, for any fixed task j, just the entry b;; may change. Assume first that in
the column-vector &’ all execution times are nonzero. Observe that the variable
b;; appears only in the denominator of the expression (1), namely as bU7 having a
positive coefficient. Thus, x;; does not increase when b;; increases, and vice versa.
It is easy to see that the same holds if in b’ there are zero entries other than b;;,
and similarly, if b;; was, or just became the only zero entry. Thus, we obtained
that for every single one-parameter problem b7, the assignment is monotone, and
this, in turn, implies weak monotonicity (see Definition 2.1) for 2%

Now consider p9. For two machines, the constant ci; is simply the bid of the
other machine for this job, that is, ¢;; = b2] and cQ] = by;. In general, for any
number of machines it holds that z;; = ¢;/(b7; + ¢3;); so to speak ¢;; would be
the 'bid’ of a single other machine, if we replaced the machines [n]\{i} with one
machine.

Let us fix a machine i. The payment p;(b) is defined to be the sum of the pay-
ments that agent ¢ would get for performing each (fractional) task independently,
as determined for truthful mechanisms for one-parameter agents by Theorem 2.3:

b;
pi(bi, b—i) = hi(b—;) + bz (b;, b_;) — / xi(u,b_;) du.
0

Here the h;(b_;) are arbitrary constants. If we want that the so called voluntary
participation [Archer and Tardos 2001] of the players is ensured (i.e., it is worth
taking part in the game), then h; can be chosen to be h; = fooo xi(u,b_;) du, so
that eventually we get

o0
for the one-parameter case. We show that applying this formula for each task
individually, leads to the payments specified by Definition 4.1. Assume now that
task j is fixed. For this task, the reported execution time b; becomes b;;, whereas
the assigned fraction of work x;, becomes x;;. Now it is straightforward to check
that for task j the formula (2) yields

pij(b) = bz‘jxifr/ zij(u) du

ij
2) 2
cs. cs.
B S +/ T
J " 72 2 2 2
bz] +Cz] bij (7 +Cij

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines . 11

2 o)
=b Gij tan —
= ”W—I— cijarc an;
ii T Cij ij 1b,
2 b
= bi; - 72 5 + ¢ij - = — ¢ arctan —.
b =+ C 2 Cij

THEOREM 4.2. The mechamsm SQUARE is truthful.

ProOF. To put it short, truthfulness follows from the fact that SQUARE is the
sum of m independent truthful mechanisms for the one-parameter problem. Here,
we give an elementary proof for strong truthfulness. We need to show that for any
machine 4, true time vector ¢;, and bid vectors of the other machines b_;, it holds
that

ui(ti, b_z) Z Uz(bz, b_z) qu S n,

and the inequality is strict for b; # ;. Substituting the definition of utility u;, and
then considering the payments for each job separately, now our goal is to prove

piltisboi) = Y tigwig(tibos) > pi(bi,boi) = Y tiwij(bi, i)

J€[m] J€E[m]
Z (pij(ts, b—i) — tijaij(ti,b—;)) > Z (Pij (b, b—) — tijwi;(bi, b_y)).
J€[m] J€[m]
We claim that the inequality holds for every task j € [m], that is,
Pij(ti, i) — tijaii(ti, i) > pij(bi, b_g) — tijaij(bs, b_;),

with strict inequality if ¢;; # b;;. Assume that there exist ¢, j, t;, b—; and b; so
that

Pij(ti, b—i) — tijxi; (i, b—i) < pij(bi,b_i) — tijawi;i(bi, b_y).

Plugging in the formulae for the payments p;; and the assigned work w;;,

2 2
t G +c -f—c--arctanﬁ—t--i<
i 2 2 ij g ij T hiig 2 =
t +ci; Cij tij + ¢
2 2
c?. T b, c?.
bii + —9 e T arctan 24 g,
Tonk e Y2 Y cij b+
which reduces to
bis Lo Cis
arctan — — arctan —2 < (b;j — ti;) * 2.
- - J 3 p2 2
Cij Cij i —|—cij

Equality holds if b;; = ¢;;. Now suppose that b;; > ¢;;. Applying the Mean-Value
theorem, we obtain that for some ¢;; <1 < by,

<G
(bij — tij) b+

ACM Journal Name, Vol. V, No. N, Month 20YY.

b tos
! arctan —£ — arctan =
Y Cij Cij
arctan —
Co

v/ y=n

12 : George Christodoulou et al.
And this solves to

1 1 Cij
Ui +1 ¢j b?j—FC?j’

2
C7]

1 1
n% + c?j - bfj + cfj’

a contradiction, since n < b;. If b;; < t;;, then we obtain ﬁ > ﬁ, which
contradicts b;; < n < t;;.
Thus, our mechanism is strongly truthful, since any bid b # ¢ leads to strictly

less utility, than truth telling. [

4.1 Approximation ratio

Let Squ(t) be the makespan of the schedule produced by SQUARE on input ¢, and

Opt(t) denote the optimum makespan. In what follows, we show that g‘ﬁég < ol

for any matrix t. The next lemma will largely simplify the upper-bound proof:

LEMMA 4.3. If there exists an input instance t, such that Squ(t)/Opt(t) = «,
then there also exists an instance t*, for which Squ(t*)/Opt(t*) = «, such that
there is an optimal allocation of t* that does not split any job.

PROOF. Suppose that ¢ is an input matrix and there is a task (i.e., column-
vector) t/ = 7 = (11,72,...,7s) 7 in t that is distributed by some optimal allocation
OPT according to v = (v1,v,...,v,)T where v; < 1Vi, and > 1, v; = 1. We can
assume that 7; > 0 for every machine i, otherwise it is trivial to assign the job to
only one machine in an optimal allocation. Now we construct the new instance t*,
by introducing n new tasks in place of task 7, namely tasks corresponding to the
column-vectors vy - T, Vo T, ... ,Up - T.

We claim that Opt(t) = Opt(t*), and this optimum can be obtained without
splitting the new jobs. Notice first, that it yields the original optimum makespan
Opt(t), if we allocate the first task completely to the first machine, the second one
completely to the second machine, and so on. Indeed, the execution times on the
machines due to the new jobs are then (vy - 71, vo -T2, ... ,vpn - 7n)T, which is the
same as the execution times due to job 7 in the allocation OPT.

On the other hand, suppose that on input ¢* some schedule OPT* yields a better
makespan than Opt(t), where OPT* splits the new jobs according to the distribu-
tions

11 12 1n
o1 &2 Eon
: , : L :
€n1 §n2 gnn
In this case, on input ¢ keeping OPT* for the unchanged jobs, and then splitting
7 according to the distribution (31_; E1svs, Yoney EosVsy -y Donry Enstis)? would

yield a lower makespan than Opt(t) as well. Observe that the distribution of 7 is

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines : 13

valid, since
n n n n n
DD Gt =D v (&) =D v 1=
k=1s=1 s=1 k=1 s=1
Moreover, it would result in the same execution times as OPT* for the set of new
jobs in t*.
Finally, a straightforward calculation shows that Squ(t) = Squ(t*) also holds.

Given the input ¢*, let us consider the fraction of the sth new job on machine ¢ as
determined by the formula (1) for 2°7. We get

Hk;éi(VSTk)2 B Lz T
i1 Hk;él(VSTk)Q 2o Hk;ﬁl Ti

Therefore, the execution time of this (fractional) task on machine i is

Hk;éi Tz?
> Hk;ﬁl Tl?

and the execution times of all new tasks on this machine total to

- Hk;ﬁz‘ Ti Hk;ﬁi Ti - Hk;ﬁz‘ i
D i1 Hk;ﬁl Tk

* VsTi;

'Ti'l

= — . Ti s = —h———5
et Hk;ﬁl Ti —1 et Hk;ﬁl i

This is the same as the running time of the fraction of task 7 on machine ¢ given
the original input ¢. O

s=1

THEOREM 4.4. For the approzimation ratio of SQUARE, g’ﬁg; < 2L holds,

where n denotes the number of machines, and t is an arbitrary set of input tasks.

Proor. Consider the input t. Due to the previous lemma, we can assume that
the (indices of) tasks are partitioned into the sets Jy, Ja, ..., Jp, so that there is
an optimal allocation OPT where job ¢/ is allocated completely to machine i, if and
only if j € J;. We can also assume that ¢;; > 0 for all ¢ and j. Otherwise we would
have a job that adds zero execution time to the makespan in both the allocation of
SQUARE, and of OPT, and removing this job from the input would not affect the
approximation ratio. For the optimum makespan it holds that

Opt(t) = max Z tij. (3)
i€[n] ic,

For the running time of an arbitrary machine ¢ in SQUARE, we have

Squi(t) =Y Y @iyt

r=1j€J,
where the z;;(t) are defined by (1). We decompose the above expression as follows:

Squi(t) = E xijtij + E E l’ijtij.
JjeJ; r#i jeJ,
ACM Journal Name, Vol. V, No. N, Month 20YY.

14 : George Christodoulou et al.

We can upper bound the first sum using (3), and the fact that z;; <1:

Jj€Ji Jj€J;
Next we upper bound every sum of the form ZjeJT xiiti; (r#1), by % - Opt(t).
Since there are n — 1 such sums, this will prove that

Saqui(t) < Opt(t) + (n— 1) 3 - Opt(t) = (1+ ") - Opt(t).

Since ¢ was an arbitrary machine, eventually this implies

Squ(t) = max Squi(t) < (1+ =) - Opt(t).

1€[n]

The bound ;5 ijtis < 1.0pt(t) can be proven as follows:

Hk‘;ﬁztk
witi; = It
2wt = D < b

Jj€Jr JjEJI,
tijtrs [posir th ;
~n 11 22 Tj
7 X atiy

_ Z Lijtrj o
= rj
jed, t2 + t’l”j + El;ﬁz r tzQJt?"] /tl2j

2 2 TJ
jeJr U+t

> % “trj (4)

j€T,
:52
e,

1

- Opt(t).

IN

IN

<

The inequality (4) follows from 2ofﬂ2 <5 1 which holds for any two positive real
numbers. The last inequality is implied by (). O

COROLLARY 4.5. For two machines the truthful mechanism SQUARE has approx-

imation ratio 3/2, which is the best worst case ratio we can expect from any truthful
mechanism for the fractional scheduling problem.

5. LOWER BOUND FOR INDEPENDENT ALGORITHMS

In this section we prove a lower bound of "7“ for the worst case ratio of indepen-

dent fractional algorithms. An algorithm is independent, if it allocates the tasks
independently of each-other, or formally:

Definition 5.1. An allocation algorithm x is called task-independent, or simply
independent, if the following holds: If ¢ and ¢’ are two n X m input matrices, such

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines : 15

that for the jth task ¢;; = t; (Vi € [n]), then for this task it also holds that
vy = xy; (Vi € [n]).

It is remarkable, that the currently known best mechanisms (in fact, any 'reason-
able’ mechanism we know of) are all independent, in the integral, the randomized,
and the fractional case. It is not difficult to come up with independent (suboptimal)
algorithms, which are also weakly monotone. However it seems to be an intriguing
question, whether there exist non-inependent, and still monotone algorithms having
better approximation ratio than the best independent ones. We note that in the
integral case it is easy to construct an instance with n machines and n? tasks, that
proves a lower bound of n (i.e., tight bound) for independent algorithms: Consider
a task-independent algorithm for the integral problem, and the input matrix where
tij = 1 for all i € [n] and j € [n?]. By the pigeonhole principle, the algorithm
allocates at least n jobs to one of the machines. Assume w.l.o.g. that this is the
first machine, and it receives (at least) the first n jobs. Now we set every ¢;; = 0
for all jobs j > n, and keep t;; = 1 if j < n. Due to the independence, the first
machine still receives the first n tasks, and the makespan becomes n, whereas the
optimum makespan is obviously 1.

THEOREM 5.2. If x is an independent fractional allocation algorithm for the
unrelated machines problem, then it has approximation ratio of at least ”TH7 where
n denotes the number of machines.

PRrROOF. In order to obtain the lower bound, consider the following input matrix
with n > 2 machines and m = 1 + (g) tasks. The first task has execution time 0
on every machine; furthermore, for all (g) possible pairs of machines (i1,72) there
is a taskj with tilj = tigj =1 and tij = Afori g {il,ig} :

o 1 1 -~ 1 A A
01 A -+ A 1 A
0 A1 --- A 1 A
t=1 . .
0 A A -~ A A 1
0 A A -~ 1 A 1

By setting A to a large enough number, we can ensure — similar to the proof
of Theorem 3.1 — that the corresponding share of a player of a certain task is
arbitrarily small, otherwise the approximation ratio gets too large. That is, we can
assume that the bulk of any job is allocated to the machines having execution time
1 for this job.

Let us consider an arbitrary independent algorithm z. Observe that no matter
how z allocates the above tasks, the total running time of all the jobs cannot be
less than (g) Thus, there exists a machine, say the first one, with running time
at least (3)/n = 5. Now we modify the instance ¢ to ¢’ as follows: we keep the
original execution times of tasks that had running time 1 on the first machine, and
zero out all other ¢;;; furthermore, the very first task will now have execution time

1 on the first machine, and A on other machines.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 : George Christodoulou et al.

1 1 1 1 0 0 0

A 1 A A 0 0 0

A A 1 A 0 0 0
t =

A A A -« A 00 --- 0

A A A .. 1 00 -+ 0

As noted above, on instance t at least %71 — e running time on the first machine
was due to jobs that have execution time 1 on this machine, i.e., to the jobs 2, ..., n.
Since the algorithm =z is task-independent, on input instance ¢’ the first machine
gets the same allocation over jobs 2,...,n, and also gets a (1 — ¢) fraction of job 1,
achieving a running time of at least 1+ (n —1)/2 — 2e, for any € > 0. On the other
hand, it is clear that the optimal allocation has makespan 1. O

COROLLARY 5.3. The mechanism SQUARE has optimal approximation ratio a-
mong all independent mechanisms.

It can be shown that among all allocations where the distribution of task j is
proportional to (tl_jo‘7 tz_ja, . ,t;J‘?‘) for some o > 0, the above optimal approxima-
tion ratio is obtained if and only if a = 2. We sketch the proof of this statement
next. In the general case

st
i Hk;él th;

Consider the proof of Theorem 4.4, and denote by ¢ the quotient ¢;;/t,; in the
inequality (4). Now the same argument implies a worst case ratio of 14 (n—1)-B,
where B is an upper bound on ¢/(¢®+1) for all ¢ > 0. The function f(c) = ¢/(c*+1)
is unbounded for o« < 1 (B = 0), resp. is bounded by B =1 for o = 1; for oo > 1
it has its only maximum in ¢ = (a — 1)~/ (that is, B = f((a — 1)~/®).

The worst case ratio obtained this way is 'tight’ as shown by the following input
to the mechanism:

z45(t)

1 ¢ Cc --- C

©o 1 oo -+ o

oo oo 1 o)
t =

00 00 0 s 00

o oo oo -0 1

The optimal allocation of this input has makespan 1, while our mechanism assigns

a running time of 1+ (n —1)- C++1 - C to the first machine. Setting C —

proves that the mechanism has unbounded worst case ratio for o < 1, respectively
a worst case ratio of 14+ (n—1)-1=nfor a = 1. If a > 1, then let C' = (a—1)~1/.
This implies a makespan of 1+ (n — 1) - [(« — 1)*% /a]. The term (a — 1)+ /a
has its minimum (of value %) at o = 2. For any other «, the approximation ratio
on the given input is larger than 1+ (n —1) - %

ACM Journal Name, Vol. V, No. N, Month 20YY.

Mechanism design for fractional scheduling on unrelated machines . 17

6. CONCLUSION

In this paper, we discuss the application of mechanism design for the fractional
scheduling problem on unrelated machines. We give a lower bound on the approxi-
mation ratio of truthful mechanisms, and we come up with a matching upper bound
for 2 machines. The generalization of our mechanism gives us an upper bound that
is linear in the number of the machines. After that, we focus on an interesting class
of mechanisms with appealing properties, i.e. task-independent mechanisms. We
obtain a lower bound on the approximation ratio of any algorithm in this class.
This bound shows that our mechanism is optimal w.r.t. this class.

In all the versions of the scheduling on unrelated machines (i.e. fractional, ran-
domized, integral), we have a constant lower bound and an upper bound that is
linear in the number of the machines. Nisan and Ronen [2001], conjectured that
for the integral case, there is no deterministic mechanism that can achieve a better
approximation ratio. For special cases, we know that fractional and randomized
mechanisms can attain a better preformance. But is this asymptotically true?
Can we hope to construct fractional and randomized mechanisms with sublinear
approximation factor, even in exponential running time? Our lower bound for task-
independent algorithms, shows that in order to improve the performance, we need
to consider more sophisticated mechanisms, that exploit the input information in a
more global way. Thus, we also need to come up with new techniques that overcome
the monotonicity constraints imposed by truthfulness.

REFERENCES

ANDELMAN, N., AZAR, Y., AND SORANI, M. 2005. Truthful approximation mechanisms for schedul-
ing selfish related machines. In 22nd Annual Symposium on Theoretical Aspects of Computer
Science (STACS). 69-82.

ARCHER, A. 2004. Mechanisms for discrete optimization with rational agents. Ph.D. thesis,
Cornell University.

ARCHER, A., PAPADIMITRIOU, C. H., TALWAR, K., AND TARDOS, E. 2003. An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 205-214.

ARCHER, A. AND TARDOS, E. 2001. Truthful mechanisms for one-parameter agents. In /2nd
Annual Symposium on Foundations of Computer Science (FOCS). 482-491.

AULETTA, V., Prisco, R. D., PENNA, P., AND PERSIANO, G. 2004. Deterministic truthful approxi-
mation mechanisms for scheduling related machines. In 21st Annual Symposium on Theoretical
Aspects of Computer Science (STACS). 608-619.

BaBAIOFF, M., Lavi, R., AND PavLov, E. 2005. Mechanism design for single-value domains. In
Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference (AAAI). 241-247.

BARTAL, Y., GONEN, R., AND Ni1saN, N. 2003. Incentive compatible multi unit combinatorial
auctions. In Proceedings of the 9th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK). 72-87.

BIKHCHANDANI, S., CHATTERJI, S., Lavi, R., MU’ALEM, A., NisAN, N., AND SEN, A. 2006.
‘Weak monotonicity characterizes deterministic dominant strategy implementation. FEconomet-
rica 74, 4, 1109-1132.

BRIEST, P., KRYSTA, P., AND VOCKING, B. 2005. Approximation techniques for utilitarian mech-
anism design. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC). 39-48.

CHRISTODOULOU, G., KouTsouprias, E., AND KovAcs, A. 2007. Mechanism design for fractional

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 : George Christodoulou et al.

scheduling on unrelated machines. In Automata, Languages and Programming: 34th Interna-
tional Colloguium (ICALP). 40-52.

CHRISTODOULOU, G., KouTsouprias, E., AND VIDALI, A. 2007. A lower bound for scheduling
mechanisms. In ACM-SIAM Symposium on Discrete Algorithms (SODA). 1163-1170.

DoBzINsKI, S., NI1SAN, N., AND SCHAPIRA, M. 2005. Approximation algorithms for combinatorial
auctions with complement-free bidders. In Proceedings of the 37th Annual ACM Symposium
on Theory of Computing (STOC). 610-618.

DoBziNskl, S., NiSAN, N.; AND SCHAPIRA, M. 2006. Truthful randomized mechanisms for combi-
natorial auctions. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC). 644-652.

Gur, H., MULLER, R., AND VOHRA, R. V. 2005. Dominant strategy mechanisms with multidi-
mensional types. In Computing and Markets.

Koutsouprias, E. AND VIDALI, A. 2007. A lower bound of 1+phi for truthful scheduling mech-
anisms. In Mathematical Foundations of Computer Science, 32nd International Symposium
(MFCS). 454-464.

KovAcs, A. 2005. Fast monotone 3-approximation algorithm for scheduling related machines. In
Algorithms - ESA 2005, 13th Annual European Symposium. 616-627.

KovAcs, A. 2007. Fast algorithms for two scheduling problems. Ph.D. thesis, Universitit des
Saarlandes.

Lavi, R., MU’ALEM, A., AND NISAN, N. 2003. Towards a characterization of truthful combinatorial
auctions. In 44th Symposium on Foundations of Computer Science (FOCS). 574-583.

Lavi, R. AND SwaMy, C. 2005. Truthful and near-optimal mechanism design via linear pro-
gramming. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
595-604.

Lavi, R. AND Swamy, C. 2007. Truthful mechanism design for multi-dimensional scheduling via
cycle monotonicity. In ACM Conference on Electronic Commerce (EC).

LENSTRA, J., SHMOYS, D., AND TARDOS, E. 1990. Approximation algorithms for scheduling unre-
lated parallel machines. Mathematical Programming 46, 1, 259-271.

MU’ALEM, A. AND SCHAPIRA, M. 2007. Setting lower bounds on truthfulness. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1143-1152.
MYERSON, R. B. 1981. Optimal auction design. Mathematics of Operations Research 6, 1, 58—73.
NisaN, N. AND RONEN, A. 1999. Algorithmic mechanism design (extended abstract). In Proceed-

ings of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC). 129-140.

N1saN, N. AND RONEN, A. 2001. Algorithmic mechanism design. Games and Economic Behav-
ior 35, 166-196.

Saks, M. E. AND YU, L. 2005. Weak monotonicity suffices for truthfulness on convex domains.
In Proceedings 6th ACM Conference on Electronic Commerce (EC). 286-293.

ACM Journal Name, Vol. V, No. N, Month 20YY.

