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Abstract

We address the tradeoff between the competitive ratio and the resources used by randomized
on-line algorithms for caching. Two algorithms reported in the literature that achieve the optimal
ratio Hk require a lot of memory and perform extensive computation at each step. On the other
hand, a very simple algorithm called RMARK has competitive ratio 2Hk − 1, within a factor
of 2 of the optimum. A natural question that arises here is whether there is a tradeoff between
simplicity and the competitive ratio. In particular, is it possible to achieve a competitive ratio
better than 2Hk − 1 with a simple algorithm like RMARK?

We first consider marking algorithms that are natural generalizations of RMARK, and we
prove that, for any ε > 0, there is no randomized marking algorithm for caching with competitive
ratio (2− ε)Hk. Thus RMARK is essentially optimal among marking algorithms.

Another model of simple caching algorithms is that of trackless algorithms. These are algo-
rithms that do not store any information about items that are not in the cache. It is known
that, for k = 2, there is no randomized trackless algorithm for caching with ratio better than
37/24 ≈ 1.5416. The trivial upper bound is 2, achieved even by deterministic algorithms LRU
and FIFO. We reduce this gap by giving a trackless randomized algorithm with competitive ratio
1
4 (3 +

√
13) ≈ 1.6514.

1 Introduction

In the caching problem we have a two-level memory system consisting of a cache of size k and an
unbounded main memory. At each step, a request to an item is issued. If a requested item is not
in the cache, a fault occurs. On a fault, the requested item needs to be brought into the cache and
thus one of the cached items needs to be evicted. The choice of the evicted item is made on-line,
i.e., before the next request is issued. Our objective is to minimize the number of faults.

It is quite easy to see that no on-line caching algorithm can achieve a minimum cost on all request
sequences. On-line algorithms are commonly evaluated using the performance measure called the
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competitive ratio. An on-line algorithm A is said to be c-competitive if, on every request sequence
%, its cost is, asymptotically, at most c times the optimal cost for this sequence. More precisely, for
each %, A must satisfy

costA(%) ≤ c · opt(%) + a, (1)

where costA(%) is the cost of A on %, opt(%) is the optimal (off-line) cost on %, and a is a constant
independent of %. The competitive ratio of A is the smallest c for which A is c-competitive.

Caching has been extensively studied in the literature on competitive on-line algorithms. It can
be viewed as a special case of the k-server problem (see, for example, [8, 10, 6]) in a uniform metric
space. In the deterministic case, it has been established that several well-known strategies, including
LRU and FIFO, are k-competitive, and that no better competitiveness is possible (see [12]).

In this paper we concentrate on randomized algorithms for caching. It is relatively easy to
show (see [7]) that no randomized on-line algorithm can be better than Hk-competitive, where
Hk =

∑k
i=1 1/i is the k-th harmonic number. Fiat et al. [7] gave a simple algorithm called RMARK

which is 2Hk-competitive. RMARK works as follows. Each requested item is marked. On a fault,
the algorithm evicts a random, uniformly chosen non-marked item from the cache (in case when
all cached items are marked, they are all unmarked first). Later, Achlioptas et al. [1] proved the
competitive ratio of RMARK is exactly 2Hk − 1.

Two algorithms with the optimal ratio Hk were reported in the literature. The first algorithm,
called PARTITION, was discovered and analyzed by McGeoch and Sleator [11], the other, called
EQUITABLE, appeared in [1]. Both algorithms store a large amount of information about past
requests and they perform extensive computation at each step. Thus it is natural to ask whether
there is a simple algorithm like RMARK with competitive ratio equal or close to Hk. Or, is there a
tradeoff between simplicity and the competitive ratio?

Capturing the intuitive notion of simplicity with a formal mathematical definition is itself an
interesting and challenging problem. The intuition tells us that RMARK is simple, while PARTI-
TION and EQUITABLE are not. One way to address this question would be to simply limit the
memory and running time of the algorithm. One step in this direction was made in [1]. Algorithm
PARTITION from [11] uses O(n+k) memory, where n is the number of requests. In [1], the authors
show that their algorithm EQUITABLE can be implemented with only O(k2) memory, so its memory
size is independent of the number of requests.

Another natural restriction is that a simple algorithm should not keep track of any information
associated with the items that are not currently in the cache. This concept has been introduced
by Bein and Larmore [3] who proposed the term trackless for algorithms that satisfy this property.
In the context of caching, a trackless algorithm does not know the “identities” of the requested
items. When a fault occurs, it only knows that the requested item is not in the cache. On a hit,
it knows the cache location of the requested item. LRU, FIFO and RMARK are trackless, while
algorithms PARTITION and EQUITABLE from [11, 1] are not. From a purely practical standpoint,
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non-trackless algorithms are of limited interest as cache replacement strategies, as they cannot be
realistically implemented. Bein et al. [3, 2] proved that there is no on-line randomized trackless
algorithm for caching for k = 2 with competitive ratio smaller than 37/24 ≈ 1.5416. Using linear
programming software, they were also able to show that this competitive ratio must be at least
8453/5458 ≈ 1.5487.

Our results. We first consider marking algorithms. Similar to RMARK, such algorithms maintain
a set of marks on some items in the cache. Each requested item is marked, and whenever a fault
occurs with all cached items being marked, the algorithm unmarks all items. The only restriction
posed on the algorithm is that on a fault only non-marked items can be evicted. In particular,
RMARK is a marking algorithm that evicts a random, uniformly chosen, non-marked item.

Our definition of marking algorithms does not involve any assumptions on the probability dis-
tribution of evictions, the running time, nor on the information about the past maintained by the
algorithm. Note that this definition covers some algorithms that are not necessarily simple, including
those that store and use a complete history of the past computation.

The main result of this paper, presented in Section 3, is that no marking algorithm can achieve
competitive ratio (2−ε)Hk for ε > 0. Thus RMARK is essentially optimal among marking algorithms.

Other mark-based (or phase-based) randomized algorithms have been studied in the literature
(see [14], for example), typically giving upper bounds on the competitive ratio that are a factor of 2
away from the corresponding lower bound. Our result provides a strong evidence that this gap is an
inherent feature of the phase-based approach, and that in order to obtain tighter bounds a different
framework is necessary.

Next, we consider trackless algorithms for k = 2. For this case we give a trackless algorithm TL2

with competitive ratio 1
4(3 +

√
13) ≈ 1.6514, substantially improving the trivial upper bound of 2

achieved by LRU, FIFO and RMARK.

2 Preliminaries

Throughout the paper, by k we denote the cache size. By a cache configuration, or simply configu-
ration, we will mean a set of k items representing the cache content.

Phases. Any request sequence can be decomposed into phases as follows. The first phase starts
at the beginning of the request sequence, and each other phase starts on the first request after the
previous phase. Each phase is a longest sequence of consecutive requests that contains at most k

distinct requests. (Thus all phases, except possibly the last, will contain exactly k distinct items.)

The relationship between the phase decomposition and marking should be clear: a marking
algorithm will keep marks on the items requested in the current phase. Thus we can alternatively
define a marking algorithm as an algorithm that never evicts items from the current phase.
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Randomized algorithms. There are two ways to define a randomized algorithm [4]. A random-
ized behavioral algorithm can make random choices at each step of the computation. A randomized
distribution algorithm (also called a mixed strategy) is simply a probability distribution on the de-
terministic algorithms. In the general setting, when no restrictions are placed on the algorithms,
the two models are equivalent, that is, a randomized algorithm of one type can be converted into
an algorithm of the other type without increasing the expected cost. This equivalence also holds
for marking algorithms (since we do not impose any restriction on the algorithm’s memory). How-
ever, it does not extend to other special classes of on-line algorithms. For example, it is easy to see
that behavioral randomized memoryless algorithms are not equivalent to probability distributions
on deterministic memoryless algorithms [4]. Our trackless algorithm TL2 is a behavioral algorithm.

Optimal cost. For competitive analysis, we must be able to keep track of the optimal cost during the
computation. There are two basic ways to do so. In the adversary method, we view the computation
as a game between our algorithm and an adversary who must serve all requests with his own cache.
We will use this approach in the lower bound proof in Section 3. The proof is obtained by showing
an adversary strategy in which the ratio between our algorithm’s cost and the adversary cost is at
least the claimed lower bound.

Another method to keep track of the optimal cost is to use work functions. A work function ω

at a given step determines, for each cache configuration, the optimal cost of serving past requests so
that this configuration is reached. We will use work functions in the upper bound proofs for k = 2.

Work functions for caching were characterized by Koutsoupias and Papadimitriou in [9]. For
k = 2, work functions have a very simple form. Let x be the last request. Then there is an integer
a ≥ 0 and a finite set of items Y with x /∈ Y such that

ω(x, y) = a for y ∈ Y

ω(x, v) = a + 1 for v /∈ Y

ω(u, y) = a + 1 for u 6= x & y ∈ Y

ω(u, v) = a + 2 for u, v /∈ Y ∪ {x}

The set of pairs (x, y), for y ∈ Y , is called the support of ω. Sometimes, informally, we also refer
to Y as the support set.

For convenience, we will offset a from ω and assume that ω is 0 in the support. This function is
called an offset function and is denoted by 〈x|y1y2 . . . ym〉, where Y = {y1, y2, . . . , ym}. The value of
a represents the optimal cost on past requests and ω represents the current state of the adversary
(all possible configurations with their differential costs). Offset functions can be updated as follows.
On request x, the offset function does not change and the optimal cost is 0. When some yi ∈ Y is
requested, the cost of (x, yi) remains 0, the cost of (x, z) and (yi, z), for z 6= x, yi, is 1, and all other
configurations have cost 2. Thus the adversary cost is 0 and the offset function changes to 〈yi|x〉.
By a similar argument, when some v /∈ Y ∪ {x} is requested, the adversary cost is 1 and the offset
function changes to 〈v|xy1 . . . ym〉. See [9] for details.
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3 Lower Bound for Randomized Marking Algorithms

Recall that an on-line caching algorithm is called marking if it never evicts items that have been
requested in the current phase. We prove in this section that no marking algorithm can have
competitive ratio (2− ε)Hk, for any ε > 0.

We first define a certain random process {µt} and prove a technical lemma about its distribution.
This random process starts at 0, and proceeds according to the following rules. Let δ > 0 be an
even integer, and suppose we start with δ/2 red balls and δ white balls in an urn. At each time step
a ball is selected without replacement. If it is red we increase our position by 1, if it is white we
decrease our position by 1. More formally, let µ0 = 0, and for t = 1, 2, . . . , 3δ/2 let µt+1 = µt + 1
with probability pt = (δ − µt − t)/(3δ − 2t) and µt+1 = µt − 1 with probability 1− pt.

Lemma 1 Exp[maxt µt] = O(1).

Proof: To prove the lemma, we compare µ to a standard biased random walk ν. Let ν0 = 0, and
for t ≥ 0 let νt+1 = νt + 1 with probability 2

5 and νt+1 = νt − 1 with probability 3
5 . It is known (see

[13]) that the probability that ν will ever reach the point i > 0 (even in an arbitrarily large number
of steps) is (2/3)i. Therefore Exp[maxt νt] ≤

∑∞
i=1 i(2/3)i+1 = 4. So to prove the lemma it suffices

to show the following inequality:

Exp[max
t

µt] ≤ Exp[max
t

νt] + O(1). (2)

The maximum of µ must occur sometime during the first δ steps, since after this point at least δ/2
white balls must have been selected. Thus we can restrict our consideration to t ≤ δ.

We now present a different (but equivalent) way to describe µ and ν, which will make it easier
to compare their maxima. At step t, we draw a random number x ∈ [0, 1] and the two processes
change their positions as follows:

(µt+1, νt+1) =


(µt + 1, νt + 1) 0 ≤ x < min(pt,

2
5)

(µt − 1, νt + 1) pt ≤ x < 2
5

(µt + 1, νt − 1) 2
5 ≤ x < pt

(µt − 1, νt − 1) max(pt,
2
5) ≤ x ≤ 1

It is important to note that although this way of describing the processes causes the two random
processes to be correlated, it does not change their individual distributions. In particular, the
expected values of maxt µt and maxt νt remain the same.

We first show that, in this new process, Pr[∃t : µt > νt] = o(1/δ). If the event µt > νt occurs
for some t, then there is an s < t for which νs = µs and ps > 2

5 . If νs = µs and ps > 2
5 then

νs < −(δ + s)/5. Since |νs| ≤ s ≤ δ, we get νs ≤ −2s/5 and s ≥ δ/4. There is a constant
a > 0 such that Pr[νs ≤ −2s/5] ≤ 2e−as (see [13]). Note that this only requires that ν is a biased
random walk and does not require independence from µ. Summing over s = δ/4, . . . , δ, we get
Pr[∃t : µt > νt] = o(1/δ), as desired.
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Now, using the inequalities maxt µt ≤ maxt νt + maxt(µt − νt) and µt − νt ≤ δ which hold with
probability 1, and the bound from the previous paragraph, we have Exp[maxt µt] ≤ Exp[max νt] +
Exp[maxt(µt−νt)] ≤ Exp[max νt]+δPr[∃t : µt > νt] ≤ Exp[max νt]+O(1). This completes the proof
of (2). 2

Theorem 1 For any ε > 0, no randomized on-line marking algorithm for caching can be (2− ε)Hk-
competitive if k is large enough.

Proof: We show a probability distribution on request sequences for which (i) the expected cost of
any on-line marking algorithm A is at least 2Hk − o(log k) times more than the expected adversary
cost, and (ii) the expected adversary cost is unbounded. Using Yao’s minimax principle (see, for
example, [4]), these two properties imply the theorem.

Let δ be an even integer such that δ = o(log k) and δ = ω(1). The adversary uses a set X of k+ δ

items. The request sequence consists of phases, with each phase having exactly k distinct requests.
Let ∆i denote the δ items not requested in phase i. In phase i, we first make a random, uniformly
chosen request from ∆i−1, followed by k − 1 requests, each chosen uniformly and at random from
those points in X which have not yet been requested in this phase.

We estimate A’s cost in a phase. The first request is a fault, and for j > 1 the probability that A
will fault on the jth request in this phase is δ/(k + δ − j + 1), since there are j − 1 marked items in
A’s cache and, among the remaining k + δ− j +1 items that are candidates for the next request, δ of
them are not in the cache. Thus the expected cost incurred by A in each phase is 1+δ(Hk+δ−1−Hδ).

We now show that the adversary can serve each phase with an expected cost of δ/2+O(1). This
will imply the theorem, because

1 + δ(Hk+δ−1 −Hδ)
δ/2 + O(1)

= 2Hk − o(log k),

by the choice of δ.

The adversary maintains the invariant that, at the beginning of phase i, the adversary’s cache
contains exactly δ/2 items from ∆i. To preserve this invariant during phase i the adversary uses
information about the future, namely about ∆i+1.

Let Fi be the δ/2 items in X−∆i that are not in the adversary’s cache at the beginning of phase
i. In phases where ∆i+1 intersects Fi ∪∆i, serve the faults evicting arbitrary items, and at the end
of such phases, restore the invariant by loading or evicting the appropriate number of items from
∆i+1. The probability that ∆i+1 intersects Fi ∪∆i in a given phase is O(1/δ) and the cost is O(δ).

We now consider phases where ∆i+1 does not intersect Fi ∪ ∆i. When a fault occurs, serve the
request by evicting an item from ∆i+1. Whenever possible, choose an arbitrary item from ∆i+1

which has already been requested in this phase; otherwise, from the items in the adversary’s cache
which are in ∆i+1 choose the one which will be requested latest in this phase. By this strategy, after
the phase the adversary will have δ/2 items from ∆i+1 in the cache.
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The adversary faults on the δ/2 items in Fi, plus possibly on some items in ∆i+1. It remains to
estimate the number of faults in ∆i+1. The number of these faults is precisely the number of times
the adversary cannot serve a request in Fi with a previously requested item from ∆i+1. We claim
that this number is O(1).

We consider the sequence of the 3δ/2 requests in ∆i+1 ∪ Fi. For t = 1, 2, . . . , 3δ/2, denote by µt

the difference between the number of requests in Fi and the number of requests in ∆i+1 in the first
t steps. Then the number of faults in ∆i+1 is the maximum of µt. Think of items in Fi as red balls
and items in ∆i+1 as white balls. Then µ is the same random process as the one defined earlier in
this section and, by Lemma 1, we get that the expected cost on ∆i+1 is O(1).

Summarizing, the expected cost of the adversary in a phase is no more than δ/2 + O(1) +
O(δ)O(1/δ) = δ/2 + O(1). This completes the proof. 2

4 A Trackless Algorithms for k = 2

Recall that a trackless on-line algorithm is defined as follows: at each step, the algorithm is told
whether a fault occurred or not. If a hit occurred, it knows the cache location that contains the
requested item. It does not have access to any other information.

We now present a trackless algorithm for 2 servers that we call TL2. The algorithm maintains
two types of marks associated with the cached item that is not the last request. We represent cache
configurations by ordered pairs, with the last request listed first. The possible cache configurations
are (x, y), (x, ẏ) and (x, ÿ), where x is the last request and y is the other item in the cache. The
number of dots over an item is an estimate of the uncertainty about whether this item should be be
in the cache at a given time. This number represents – roughly, but not exactly – the number of
faults after this item was last requested.

Algorithm TL2: Let p be a parameter, p ∈ [ 12 , 1], whose value will be specified later. Suppose the
items in the cache are x, y, where x is the last request, and that we request z. If z = x, nothing
happens. If z = y, the new configuration is (y, x). If z is not in the cache, we have three cases:

(tl2a) If the cache is (x, y), we go to (z, ẋ) or (z, ẏ), each with probability 1
2 .

(tl2b) If the cache is (x, ẏ), we go to (z, x) with probability p and to (z, ÿ) with probability 1− p.

(tl2c) If the cache is (x, ÿ), we go to (z, x) with probability 1.

As explained in Section 2, we use notation 〈x|y1y2...ym〉 for offset functions, where x is the last
request, and the support is (x, y1),. . . ,(x, ym). The items x, y1 . . . , ym, are listed in order from most
to least recently requested.
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Figure 1: The moves of Algorithm TL2 on a fault.

We also introduce some notation for probability distributions on the algorithm’s configurations.
Notation xα means that x is in the cache with probability α. If the last request is x and yj is
in the cache with probability pj , for j = 1, . . . , k (and other items have probability 0), then we
represent this distribution by (x, yp1

1 yp2
2 . . . ypk

k ), where the yj are listed in order, from most to least
recently requested. Some of the yj in this notation may be marked. For example, (x, yαẏβ z̈γ) is the
distribution in which the last request is x and the other item in the cache is y (with no mark) with
probability α, ẏ (y with the single mark) with probability β, and z̈ (z with the double mark) with
probability γ.

For 0 ≤ α, β, γ, δ ≤ 1, define

Φj = Φj(α, β, γ, δ) =


(2− p)β + γ + δ j = 1
(2− p/2)α + (2− p)β + δ j = 2
(2− p/2)α + 2(2− p)β + γ j = 3
(2− p/2)α + 2(2− p)β + γ + δ j ≥ 4

(3)

We now state a lemma needed for the analysis of Algorithm TL2. The proof of this lemma is
given in the appendix.

Lemma 2 (a) Let x be the last request and y1, y2, . . . be the other items listed from most to least
recently requested. Then the distribution of TL2 has the form(

x , yα
1 ẏβ

1 ẏβ
2 ÿγ

2 ÿδ
3

)
(4)

where α ≥ γ, and β + γ ≥ δ.

(b) For any j ≥ 1, the expected cost of Algorithm TL2 starting from distribution (4) on the request
sequence (yjx)∗ equals Φj.

Theorem 2 For p = 1
2(5−

√
13), Algorithm TL2 has competitive ratio 1

4(3 +
√

13) ≈ 1.6514.

Proof: The proof is by amortized analysis, using a potential argument. Each state is determined
by the current distribution of TL2 and the current offset function. By Lemma 2, the distribution
of TL2 has the form

(
x, yα

1 ẏβ
1 ẏβ

2 ÿγ
2 ÿδ

3

)
. Using the constraints on α, β, γ, δ in Lemma 2.a, we get

Φj ≤ Φj+1 for all j. If the support is y1, . . . , ym, we take the potential of this state to be Φ = Φm =
maxj≤m Φj .
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We now consider one step of the computation. Denote by ∆cost, ∆opt and ∆Φ, respectively, the
cost of TL2, the optimal cost, and the potential change in this move. We need to show that

∆cost + ∆Φ ≤ 1
4(3 +

√
13)∆opt. (5)

The theorem follows from (5) by routine amortization.

Observe that Φ is the “lazy potential” function, equal to the maximum cost of TL2 if the adversary
repeats requests on x and some yj , for j ≤ m. Thus Φ satisfies (5) for requests in the support, since
then ∆cost ≤ −∆Φ and ∆opt = 0.

For a request outside the support, assume (without loss of generality) that the requested point
yj , with j > m, had probability zero. The new offset function is 〈yj |xy1 . . . ym〉 and the distribution
is (

yj , x2pβ+γ+δẋ
1
2αẏ

1
2α
1 ÿ

(1−p)β
1 ÿ

(1−p)β
2

)
(See (8) in the appendix.) Then, depending on the support of the original configuration, we get

∆Φ = Φm+1( 2pβ + γ + δ, 1
2α, (1− p)β, (1− p)β ) − Φm(α, β, γ, δ)

= − 1
2pα + (4p− p2 − 2)β + 1

2(2− p)(γ + δ) +


α + β m = 1
β + γ m = 2
δ m = 3

By Lemma 2, ∆Φ is maximized for m = 1, so we get

∆Φ ≤
(
1− 1

2p
)
(α + γ + δ) + (4p− p2 − 1)β

= 1− 1
2p + (5p− p2 − 3)β

Note that p is the root of 5p− p2 − 3 = 0 in [0, 1]. Our cost is at most 1 and the optimal cost is 1,
so ∆cost + ∆Φ ≤ 2− 1

2p = 1
4(3 +

√
13)∆opt, completing the proof of (5). 2

The analysis is tight. If we start from (x, y) and request zxzx..., the cost of Algorithm TL2 is
1
2(4 − p) = 1

4(3 +
√

13) and the optimal cost is 1. Another strategy is to request uzxzx.... Then
the cost is 1

2(5 + 3p − p2) = 1
2(3 +

√
13), and the optimal cost is 2, so the ratio is also 1

4(3 +
√

13).
Therefore our analysis above is tight.

5 Final Comments

What is the optimal competitive ratio of trackless algorithms for k = 2? We know now that this
ratio is between 1.5416 and 1.6514. We believe that Algorithm TL2 from Section 4 can be further
improved as follows: in state (x, y) on a fault, instead of evicting each item with equal probability,
evict y with probability q > 1

2 . Unfortunately, the lazy potential function does not work well for this
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extension (the resulting formulas give the optimal value for q equal 1
2), and so far we have not been

able to find a better potential function.

For k ≥ 3, no upper bounds better than 2Hk − 1 are known for trackless algorithms. It is also
not known whether it is possible to obtain the optimal ratio Hk with a trackless algorithm. We
conjecture that there exists a trackless algorithm with competitive ratio (2− ε)Hk, for some ε > 0.

None of the two restrictions discussed in the paper, trackless or marking, prevents an algorithm
from storing large amounts of information about the past. A trackless algorithm, for example, can
remember whether a fault or a hit occurred at each step of the computation. It is not known to what
degree such information can help in reducing the competitive ratio. To investigate this question, we
can consider another model that puts an explicit bound on the memory of the algorithm. Define
an m-state algorithm to be a probabilistic automaton with m memory states and actions (evictions)
associated with transitions. The inputs are “fault” or “hit j”, where j is a cache location. On a hit,
the automaton specifies the new state. On a fault, the automaton specifies the new state and the
item to be evicted. Our trackless algorithm TL2 for k = 2 can be implemented with only five states.
We can show (see [5]) that it is not possible to achieve a ratio better than 2 with two states, but we
can achieve ratio 5/3 ≈ 1.667 with three states. It would be interesting to determine whether the
optimal ratio for trackless algorithms can be achieved with some fixed number of states.

Acknowledgements. We would like to thank the anonymous referees for insightful comments that
helped us improve the presentation of the paper.
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A Proof of Lemma 2

(a) The proof is by induction. The lemma holds trivially for the initial distribution (x, y1). Suppose
the current distribution satisfies the lemma. Requesting x does not change anything, so we can
assume the request is on some yj . The table below shows the distribution achieved on each possible
request from each possible current configuration:

Probability Current After y1 After y2 After yj , j ≥ 3

α (x, y1) (y1, x) (y2, ẋ
1
2 ẏ

1
2
1 ) (yj , ẋ

1
2 ẏ

1
2
1 )

β (x, ẏ1) (y1, x) (y2, x
pÿ1−p

1 ) (yj , x
pÿ1−p

1 )

β (x, ẏ2) (y1, x
pÿ1−p

2 ) (y2, x) (yj , x
pÿ1−p

2 )

γ (x, ÿ2) (y1, x) (y2, x) (yj , x)

δ (x, ÿ3) (y1, x) (y2, x) (yj , x)
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The distribution after requesting yj is obtained by combining the configurations in the column
of yj , weighted by the row probabilities. The resulting distributions are:

after y1 :
(
y1 , xα+(1+p)β+γ+δÿ

(1−p)β
2

)
(6)

after y2 :
(
y2 , x(1+p)β+γ+δẋ

1
2αẏ

1
2α
1 ÿ

(1−p)β
1

)
(7)

after yj :
(
yj , x2pβ+γ+δẋ

1
2αẏ

1
2α
1 ÿ

(1−p)β
1 ÿ

(1−p)β
2

)
, for j ≥ 3 (8)

In each case, this new distribution has the form as claimed in the lemma.

It remains to show that α′ ≥ γ′ and β′ + γ′ ≥ δ′, where α′, β′, γ′, δ′ are the parameters of the
new distribution. The verification of these inequalities is routine. For example, for j ≥ 3 we have
α′ = 2pβ + γ + δ, β′ = 1

2α, γ′ = (1− p)β, and δ′ = (1− p)β. Then β′ + γ′ ≥ δ′ is trivial, and α′ ≥ γ′

follows from p ≥ 1
2 .

(b) We have four cases. On y1 the cost of Algorithm TL2 is β + γ + δ and its distribution changes
to (6). Then, on x, the cost is (1 − p)β, and the distribution changes to (x, y1

1), and from now on
Algorithm TL2 incurs no cost. So the total cost is β + γ + δ + (1− p)β = (2− p)β + γ + δ.

On y2 the cost is α + β + δ and the distribution changes to (7). Starting at (7), we apply the
formula for j = 1, so the cost is (α + β + δ) + (2− p) 1

2α + (1− p)β = (2− p/2)α + (2− p)β + δ.

On y3 the cost is α + 2β + γ and the distribution changes to (8). Starting at (8), we apply the
formula for j = 1, so the cost is (α + 2β + γ) + (2− p) 1

2α + 2(1− p)β = (2− p/2)α + 2(2− p)β + γ.

On yj the cost is 1 = α+2β +γ +δ and the distribution changes to (8). Starting at (8), we apply
the formula for j = 1, so the cost is (α+2β+γ+δ)+(2−p) 1

2α+2(1−p)β = (2−p/2)α+2(2−p)β+γ+δ.
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