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Abstract

We introduce the notion of coordination mechanisms to improve the performance in
systems with independent selfish and non-colluding agents. The quality of a coordination
mechanism is measured by its price of anarchy—the worst-case performance of a Nash equi-
librium over the (centrally controlled) social optimum. We give upper and lower bounds for
the price of anarchy for selfish task allocation and congestion games.
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1 Introduction

The price of anarchy [25, 33] measures the deterioration in performance of systems on which re-
sources are allocated by selfish agents. It captures the lack of coordination between independent
selfish agents as opposed to the lack of information (competitive ratio) or the lack of compu-
tational resources (approximation ratio). However unlike the competitive and approximation
ratios, the price of anarchy failed to suggest a framework in which coordination algorithms for
selfish agents should be designed and evaluated.

In this work we attempt to remedy the situation. We propose a framework to study some
of these problems and define the notion of coordination mechanisms (the parallel of online or
approximation algorithms) which attempt to redesign the system to reduce the price of anarchy.
To introduce the issues, we consider first some situations from which the notion of coordination
mechanisms emerges in a natural way.

Consider first the selfish task allocation problem studied in [25]. There is a simple network
of m parallel links or m identical machines and a set of n selfish users. Each user i has some
load wi and wants to schedule it on one of the machines. When the users act selfishly at a
Nash equilibrium the resulting allocation may be suboptimal. The price of anarchy, that is, the
worst-case ratio of the maximum latency at a Nash equilibrium over the optimal allocation can
be as high as Θ(log m/ log log m) [25, 14, 26]. The question is “How can we improve the price of
anarchy?”; and what mechanisms one can use to improve the overall system performance even in
the face of selfish behavior? We will assume that the system designer can select the scheduling
policies of each machine; we then ask whether some scheduling policies can reduce the price
of anarchy and by how much. An important aspect of the problem is that the designer must
design the system once and for all, or equivalently that the scheduling policies should be defined
before the set of loads is known. Another important and natural condition is the decentralized
nature of the problem: the scheduling on a machine should depend only on the loads assigned
to it and should be independent of the loads assigned to other machines (otherwise an optimal
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allocation can be easily enforced by a centralized authority and all game-theoretic issues vanish).
This framework is very similar to competitive analysis, especially if we consider the worst-case
price of anarchy: We, the designers, select the scheduling policies for each machine. Then an
adversary selects a set of loads. We then compute the makespan of the worst Nash equilibrium
and divide by the makespan of the optimal allocation. It is important to clarify that we divide
with the absolute (original) optimum which is independent of our choice of scheduling policies.
We also want to clarify that in this work we assume that the number of players is fixed. There
are interesting questions when we assume that the number of players is not fixed in advance,
but we do not treat them in this work.

Our second example is based on congestion games [35, 28]. To simplify the discussion
let’s consider the special class of single-commodity (that is, symmetric) congestion games in
this section. In a single-commodity congestion game there are n selfish players that want to
establish a path from a fixed node s to a fixed destination t. The edges of the network have
latency (cost) functions ce so that when exactly k players use the edge e, each one of the players
incurs cost ce(k). The cost of a player is the sum of the costs of the edges that he uses. We
define the social cost to be the maximum cost among the players. The selfish behavior of the
players may result in suboptimal Nash equilibria and the congestion game may have a high
price of anarchy1. How can we reduce it? We propose to study mechanisms that slow down
the traffic on some edges to improve the performance. More precisely, we, the designers select
for each edge e a new latency function ĉe which is equal or greater than the original latency
function ce. Notice that, as in the case of the selfish task allocation, we should divide the Nash
equilibrium social cost (computed using the new latency functions ĉe) by the optimal latency
(of the original latency functions ce).

There are two major difference between the models of the above examples: The first differ-
ence is that in the first model of selfish task allocation, there is an adversary who selects the
weights; in the second example of congestion games, the players have no weights and there is
no place for an adversary (as we already mentioned, we assume that the number of player is
also known to the coordination mechanism). The second difference is that in the first model
the coordination mechanism can assign priorities and therefore the cost function of the facilities
(machines) is player-specific; in the second example, all players that use a facility pay the same
cost (we call these coordination mechanisms symmetric).

1.1 Our Contributions

To study the above and similar problems, we introduce a unifying framework: the notion of
coordination models which is an appropriate generalization of congestion games and the notion
of coordination mechanisms which generalizes the scheduling policies and the increase in the
cost and latency functions of the above examples.

Using this framework, we study the selfish task allocation problem (Section 3). We give a
coordination mechanism (i.e., scheduling policies) with price of anarchy 4/3−1/(3m), improving
significantly over the original Θ(log m/ log log m). We conjecture that this bound is tight.

We also study symmetric coordination mechanisms for congestion games (Section 4). We
first show that any symmetric coordination mechanism has price of anarchy at least n. Then,
we show an interesting relation between the potential and the social cost of a set of strategies;
based on these, we give a coordination mechanism with price of anarchy n for series-parallel
network congestion games.

1See [4, 10, 9, 1] for results on price of anarchy of congestion games for linear and polynomial latency functions.
In this work, we consider general latencies.
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1.2 Related work

Mechanisms to improve coordination of selfish agents is not a new idea and we only mention
here work that directly relates to our approach. A central topic in game theory [32] is the notion
of mechanism design2 in which the players are paid (or penalized) to “coordinate”. Another
attempt is the introduction of taxes (tolls) on the edges of the network in selfish routing games.
In both of these approaches, the objectives of the players are modified by introducing side
payments to their utilities.

In the former class of problems, part of the input is unknown to the system designer and
is controlled by the selfish players. The objective of the mechanism designer is to convince
the players to reveal their true values (truthfulness) by paying them, while simultaneously
optimize (as much possible) the system objective. In the latter class of problems (see for
example [13, 12, 16, 20, 21]), the objective of the designer is to determine optimal taxes on the
edges that result in an optimal routing, assuming that the players’ objective is affected by the
taxes imposed. Our approach generalizes the notion of taxes: The tax on each edge is constant,
independent of the traffic of the edge; in coordination mechanisms, the delay is a general function
of the traffic on the edge. Thus, coordination mechanisms make sense even when the global
traffic rates are not known to the mechanism. This raises the interesting question–which we do
not pursue in this work—for designing mechanisms that work for any rates or any number of
players; clearly constant taxes are very limited, if we do not know the total amount of traffic.

In our setting, we modify the objective of the players by adding delays and setting priorities
on each edge. We do not make use of side payments. We also do not assume knowledge of
the exact instance; we assume knowledge of the network topology but we do not know the
weight of the players that participate. Also, the algorithmic and communication issues involved
in mechanism design seem to be completely different than the ones involved in coordination
mechanisms [31, 30, 34, 3].

The idea of designing games to improve coordination appears also in the work of Korilis,
Lazar, and Orda [24] but there the goal is to design games with a unique Nash equilibrium;
there is no attempt to compare it with the potential optimum.

Also, [29] analyzes how much total money one has to spend in order to influence the outcome
of the game, when the interested party gives payments to agents on certain outcomes.

A problem that relates to coordination mechanisms for selfish routing, and studied in [36],
asks to find a subnetwork of a given network that has optimal price of anarchy for a given total
flow. This can be also cast as a special case of coordination mechanisms that allow either a
given specific delay function or infinity (and fixed total flow).

Following the conference version of this work [11] a few publications studied coordination
mechanisms. In particular, [19, 22] study coordination mechanisms for the selfish task allocation,
while [2, 8] consider truthful mechanisms for the same problem. Recently, Azar et al. [5] and
Caragiannis [6] consider coordination mechanisms for selfish scheduling on unrelated machines.
Also, Kollias [22] gave lower bounds for coordination mechanisms for the selfish task allocation
problem when no delays are allowed.

2 The Model

Congestion games [35, 28, 15], introduced by Rosenthal, is an important class of games that
capture many aspects of selfish behavior in networks. A congestion game is defined by a tuple
(N,M, (Σi)i∈N , (cj)j∈M) where N is the set of players, M is the set of facilities, Σi is a collection
of strategies for player i, and cj is the cost (delay) function of facility j. The characterizing
property of congestion games is that the cost of players for using facility j is the same for all
players and depends only on the number of players using the facility: when k players use facility

2See [31] for an introduction to the algorithmic aspects of this notion.
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j, the cost of each player for using the facility is cj(k). The cost of each player is the sum of
the individual cost of each facility used by the player.

There are three important classes of congestion games: the single-commodity or symmetric,
the multi-commodity, and the general congestion games. In the most restricted class, the single-
commodity congestion game, there are n selfish players that want to establish a path from a
fixed node s to a fixed destination t. The facilities are the edges of the network and the strategies
for each player are the paths from s to t. In the more general class of multi-commodity games,
each player may have its own source and destination. Finally, in the most general class there is
no network. It is well-known that every congestion game has at least one pure Nash equilibrium.

To define the price of anarchy of a congestion game, we need first to agree on the social
cost (i.e., the system cost) of a set of strategies. Two natural choices are the maximum or the
average cost per player —the first one was used in the selfish task allocation problem of [25]
and corresponds to the makespan, and the second one was used in the selfish routing problem
in [37]. The price of anarchy is then defined as the worst-case ratio, among all Nash equilibria,
over the optimal social cost, among all possible set of strategies.

One can generalize congestion games in two directions: First, to allow the players to have
loads or weights and second, to allow asymmetric cost functions where players experience dif-
ferent cost for using a facility [27, 17]. These generalizations are realized by cost functions cj

i ,

one for each player —the cost of player i for using facility j is now cj
i (w

j) where wj is the sum
of weights of the players using facility j.

How can we improve the price of anarchy of congestion games [4, 10, 9, 1]? There are two
simple ways: First, by introducing delays, and second, by distinguishing between players and
assigning priorities to them. Given a generalized congestion game (N,M, (Σi)i∈N , (cj

i )j∈M,i∈N ),
we shall define the set of all possible games that result when we add delays and priorities; we will
call these games coordination mechanisms. The introduction of delays is straightforward: the
set of allowed games have cost functions ĉj

i where ĉj
i (w) ≥ cj

i (w). We will call these symmetric
coordination mechanisms. The way to introduce priorities is less obvious but we can approach
the problem as follows: Let facility j assign priorities to players so that it services first player
t1, then player t2 and so on. The cost (delay) of the first player t1 cannot be less than cj

t1
(wt1),

the cost of using the facility itself. Similarly, the cost of the k-th player tk cannot be less than
cj
tk

(wt1 + · · · + wtk).
The natural problem is to select a coordination mechanism with small price of anarchy

among all those coordination mechanisms with delays and priorities. To define this problem
precisely and generalize the above discussion, we introduce the notion of coordination model in
the next subsection.

2.1 Coordination models

A Coordination Model is a tuple (N,M, (Σi)i∈N , (Cj)j∈M ) where N = {1, . . . , n} is the set of
players, M is a set of facilities, Σi is a collection of strategies for player i: a strategy Ai ∈ Σi

is a set of facilities, and finally Cj is a collection of cost functions associated with facility j: a
cost function cj ∈ Cj is a function that takes as input n loads, one for each player, and outputs
a cost to each player. More precisely, cj is a cost function from RN to RN . When a player does
not use the facility, his load is 0 and we must have cj

i (w1, . . . , wi−1, 0, wi+1, . . . , wn) = 0, which
expresses exactly the property that players incur no cost when they do not use the facility.

A symmetric coordination mechanism is one in which the cost functions are the same for all
players who use it and depend only on the sum of their weights: cj

i (w) = cj(
∑m

i=1 wi).
In most coordination models, the strategies and cost functions are defined implicitly; for

example, by introducing delays and priorities to a given congestion game. We remark however
that the congestion model corresponds to a particular game —there is only one cost function
for each facility—while in our model there is a collection of games—a set of cost functions for
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each facility.

Example. The coordination model for selfish task allocation that corresponds to the problem
studied in [25] is as follows: N = {1, . . . , n} is the set of players, M = {1, . . . ,m} the set
of facilities is a set of machines or links, all Σi’s consists of all singleton subsets of M , Σi =
{{1}, . . . , {m}}, i.e., each player uses exactly one facility, and the cost functions are the possible
finish times for scheduling the loads on a facility. More precisely, a function cj is a cost function
for facility j if for every set of loads (w1, . . . , wn) and every subset S of N , the maximum
finish time of the players in S must be at least equal to the total length of the loads in S:
maxi∈S cj

i (w1, . . . , wn) ≥ ∑

i∈S wi. Notice that a facility is allowed to order the loads arbitrarily
and introduce delays, but it cannot speed up the execution. As an example, a facility could
schedule two loads w1 and w2 so that the first load finishes at time w1 + w2/2 and the second
load at time 2w1 + w2.

Example. We can extend a congestion model to a symmetric coordination model in a natural
way, by allowing each facility to introduce delays. Consider a given weighted congestion game
G in which the cost dj(k) of facility j depends on the sum k of weights of the players using
the facility. A symmetric coordination model contains all games with cost functions greater
or equal to the cost functions of G for every edge j: We will call this model the symmetric

coordination model for congestion games. Here we will study only the unweighted case
where the players have always weight wi = 1.

2.2 Coordination mechanisms

The notion of coordination model defined in the previous subsection sets the stage for an ad-
versarial analysis of the deterioration in performance due to lack of coordination. The situation
is best understood when we compare it with competitive analysis. The following table shows
the correspondence.

Coordination model ↔ Online problem
Coordination mechanism ↔ Online algorithm

Price of anarchy ↔ Competitive ratio

It should be apparent from this correspondence that one cannot expect to obtain meaningful
results for every possible coordination model in the same way that we do not expect to be able
to find a unifying analysis of every possible online problem. Each particular coordination model
that arises in “practice” or in “theory” should be analyzed alone. We now proceed to define
the notion of coordination mechanism and its price of anarchy.

A coordination mechanism for a coordination model (N,M, (Σi)i∈N , (cj)j∈M ) is simply a
set of cost functions, one for each facility. The simplicity of this definition may be misleading
unless we take into account that the set of cost functions may be very rich. A coordination
mechanism is essentially a decentralized algorithm; we select once and for all the cost functions
for each facility, before the input is known.

For example, for the coordination model for selfish task allocation, a coordination mechanism
is essentially a set of local scheduling policies, one for each facility; the scheduling on each facility
depends only on the loads that use the facility. Observe that a facility knows the entire vector
(w1, . . . , wn), where wi is either the load of player i when he uses the facility, or 0 when he does
not use it. Specifically, a facility knows the total number of players n and the loads and IDs of
those players who use it. A facility does not know the loads and strategies of those players who
do not use it.

For the coordination model for congestion games the situation is simpler: a facility knows
all parameters of the original congestion game G and it has to select a cost function greater or
equal than the original one (for every number of players).
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Fix a coordination mechanism c = (c1, . . . , cm), a set of player loads w = (w1, . . . , wn), and
a set of strategies A = (A1, . . . , An) ∈ Σ1 × · · · × Σn. Let (cost1, . . . , costn) denote the cost
incurred by the players. We define the social cost sc(w; c;A) as the maximum cost among the
players, i.e., sc(w; c;A) = maxi∈N costi.

We also define the social optimum opt(w) for a given set of player loads w as the minimum
social cost of all coordination mechanisms and all strategies in Σ1 × · · · × Σn, i.e.,

opt(w) = inf
c,A

sc(w; c;A) (1)

It is important to notice that the definition of opt(w) refers to the absolute optimum which
is independent of the coordination mechanism. For example, for the coordination model of the
selfish task allocation, a coordination mechanism is allowed to slow down the facilities, but the
optimum opt(w) is computed using the original speeds.

To a coordination mechanism c and set of player loads w corresponds a game; the cost of
a player is the sum of the cost of all facilities used by the player. Let Ne(w; c) be the set of
(mixed) Nash equilibria of this game. We define the price of anarchy (or coordination ratio) of
a coordination mechanism c as the maximum over all set of loads w and all Nash equilibria E
of the social cost over the social optimum.

PA(c) = sup
w

sup
E∈Ne(w;c)

sc(w; c;E)

opt(w)

We define the price of anarchy of a coordination model as the minimum price of anarchy over
all its coordination mechanisms.

The situation is very similar to the framework of competitive analysis in online algorithms
or the analysis of approximation algorithms. Online algorithms address the lack of information
by striving to reduce the competitive ratio; approximation algorithms address the lack of suffi-
cient computational resources by striving to reduce the approximation ratio. In a similar way,
coordination mechanisms address the lack of coordination due to selfish behavior by striving to
reduce the price of anarchy.

The analogy also helps to clarify one more issue: Why do we need to minimize the price of
anarchy and not simply the cost of the worst-case Nash equilibrium? In the same way that it is
not in general possible to have an online algorithm that minimizes the cost for every input, it
is not in general possible to have a mechanism that minimizes the cost of the worst-case Nash
equilibrium for every possible game of the coordination model.

3 Selfish task allocation

We now turn our attention to the coordination model for selfish task allocation. There are n
players with loads and m identical facilities (machines or links). The objective of each player is
to minimize her finishing time. The mechanism designer has to select and announce a scheduling
policy on each facility once and for all (without the knowledge of the loads). The scheduling
policy on each facility must depend only on its own loads (and not on loads allocated to the
other machines).

Let’s first consider the case of m = 2 facilities. In retrospect, the coordination mechanism
considered in [25] schedules the loads on each link in a random order resulting in the price of
anarchy of 3/2. Consider now the following mechanism:

Increasing-Decreasing: “The loads are ordered by size. If two or more loads have the
same size, their order is the lexicographic order of the associated players. Then the first facility
schedules its loads in order of increasing size while the second facility schedules its loads in order
of decreasing size.”
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This mechanism aims to break the symmetry of loads. It is easy to see that the agent with
the minimum load goes always to the first link. Similarly, the agent with the maximum load
goes to the second link.

Proposition 1. The above increasing-decreasing coordination mechanism has price of anarchy
1 for n ≤ 3 and at least 4/3 for n ≥ 4.

Proof. First, consider 3 jobs with weights w1 ≥ w2 ≥ w3. Clearly, in the optimum allocation the
first job is executed alone in a separate machine, while the other two jobs are executed together.
Notice that in the Nash equilibrium, the first job will be executed first in the ”decreasing”
machine, so this is a dominant strategy for this job. The third job will analogously choose the
“increasing” machine, while the second job will choose the ”increasing” machine, because it
will cost her time w3 + w2 which is less comparing to the time w1 + w2 that she would need
in the ”decreasing” machine. Hence the only Nash equilibrium of this game coincides with the
optimum.

For the lower bound for n ≥ 4, consider w1 = 2+ǫ, w2 = 2, w3 = 1−ǫ, w4 = 1, for arbitrarily
small ǫ. In the only Nash equilibrium of this instance, the ”decreasing” machine will get the
first job, while the rest go to the ”increasing” machine, giving a makespan of 4 − ǫ. In the
optimum allocation the first and the third jobs go together giving a makespan of 3.

Is there a better coordination mechanism for 2 or more facilities? To motivate the better
coordination mechanism consider the case of n = m players each with load 1. Symmetric
coordination mechanisms in which all facilities have the same scheduling policy have very large
price of anarchy: The reason is that there is a Nash equilibrium in which each player selects
randomly (uniformly) among the facilities; this is similar to the classical bins-and-balls random
experiment, and the price of anarchy is the expected maximum: Θ(log m/ log log m).

It is clear that the large price of anarchy results when players “collide”. Intuitively this can
be largely avoided in pure equilibria. To make this more precise consider the case where all
loads have distinct sizes and furthermore all partial sums are also distinct. Consider now the
coordination mechanism for m machines where every machine schedules the jobs in decreasing
order; furthermore to break the “symmetry” assume that machine j introduces a delay jǫ for
each job and for some small ǫ > 0. Then in the only Nash equilibrium the largest job goes to
the first machine, the next job goes to second machine and so on; the next job in decreasing
size goes to the machine with the minimum load. There is a small complication if the delays jǫ
create some tie, but we can select small enough ǫ so that this never happens.

It should be clear that this is a mechanism with small price of anarchy. But what happens
if the jobs are not distinct or the delays jǫ create ties? We can avoid both problems with a
coordination mechanism based on two properties:

• Each facility schedules the loads in decreasing order (using the lexicographic order to
break any potential ties).

• For each player, the cost on the facilities are different. That is, when we fix the weights
and strategies of the remaining players, there is a unique optimal machine for the player.

To achieve the second property, the cost cj
i (w1, . . . , wn) is a number whose representation in

the (m + 1)-ary system ends in j. The facility may have to introduce a small delay (at most
a multiplicative factor of δ, for some fixed small δ). In particular, suppose that a job is to
finish at time t in machine j. Then the machine will release it at some time t′ in the interval
[t, (1 + δ)t], where the representation of t′ in the (m + 1)-ary system ends in j. Since there are
infinitely many choices of t′, the mechanism must select one, for example, the choice with the
shortest representation in the (m + 1)-ary system. As an example, consider m = 9 machines
and δ = 0.01. If a job is to finish at time t = 1.362 in machine j = 8, then it will be released
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at some time in the interval [1.362, (1 + δ) · 1.362] = [1.362, 1.37562] and the release time must
end in 8 in the (conveniently selected) decimal system. There are many choices for t′; the one
with the shortest representation is 1.368.

Theorem 1. The above coordination mechanism for n players and m facilities has price of
anarchy 4/3 − 1/(3m).

Proof. There is only one Nash equilibrium: The largest load is “scheduled” first on every facility
independently of the remaining loads, but there is a unique facility for which the players’ cost
is minimum. Similarly for the second largest load there is a unique facility with minimum
cost independently of the smaller loads. In turn this is true for each load. Notice however
that this is exactly the greedy scheduling with the loads ordered in decreasing size (aka LPT
scheduling). It has been analyzed in Graham’s seminal work [18] where it was established
that its approximation ratio is 4/3 − 1/(3m). Given that the total delay introduced by the δ
terms increases the social cost by at most δ, we conclude that the price of anarchy is at most
4/3 − 1/(3m) + δ. The infimum as δ tends to 0 is 4/3 − 1/(3m).

To see that this bound is tight we reproduce Graham’s lower bound: Three players have
load m and for each k = m + 1, . . . , 2m − 1, two players have load k. The social optimal is 3m
but the coordination mechanism has social cost 4m − 1 (plus some δ term).

Notice some additional nice properties of this coordination mechanism: there is a unique
Nash equilibrium (thus it is easy for players to “agree”) and it has low computational complexity.
In contrast, computing Nash equilibria is potentially a hard problem [7].

The above theorem shows that good coordination mechanisms reduce the price of anarchy
from Θ(log m/ log log m) to a small constant. Is there a coordination mechanism with better
price of anarchy than 4/3 − 1/3m? We conjecture that the answer is negative (see [22] for a
partial answer, which shows that delays are indispensable).

Finally we observe that the above mechanism reduces the question about the price of anarchy
to the question of the approximation ratio of the LPT algorithm. This naturally extends to
the case of machines with speeds. In this case, the best known lower and upper bounds for the
LPT algorithm are 1.54 and 1 +

√
3/3, due to Kovács [23]. Therefore we get the following:

Theorem 2. The above coordination mechanism for n players and m facilities with different
speeds has price of anarchy between 1.54 and 1 +

√
3/3.

4 Congestion Games

In the previous section, we discussed coordination mechanisms for linear delay functions. In
this section we will discuss symmetric coordination mechanisms for arbitrary delay functions. A
symmetric coordination mechanism for an (unweighted) congestion game G is simply a conges-
tion game with cost functions greater or equal to the cost functions of G. We will also consider
pure Nash equilibria—congestion games and therefore their coordination mechanisms have at
least one pure Nash equilibrium.

Unlike the model of the previous section, now there are no weights to be selected by an
adversary. The analysis here is not analogous with competitive analysis.

Consider the single-commodity congestion game with n = 2 players defined by the network
of the Figure 1, where the labels on the edges represent facility/edge costs: (ce(1), . . . , ce(n)).
For a ≫ b ≫ 1, there is a Nash equilibrium where player 1 selects path ABCD and player 2
selects path ACBD; its social cost is 2 + b. The optimal solution is (ABD,ACD) with cost 2.
Hence the price of anarchy is (2 + b)/2 which can be arbitrarily high. Therefore

Proposition 2. Without a coordination mechanism, the price of anarchy of congestion games
(even of single-commodity ones) is unbounded.
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Figure 1: Unbounded price of anarchy

Can coordination mechanisms reduce the price of anarchy for congestion games? We believe
that the answer is positive for single-commodity congestion games with monotone3 facility costs,
i.e., when cj(k) ≤ cj(k + 1) for all j and k. But we were able to establish it only for the special
class of congestion games with series-parallel graphs.

Definition 1. A congestion game is a series-parallel congestion game, if it is a single-commodity
network congestion game with common source a vertex s and common destination a vertex t,
and its underlying network is an s-t series parallel graph.

4.1 Series-parallel congestion games

We first establish the lower bound.

Theorem 3. There are congestion games (even series-parallel ones) for which no symmetric
coordination mechanism has price of anarchy less than the number of players, n.

Proof. Consider a network with nodes v0, v1, . . . , vn and n pairs of parallel edges (vi, vi+1),
the upper edge with costs (0, . . . , 0, a) and the lower edge with costs (a, . . . , a) for some large
constant a; Figure 2 depicts the network for 3 players. An optimal set of strategies is for player i
to select the upper edges with the single exception that between vi−1 and vi where it selects the
lower edge; its social cost is a. On the other hand, a Nash equilibrium occurs when all players
select the upper edges only. Its social cost is n · a and its price of anarchy n. No symmetric

3

(0,0,a)

(a,a,a)

(0,0,a)

(a,a,a)

(0,0,a)

(a,a,a)

V0 1V V2 V

Figure 2: Price of anarchy n.

coordination mechanism can improve this: Clearly, at stage i from node vi−1 to node vi, at
least one player will incur cost at least a. Since the stages are independent, there is a Nash
equilibrium in which the same player incurs cost at least a in every stage. This Nash equilibrium
has social cost at least n · a and its price of anarchy is at least n.

We will now show that this lower bound is tight.

Theorem 4. For every series-parallel congestion game there is a coordination mechanism with
price of anarchy at most n.

3For the unnatural case of non-monotone facility costs, it can be easily shown that no coordination mechanism
has bounded price of anarchy.
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The proof uses the notion of potential [35, 28] of a set of strategies/paths due to Rosenthal.
To define it, let A = (A1, . . . , An) be strategies for the n players and let ne = ne(A) denote
the number of occurrences of edge e in the paths A1, . . . , An. The potential P (A) is defined in
[35] as

∑

e

∑ne

k=1 ce(k) and plays a central role: The set of strategies A is a Nash equilibrium
if and only if P (A) is a local minimum (i.e., when we change the strategy of only one player,
the potential can only increase). It is also useful to bound the social cost as suggested by the
following lemma

Lemma 1. For every strategy A: sc(A) ≤ P (A) ≤ n · sc(A).

Proof. The lemma follows from the definitions of P (A) =
∑

e

∑ne

k=1 ce(k) and sc(A) = maxi ci.
The left inequality is derived as:

sc(A) = max
i

ci = max
i

∑

e∈Ai

ce(ne) ≤
∑

e

ce(ne) ≤
∑

e

ne

∑

k=1

ce(k) = P (A),

and the right one as:

P (A) =
∑

e

ne

∑

k=1

ce(k) ≤
∑

e

nece(ne) =
∑

i

ci ≤ n max
i

ci = nsc(A)

The idea of a coordination mechanism for Theorem 4 is simple: Let A∗ = (A∗
1, . . . , A

∗
n) be

a set of strategies that minimize the social cost (and achieve the social optimal). Let ne(A∗)
be the number of occurrences of edge e in the paths A∗

1, . . . , A
∗
n. The coordination mechanism

keeps the same cost ce(k) for k ≤ ne(A∗), but changes the cost ce(k) for k > ne(A∗) to some
sufficiently large constant a ≫ 1:

ĉe(k) =











ce(k) k ≤ ne(A∗)

a · m for every k when ne(A∗) = 0

a otherwise

The last two cases assign very high cost to edges that are used beyond the capacity determined
by the optimal solution A∗. The middle case assigns even higher cost to edges not used at all
by A∗ to guarantee that they are not used by any Nash equilibrium: the cost of one such edge
exceeds the sum of cost of all—less than m—edges used by the optimal solution.

The idea of the mechanism is that the high cost a will discourage players to use each
edge e more than ne(A∗) times and therefore will end up at a set of strategies A with the
same occurrences of edges as in A∗. This in turn would imply that A and A∗ have the same
potential and the theorem will follow from Lemma 1. However natural this idea for coordination
mechanism may be, it is not guaranteed to work —there may exist Nash equilibria that use
some edges more than A∗ (with cost a) but each individual player cannot switch to a path
consisting entirely of low cost edges.

We have an example for single-commodity network congestion games where this happens
(Subsection 4.2), but the following graph-theoretic lemma shows that this cannot happen for
games of series-parallel graphs4:

Lemma 2. In a series-parallel multi-graph consider n s− t edge-disjoint paths A∗
1, . . . , A

∗
n and

let A1, . . . , Ak be any other s − t paths with k < n. Then there is an s − t path with edges that
appear in A∗

1, . . . , A
∗
n but not in A1, . . . , Ak.

4In the conference version of the paper, we erroneously claimed that the mechanism has approximation n for
single-commodity games.
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Proof. We will prove this by induction on the structure of the graph. The basis of the induction
(with a graph of only one edge) is trivial (we must have n = 1 and k = 0).

For the induction step, if the last composition of the graph is a series composition, we get
the desired path by simply applying the series composition to the paths of the two parts.

If the last composition is a parallel composition, let n1, k1 and n2, k2 be the number of
paths in the two parts (with n = n1 + n2 and k = k1 + k2). Since n > k, we must have n1 > k1

or n2 > k2. By induction, there is a path in the component i where the inequality ni > ki is
true.

Proof of Theorem 4. Consider a series-parallel (directed) graph and an optimal set of strategies
A∗ = (A∗

1, . . . , A
∗
n). Consider also a Nash equilibrium A = (A1, . . . , An) for the above-defined

coordination mechanism ĉ.
We will show that for every edge e, its multiplicity ne(A) in the paths of A does not exceed

its multiplicity ne(A∗) in the paths of A∗, i.e. ne(A) ≤ ne(A∗).
First of all, the paths in A use only edges that appear in A∗, otherwise some player would

benefit by switching to any path of A∗ (this is guaranteed by the cost a · m assigned by the
mechanism).

Fix now a player i and consider the paths A−i of the remaining players. There is a path
whose edges multiplicity ne(A−i) is at most ne(A∗) − 1, as it follows directly from Lemma 2
for the paths A∗ and A−i. This path constitutes a strategy for player i which is less expensive
than any path that uses some edge e with multiplicity more than ne(A∗). Since A is a Nash
equilibrium, it follows that player i uses only edges with multiplicity at most ne(A∗). Of course,
the same is true for all players.

In conclusion, the potential P (A) is no greater than the potential P (A∗) and the theorem
follows from Lemma 1.

Another interesting fact that follows easily from similar considerations is that

Theorem 5. The above coordination mechanism ĉ has price of anarchy at most d for series-
parallel congestion games with maximum s-t distance d.

Proof. As in the proof of Theorem 4, let A, A∗ be a Nash equilibrium and an optimal set of
strategies; it was shown there that for every edge e, ne(A) ≤ ne(A∗). Let us assume that in A
the player with maximum cost is i. We then have:

sc(A) = ci(A)

=
∑

e∈Ai

ĉe(ne(A))

≤ |Ai| · max
e

ĉe(ne(A))

≤ |Ai| · max
e

ĉe(ne(A∗)) because ne(A) ≤ ne(A∗) for every e

= |Ai| · max
e

ce(ne(A∗)) by the definition of ĉ

≤ |Ai| · sc(A∗)

≤ d · sc(A∗).

4.2 Counterexample of single-commodity network congestion game

The algorithm of Theorem 4, does not hold for single-commodity network congestion games. In
this section we give a counterexample where the algorithm fails to provide a bounded Price of
Anarchy.
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(1,M,M,M)

(2,M,M,M)

(1,1,M,M)

(1,1,M,M)(1,1,M,M)

(3,M,M,M)(3,M,M,M)

(3,M,M,M)

(1,M,M,M)

g
i

j

h k l

t
(1,1,1,1)

(1,1,1,1)

s

c d

e

f

a

b
(2,M,M,M)

(1,1,M,M)

(1,1,M,M) (1,1,M,M)

(3,M,M,M) (3,M,M,M)

(3,M,M,M)

Figure 3: Unbounded price of anarchy.

Assume that we have the single-commodity instance of Figure 3 where 4 players want to
route their traffic from s to t.

An optimum profile has cost 11 and selects the paths as follows:

A∗
1 = (s, a, e, g, h, k, l, t)

A∗
2 = (s, b, e, g, j, t)

A∗
3 = (s, c, d, f, e, g, i, t)

A∗
4 = (s, c, d, f, h, k, l, t).

If we apply the symmetric coordination mechanism of Theorem 4 to this instance, the cost
function of edge (e, g) will increase to (1, 1, 1,M ′), while the cost function of (f, h) will increase
to (1,M ′,M ′,M ′), where M ′ >> M . Furthermore, it will change all occurences of M to M ′.

Now consider the following paths:

A1 = (s, a, e, g, h, k, l, t)

A2 = (s, b, e, g, h, k, l, t)

A3 = (s, c, d, f, e, g, i, t)

A4 = (s, c, d, f, e, g, j, t)

The above paths form a Nash equilibrium with social cost 9 + 2M ′, and therefore the price
of anarchy of the aforementioned mechanism can be arbitrarily high.

5 Open problems

The immediate problem left open by our results is to close the gap between the upper and the
lower bound for the task allocation problem. Also in Section 4.1, we considered only congestion
games with no weights (and no adversary). What is the price of anarchy when the players
have weights wi or simply when an adversary can select which players will participate (this
corresponds to 0-1 weights)? A more distributed mechanism is required in this case.

Acknowledgement: We would like to thank an anonymous reviewer for pointing out that
some earlier version of this paper contained an incorrect generalization of Theorem 4. We would
also like to thank him/her for providing the counterexample of Section 4.2.
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