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Abstract. We introduce the notion of coordination mechanisms to im-
prove the performance in systems with independent selfish and non-
colluding agents. The quality of a coordination mechanism is measured
by its price of anarchy—the worst-case performance of a Nash equilib-
rium over the (centrally controlled) social optimum. We give upper and
lower bounds for the price of anarchy for selfish task allocation and con-
gestion games.

1 Introduction

The price of anarchy [11, 18] measures the deterioration in performance of sys-
tems on which resources are allocated by selfish agents. It captures the lack
of coordination between independent selfish agents as opposed to the lack of
information (competitive ratio) or the lack of computational resources (approx-
imation ratio). However unlike the competitive and approximation ratios, the
price of anarchy failed to suggest a framework in which coordination algorithms
for selfish agents should be designed and evaluated.

In this work we attempt to remedy the situation. We propose a framework to
study some of these problems and define the notion of coordination mechanisms
(the parallel of online or approximation algorithms) which attempt to redesign
the system to reduce price of anarchy. To introduce the issues, we consider
first two different situations from which the notion of coordination mechanisms
emerges in a natural way.

Consider first the selfish task allocation problem studied in [11]. There is a
simple network of m parallel links or m identical machines and a set of n self-
ish users. Each user 7 has some load w; and wants to schedule it on one of the
machines. When the users act selfishly at a Nash equilibrium the resulting allo-
cation may be suboptimal. The price of anarchy, that is, the worst-case ratio of
the maximum latency at a Nash equilibrium over the optimal allocation can be
as high as ©(logm/loglogm) [11,5,10]. The question is “How can we improve
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the price of anarchy?’; and what mechanisms one can use to improve the overall
system performance even in the face of selfish behavior? We will assume that
the system designer can select the scheduling policies of each machine; we then
ask whether some scheduling policies can reduce the price of anarchy and by
how much. An important aspect of the problem is that the designer must design
the system once and for all, or equivalently that the scheduling policies should
be defined before the set of loads is known. Another important and natural con-
dition is the decentralized nature of the problem: the scheduling on a machine
should depend only on the loads assigned to it and should be independent of
the loads assigned to other machines (otherwise an optimal allocation can be
easily enforced by a centralized authority and all game-theoretic issues vanish).
This framework is very similar to competitive analysis, especially if we consider
the worst-case price of anarchy: We, the designers, select the scheduling policies
for each machine. Then an adversary selects a set of loads. We then compute
the makespan of the worst Nash equilibrium and divide by the makespan of the
optimal allocation. It is important to clarify that we divide with the absolute
(original) optimum which is independent of our choice of scheduling policies.

As a second example, consider the selfish routing problem whose price of
anarchy was studied by Roughgarden and Tardos [23]. In a network in which the
latency experienced by the traffic on an edge depends on the traffic traversing the
edge, selfish users route traffic on minimum-latency paths. The price of anarchy
can be as high as 4/3 for linear latency functions and unbounded for arbitrary
latency functions. How can we improve the price of anarchy in this situation? For
the famous Braess’ paradox case, a simple solution is to remove some edges. The
removal of edges however does not improve the price of anarchy in general; even
for the Braess’ paradox network, the removal of an edge can make the situation
much worse for other amounts of traffic. We propose to study mechanisms that
slow down the traffic on some edges to improve the performance. More precisely,
we, the designers select for each edge e a new latency function ¢ which is equal
or greater than the original latency function ¢°; then the adversary selects a flow
and we evaluate the price of anarchy. Notice that, as in the case of the selfish
task allocation, we should divide the Nash equilibrium latency (computed using
the new latency functions ¢¢) by the optimal latency (of the original latency
functions c°).

1.1 Owur Contributions

To study the above and similar problems, we introduce a unifying framework:
the notion of coordination models which is an appropriate generalization of con-
gestion games and the notion of coordination mechanisms which generalizes the
scheduling policies and the increase in the cost and latency functions of the above
examples.

Using this framework, we study the selfish task allocation problem (Section
3). We give a coordination mechanism (i.e., scheduling policies) with price of an-
archy 4/3—1/(3m), improving significantly over the original ©(log m/loglogm).
We conjecture that this bound is tight, but we were able to show only that every



coordination mechanism has price of anarchy strictly greater than 1 (this still
allows the infimum price of anarchy to be 1).

We also study coordination mechanisms for congestion games (Section 4). We
show an interesting relation between the potential and the social cost of a set of
strategies; based on these we give a coordination mechanism with price of anar-
chy n for the single-commodity congestion games. We also show that the bound
n is tight. We conjecture that the same bound holds for the general congestion
games; but we were able to show only that the coordination mechanism that we
employed for the single-commodity games fails in the general case (details in the
full version).

Finally, for the case of selfish routing, non-continuous coordination mecha-
nisms may perform arbitrarily better than continuous ones; this asks for remov-
ing the assumptions of continuity in the work of Roughgarden and Tardos [23].
We have positive results only for very special cases of small networks (details in
the full version).

1.2 Related work

Mechanisms to improve coordination of selfish agents is not a new idea and we
only mention here work that directly relates to our approach. A central topic
in game theory [17] is the notion of mechanism design in which the players are
paid (or penalized) to “coordinate”. The differences between mechanism design
and the coordination mechanism model are numerous. The most straightforward
comparison can be exhibited in the selfish routing problem: both aim at improv-
ing coordination, but mechanism design can be seen as a way to introduce tolls
(see for example [2, 3]), while coordination mechanism is a way to introduce traf-
fic lights. Also, the algorithmic and communication issues involved in mechanism
design seem to be completely different than the ones involved in coordination
mechanisms [16, 15,19, 1].

The idea of designing games to improve coordination appears also in the
work of Korilis, Lazar, and Orda [9] but there the goal is to design games with
a unique Nash equilibrium; there is no attempt to compare it with the potential
optimum.

In an attempt to reduce total delay at Nash equilibrium in the selfish routing
problem, [2, 3] analyzes the problem of assigning tazes on network edges. Also,
[14] analyzes how much total money one has to spend in order to influence the
outcome of the game, when the interested party gives payments to agents on
certain outcomes.

A problem that relates to coordination mechanisms for selfish routing, and
studied in [21], asks to find a subnetwork of a given network that has optimal
price of anarchy for a given total flow. This can be also cast as a special case
of coordination mechanisms that allow either a given specific delay function or
infinity (and fixed total flow).



2 The Model

Congestion games [20, 13, 6], introduced by Rosenthal, is an important class of
games that capture many aspects of selfish behavior in networks. A congestion
game is defined by a tuple (N, M, (X;)ien, (¢/)jenm) where N is the set of players,
M is the set of facilities, X; is a collection of strategies for player 4, and ¢’ is
the cost (delay) function of facility j. The characterizing property of congestion
games is that the cost of players for using facility j is the same for all players
and depends only on the number of players using the facility: when k players use
facility j, the cost of each player for using the facility is ¢/ (k). The total cost of
each player is the sum of the individual cost of each facility used by the player.

There are three important classes of congestion games: the single-commodity,
the multi-commodity, and the general congestion games. In the most restricted
class, the single-commodity congestion game, there are n selfish players that want
to establish a path from a fixed node s to a fixed destination ¢. The facilities are
the edges of the network and the strategies for each player are the paths from
s to t. In the more general class of multi-commodity games, each player may
have its own source and destination. Finally, in the most general class there is
no network. It is well-known that every congestion game has at least one pure
Nash equilibrium.

To define the price of anarchy of a congestion game, we need first to agree on
the social cost (i.e., the system cost) of a set of strategies. Two natural choices
are the maximum or the average cost per player —the first one was used in the
selfish task allocation problem of [11] and corresponds to the makespan, and the
second one was used in the selfish routing problem in [23]. The price of anarchy is
then defined as the worst-case ratio, among all Nash equilibria, over the optimal
social cost, among all possible set of strategies.

One can generalize congestion games in two directions: First, to allow the
players to have loads or weights and second, to allow asymmetric cost functions
where players experience different cost for using a facility [12]. These generaliza-
tions are realized by cost functions ¢/, one for each player —the cost of player i
for using facility j is now ¢ (w’) where w’ is the sum of weights of the players
using facility j.

How can we improve the price of anarchy of congestion games? There are two
simple ways: First, by introducing delays, and second, by distinguishing between
players and assigning priorities to them. Given a generalized congestion game
(N, M, (X)ien, (c])jem,ien), we shall define the set of all possible games that
result when we add delays and priorities; we will call these games coordination
mechanisms. The introduction of delays is straightforward: the set of allowed
games have cost functions & where ¢! (w) > ¢! (w). We will call these symmetric
coordination mechanisms. The way to introduce priorities is less obvious but we
can approach the problem as follows: Let facility j assign priorities to players so
that it services first player ¢;, then player t; and so on. The cost (delay) of the
first player t; cannot be less than ¢, (wy, ), the cost of using the facility itself.

Similarly, the cost of the k-th player ¢; cannot be less than ¢, (wy, +--- 4wy, ).



The natural problem is to select a coordination mechanism with small price of
anarchy among all those coordination mechanisms with delays and priorities. To
define this problem precisely and generalize the above discussion, we introduce
the notion of coordination model in the next subsection.

2.1 Coordination models

A Coordination Model is a tuple (N, M, (2;)ien, (C?)jenm) where N = {1,...,n}
is the set of players, M is a set of facilities, X; is a collection of strategies for
player i: a strategy A; € X; is a set of facilities, and finally C7 is a collection
of cost functions associated with facility j: a cost function ¢/ € C7 is a function
that takes as input a set of loads, one for each player that uses the facility, and
outputs a cost to each participating player. More precisely, ¢ is a cost function
from RN to RYN. A natural property is that ¢ (w1, ..., w;—1,0,Wi41,...,w,) =0
which expresses exactly the property that players incur no cost when they don’t
use the facility.

In most coordination models, the strategies and cost functions are defined
implicitly; for example, by introducing delays and priorities to a given congestion
game. We remark however that the congestion model corresponds to a particular
game —there is only one cost function for each facility— while in our model there
is a collection of games —a set of cost functions for each facility.

FEzxzample 1. The coordination model for selfish task allocation that corre-
sponds to the problem studied in [11] is as follows: N = {1,...,n} is the set
of players, M = {1,...,m} the set of facilities is a set of machines or links, all
X’s consists of all singleton subsets of M, X; = {{1},...,{m}}, i.e., each player
uses exactly one facility, and the cost functions are the possible finish times for
scheduling the loads on a facility. More precisely, a function ¢/ is a cost function
for facility j if for every set of loads (wq,...,w,) and every subset S of N, the
maximum finish time of the players in S must be at least equal to the total
length of the loads in S: max;es ¢ (w1, ..., wy) > >, g w;. Notice that a facil-
ity is allowed to order the loads arbitrarily and introduce delays, but it cannot
speed up the execution. As an example, a facility could schedule two loads w;
and wsy so that the first load finishes at time w; + wa/2 and the second load at
time 2wy + wo.

2.2 Coordination mechanisms

The notion of coordination model defined in the previous subsection sets the
stage for an adversarial analysis of the deterioration in performance due to lack
of coordination. The situation is best understood when we compare it with com-
petitive analysis. The following table shows the correspondence.
Coordination model <+ Online problem
Coordination mechanism < Online algorithm
Price of anarchy < Competitive ratio



It should be apparent from this correspondence that one cannot expect to
obtain meaningful results for every possible coordination model in the same way
that we don’t expect to be able to find a unifying analysis of every possible
online problem. Each particular coordination model that arises in “practice” or
in “theory” should be analyzed alone. We now proceed to define the notion of
coordination mechanism and its price of anarchy.

A coordination mechanism for a coordination model (N, M, (X;)ien, (¢/)jenm)
is simply a set of cost functions, one for each facility. The simplicity of this defini-
tion may be misleading unless we take into account that the set of cost functions
may be very rich. A coordination mechanism is essentially a decentralized algo-
rithm; we select once and for all the cost functions for each facility, before the
input is known. For example, for the coordination model for selfish task alloca-
tion, a coordination mechanism is essentially a set of local scheduling policies, one
for each machine; the scheduling on each machine depends only on the loads that
use the machine. Fix a coordination mechanism ¢ = (c!,...,¢™), a set of player
loads w = (w1, ..., wy), and a set of strategies A = (A1,...,A,) € D1 XX X,.
Let (costy, ..., cost,) denote the cost incurred by the players. We define the so-
cial cost sc(w;c; A) as the maximum (or sometimes the sum) cost among the
players, i.e., sc(w;c; A) = max;en cost,.

We also define the social optimum opt(w) for a given set of player loads w
as the minimum social cost of all coordination mechanisms and all strategies in
Xy x - x Xy, e, opt(w) = inf, 4 sc(w;c; A).

It is important to notice that the definition of opt(w) refers to the absolute
optimum which is independent of the coordination mechanism. For example, for
the coordination model of the selfish task allocation, a coordination mechanism
is allowed to slow down the facilities, but the optimum opt(w) is computed using
the original speeds.

To a coordination mechanism ¢ and set of player loads w corresponds a game;
the cost of a player is the sum of the cost of all facilities used by the player. Let
Ne(w;c) be the set of (mixed) Nash equilibria of this game. We define the price of
anarchy (or coordination ratio) of a coordination mechanism ¢ as the maximum
over all set of loads w and all Nash equilibria E of the social cost over the social
optimum.

PA(c) =sup sup [sc(w;c; E)/opt(w)]
w  E€Ne(w;e)
We define the price of anarchy of a coordination model as the minimum price of
anarchy over all its coordination mechanisms.

The situation is very similar to the framework of competitive analysis in on-
line algorithms or the analysis of approximation algorithms. Online algorithms
address the lack of information by striving to reduce the competitive ratio; ap-
proximation algorithms address the lack of sufficient computational resources
by striving to reduce the approximation ratio. In a similar way, coordination
mechanisms address the lack of coordination due to selfish behavior by striving
to reduce the price of anarchy.

The analogy also helps to clarify one more issue: Why do we need to minimize
the price of anarchy and not simply the cost of the worst-case Nash equilibrium?



In the same way that it is not in general possible to have an online algorithm
that minimizes the cost for every input, it is not in general possible to have a
mechanism that minimizes the cost of the worst-case Nash equilibrium for every
possible game of the coordination model.

3 Selfish task allocation

We now turn our attention to the coordination model for selfish task allocation.
There are n players with loads and m identical facilities (machines or links). The
objective of each player is to minimize the finish time. The mechanism designer
has to select and announce a scheduling policy on each facility once and for all
(without the knowledge of the loads). The scheduling policy on each facility must
depend only on its own loads (and not on loads allocated to the other machines).

Let’s first consider the case of m = 2 facilities. In retrospect, the coordination
mechanism considered in [11] schedules the loads on each link in a random order
resulting in the price of anarchy of 3/2. Consider now the following mechanism:

Increasing-Decreasing: “The loads are ordered by size. If two or more loads
have the same size, their order is the lexicographic order of the associated players.
Then the first facility schedules its loads in order of increasing size while the
second facility schedules its loads in order of decreasing size.”

This mechanism aims to break the symmetry of loads. It is easy to see that
the agent with the minimum load goes always to the first link. Similarly, the
agent with the maximum load goes to the second link.

Proposition 1. The above increasing-decreasing coordination mechanism has
price of anarchy 1 for n <3 and 4/3 for n > 4.

Is there a better coordination mechanism for 2 or more facilities? To motivate
the better coordination mechanism consider the case of n = m players each with
load 1. Symmetric coordination mechanisms in which all facilities have the same
scheduling policy have very large price of anarchy: The reason is that there is a
Nash equilibrium in which each player selects randomly (uniformly) among the
facilities; this is similar to the classical bins-and-balls random experiment, and
the price of anarchy is the expected maximum: ©(logm/ loglogm).

It is clear that the large price of anarchy results when players “collide”.
Intuitively this can be largely avoided in pure equilibria. To make this more
precise consider the case where all loads have distinct sizes and furthermore
all partial sums are also distinct. Consider now the coordination mechanism
for m machines where every machine schedules the jobs in decreasing order;
furthermore to break the “symmetry” assume that machine ¢ has a multiplicative
delay ie for each job and for some small € > 0. Then in the only Nash equilibrium
the largest job goes to the first machine, the next job goes to second machine
and so on; the next job in decreasing size goes to the machine with the minimum
load. There is a small complication if the multiplicative delays ie create some
tie, but we can select small enough € so that this never happens.



It should be clear that this is a mechanism with small price of anarchy. But
what happens if the jobs are not distinct or the multiplicative delays ie create
ties? We can avoid both problems with the following coordination mechanism
that is based on two properties:

— Each facility schedules the loads in decreasing order (using the lexicographic
order to break any potential ties).

— For each player, the cost on the facilities are different. To achieve this, the
cost ¢! (wy,...,w,) is a number whose representation in the (m + 1)-ary
system ends at j. To achieve this, the facility may have to introduce a small
delay (at most a multiplicative factor of J, for some fixed small ). For
example for m = 9 machines and § = 0.01, if a job of size w; = 1 is first
(greatest) on machine 7 it will not finish at time 1 but at time 1.007.

Theorem 1. The above coordination mechanism for n players and m facilities
has price of anarchy 4/3 —1/(3m).

Proof. There is only one Nash equilibrium: The largest load is “scheduled” first
on every facility independently of the remaining loads, but there is a unique
facility for which the players’ cost is minimum. Similarly for the second largest
load there is a unique facility with minimum cost independently of the smaller
loads. In turn this is true for each load. Notice however that this is exactly the
greedy scheduling with the loads ordered in decreasing size. It has been analyzed
in Graham’s seminal work [8] where it was established that its approximation
ratio is 4/3 — 1/(3m). Given that the total delay introduced by the J terms
increases the social cost by at most a factor of §, we conclude that the price of
anarchy is at most 4/3—1/(3m)+0. The infimum as § tends to 0 is 4/3—1/(3m).

To see that this bound is tight we reproduce Graham’s lower bound: Three

players have load m and for each k = m+1,...,2m —1, two players have load k.
The social optimal is 3m but the coordination mechanism has social cost 4m — 1
(plus some ¢ term). O

Notice some additional nice properties of this coordination mechanism: there
is a unique Nash equilibrium (thus players are easy to “agree”) and it has low
computational complexity. In contrast, computing Nash equilibria is potentially
a hard problem —its complexity is in general open.

The above theorem shows that good coordination mechanisms reduce the
price of anarchy from ©(logm/loglogm) to a small constant. Is there a coordi-
nation mechanism with better price of anarchy than 4/3 —1/3m? We conjecture
that the answer is negative.

Finally we observe that the above mechanism reduces the question about
the price of anarchy to the question of the approximation ratio of the greedy
algorithm. This naturally extends to the case of machines with speeds. In this
case, the price anarchy is 2 —2/(m + 1) and it follows from results in [7].

Theorem 2. The above coordination mechanism for n players and m facilities
with different speeds has price of anarchy 2 —2/(m + 1).



The mechanism is appropriate for congestion games on any network with lin-
ear cost functions (the above discussion concerns the special case of m parallel
edges). In this case, if we apply the same mechanism to every edge of the net-
work, the price of anarchy is the approximation ratio of the greedy algorithm for
selecting n paths. We point out that the price of anarchy is not known for these
congestion games, yet we can still analyze the price of anarchy of the associated
coordination mechanisms (in analogy, the analysis of Graham’s algorithm is eas-
ier than determining the exact price of anarchy for m machines). For lack of
space, we leave the analysis of these extensions for the full version of the paper.

4 Congestion Games

In the previous section, we discussed coordination mechanisms for linear delay
functions. In this section we will discuss coordination mechanisms for arbitrary
delay functions. We will also consider pure equilibria —these games have at least
one pure equilibrium.

Consider the single-commodity congestion game with
n = 2 players defined by the network of the figure, where
the labels on the edges represent facility/edge costs:
(c?(1),...,¢%(n)). For a > b>> 1, there is a Nash equi-
librium where player 1 selects path ABCD and player
2 selects path ACBD; its social cost is 2 + b. opt is
(ABD, ACD) with cost 2. Hence the price of anarchy is
(24 b)/2 which can be arbitrarily high. Therefore

(1,2)

Proposition 2. Without a coordination mechanism, the price of anarchy of
congestion games (even of single-commodity ones) is unbounded.

We consider symmetric coordination mechanisms that can increase the cost ¢/ (k)
of each facility. Can coordination mechanisms reduce the price of anarchy for
congestion games? We believe that the answer is positive for general congestion
games with monotone facility costs, i.e., when ¢/ (k) < ¢/(k+ 1) for all j and k3.
But we were able to establish it only for single-commodity games.

4.1 Single-commodity congestion games
Let n denote the number of players. Our lower bound is (proof in the full version):

Theorem 3. There are congestion games (even single-commodity ones) for which
no coordination mechanism has price of anarchy less than n.

We will now show that this lower bound is tight.

Theorem 4. For every single-commodity congestion game there is a coordina-
tion mechanism with price of anarchy at most n.

3 For the unnatural case of non-monotone facility costs, it can easily shown that no
coordination mechanism has bounded price of anarchy.



The proof uses the notion of potential [20,13] of a set of strategies/paths. To
define it, let A = (Ay,...,A,) be strategies for the n players and let n® =
n¢(A) denote the number of occurrences of edge e in the paths A;,..., A,. The
potential P(A) is defined as >, ZZ:1 c?(k) and plays a central role: The set of
strategies A is a Nash equilibrium if and only if P(A) is a local minimum (i.e.,
when we change the strategy of only one player, the potential can only increase).
It is also useful to bound the social cost as suggested by the following lemma
(proof in the full version).

Lemma 1. For every strategy A: sc(A) < P(A) <n-sc(A).

The idea of a coordination mechanism for Theorem 4 is simple: Let A* =
(A7,..., A%) be a set of strategies that minimize the social cost (and achieve
the social optimal). Let n®(A*) be the number of occurrences of edge e in the
paths A3, ..., A%. The coordination mechanism keeps the same cost c¢(k) for
k < n¢(A*), but changes the cost c¢(k) = a for k > n°(A*) to some sufficiently
large constant a > 1:

(k) k< né(A*)
(k) =< a? for every k when n®(A4*) =0
a otherwise

The last two cases assign very high cost to edges that are used beyond the
capacity determined by the optimal solution A*. The middle case assigns even
higher cost to edges not used at all by A* to guarantee that they are not used
by any Nash equilibrium also.

The idea of the mechanism is that the high cost a will discourage players to
use each edge e more than n(A*) times and therefore will end up at a set of
strategies A with the same occurrences of edges as in A*. This in turn would
imply that A and A* have the same potential and the theorem will follow from
Lemma 1. However natural this idea for coordination mechanism may be, it is
not guaranteed to work —there may exist Nash equilibria that use some edges
more than A* (with cost a) but each individual player cannot switch to a path
consisting entirely of low cost edges. We have an example for general congestion
games where this happens, but the following lemma shows that this cannot
happen for single-commodity games (details in the full version):

Lemma 2. Let G be a directed acyclic (multi)graph (dag) whose edges can be
partitioned into n edge-disjoint paths from s to t. Let Aq,..., A, be any paths
from s tot. Then there is some i and a path A} from s to t which is edge-disjoint
from the paths Ay,..., Ai—1, Aiz1, ..., An.

Proof (of Theorem 4). Consider an optimal set of strategies A* = (A7,..., A}).
The multigraph G formed by these n paths from s to ¢ should be acyclic. Consider
also a Nash equilibrium A = (Ay,...,A,) for the above-defined coordination
mechanism ¢. The paths use only edges of GG, otherwise some player would benefit
by switching to a (any) s-t path of G. Using Lemma 2 we can also guarantee that



the paths use edges of G with multiplicity equal or smaller than the multiplicity
of G. In conclusion, the potential P(A) is no greater than the potential P(A*)
and the theorem follows from Lemma 1. O

Another interesting fact that follows easily from similar considerations is
that the above coordination mechanism ¢ has price of anarchy at most V —1 for
single-commodity networks of V nodes.

It is open whether the above coordination mechanism works well for multi-
commodity games. But, as mentioned above, it does not work for general games
(details in the full version). We conjecture however that there are (other) co-
ordination mechanisms with price of anarchy n for every congestion game with
positive monotone costs.

5 Open problems

There are many variants of congestion games for which we don’t know their
price of anarchy, let alone the price of anarchy of the corresponding coordina-
tion models and mechanisms. The problems are parameterized by whether we
consider pure or mized Nash equilibria, by whether the flow is splittable or un-
splittable, and by whether the social cost is the maximum or the average cost of
the players. Then there is the class of delay functions: linear (¢(z) = a- ), affine
(c(z) = a-z+Db), or general. Finally, we can distinguish between the weighted and
unweighted cases (where the loads are all equal or not) and between symmetric
or asymmetric coordination mechanisms (in the latter case the mechanism can
prioritize the players).

The immediate problems that are left open by our results include the gap
between the upper and the lower bound for the task allocation problem. Also in
Section 4.1, we considered only congestion games with no weights (and no adver-
sary). What is the price of anarchy when the players have weights w; or simply
when an adversary can select which players will participate (this corresponds to
0-1 weights)? A more distributed mechanism is required in this case.

Finally, in mechanism design there is the notion of truthfulness (strate-
gyproof). Similar issues arise for coordination mechanisms. For example, the
coordination mechanism for the task allocation problem that achieves price of
anarchy 4/3 — 1/(3m) has the property that it favors (schedules first) large
loads. This is undesirable since it gives incentive to players to lie and pretend
to have larger load. Consider now the mechanism that is exactly the same but
schedules the loads in increasing order. Using the same ideas as in the proof of
Theorem 1, we can show that this coordination mechanism has price of anarchy
2—2/(m+1). Although this is greater than 4/3 —1/(3m), the mechanism is very
robust (truthful) in that the players have no incentive to lie (if we, of course,
assume that they can’t shrink their loads). Are there other robust coordination
mechanisms with better price of anarchy? Also, for the case of different speeds,
the mechanism that orders the job in increasing size has non-constant price of
anarchy (at least logarithmic [4]). Are there truthful mechanisms with constant
price of anarchy for this case?
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