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Abstract

We study the mechanism design problem of scheduling unrelated machines and we
completely characterize the decisive truthful mechanisms for two players when the domain
contains both positive and negative values. We show that the class of truthful mechanisms
is very limited: A decisive truthful mechanism partitions the tasks into groups so that
the tasks in each group are allocated independently of the other groups. Tasks in a group
of size at least two are allocated by an affine minimizer and tasks in singleton groups by
a task-independent mechanism. This characterization is about all truthful mechanisms,
including those with unbounded approximation ratio.

A direct consequence of this approach is that the approximation ratio of mechanisms
for two players is 2, even for two tasks. In fact, it follows that for two players, VCG is
the unique algorithm with optimal approximation 2.

This characterization provides some support that any decisive truthful mechanism
(for 3 or more players) partitions the tasks into groups some of which are allocated by
affine minimizers, while the rest are allocated by a threshold mechanism (in which a task
is allocated to a player when it is below a threshold value which depends only on the
values of the other players). We also show here that the class of threshold mechanisms is
identical to the class of additive mechanisms.

1 Introduction

Algorithmic mechanism design is an important area between computer science and economics.
The two most fundamental problems in this area are the problem of scheduling unrelated
machines [31] and the problem of combinatorial auctions [23, 13, 8]. Here we are dealing
with the scheduling problem, but our main result which is the characterization of truthful
mechanisms for two players extends naturally to the more general domain of combinatorial
auctions. In the scheduling problem, there are n players (machines) and m tasks to be
executed on these machines. Each task j needs time tij on machine i. We want to allocate
the tasks to machines in a way that minimizes the makespan (the time required to finish all
tasks). The problem is that the machines are selfish and will not reveal the true values (we
assume that only machine i knows the true values tij).
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When we depart from the classical design of algorithms and try to extend it to mecha-
nisms, we face the problem that these algorithms have to deal with selfish agents, who may
not be truthful. This restricts the repertoire of available algorithms and brings forth the
question of what kind of mechanisms are available in this framework.

A mechanism consists of two parts, the allocation algorithm and the payment functions,
one for each player. Each player i declares its own execution times ti. The mechanism
collects all the declarations t and allocates the tasks according to an allocation function
a : Rn×m → {1, . . . , n}m from the set of all execution times to the set of partitions of m
tasks to n players. It is more convenient to denote an allocation using the characteristic
variables: aij is an indicator variable for task j to be allocated to machine i. The mechanism
also pays each player i a payment pi. The payment depends on the declared values t and
indirectly on the allocation. A mechanism is truthful, if no player has incentive to lie. We
are dealing here with the standard and more restricted notion of truthfulness, dominant
truthfulness, in which a player has no incentive to lie for every value of the other players. It
is well-known that in truthful mechanisms, the payment to player i depends on the values
t−i of the other players and on the allocation ai of player i: pi = pi(ai, t−i).

The allocation of the mechanism to player i is given by the argmin expression ai =
argmina{ai · ti − pi(ai, t−i)}. The allocations to players must be consistent, i.e., every task
is allocated to exactly one machine. The question is what type of allocation algorithms and
payment schemes satisfy this property.

There is a simple answer to this question: A mechanism is truthful if and only if it satisfies
the Monotonicity Property : If a and a′ are the allocations of the mechanism for inputs t and
t′ which differ only on the values of player i, then we must have

∑m
j=1(aij −a′ij)(tij − t′ij) ≤ 0.

One nice property of this characterization is that it does not involve the payments at all. Since
we usually care about the allocation part of mechanisms, this property focuses exactly on
the interesting part. Unfortunately, although this is a necessary and sufficient condition [33],
it is not very useful because it is a local and indirect property. The best way to clarify this
point is to consider the case of mechanism design in unrestricted domains. In such domains,
the same monotonicity property characterizes the truthful mechanisms. However, there is a
much more direct characterization due to Roberts [19]: The class of truthful mechanisms for
the unrestricted domain is very limited and contains exactly the class of affine maximizers.
An important open problem is to come up with a similar characterization for the scheduling
problem and combinatorial auctions. This work resolves this question for 2 players.

For the scheduling problem, very few mechanisms are known to be truthful. The principal
example is the VCG mechanism [34, 12, 16] (or second-price mechanism) and its generaliza-
tion, the affine minimizers [23]. The VCG mechanism allocates each task independently to
the machine with minimum value, and pays the machine the second minimum value. VCG
can be generalized in two ways and retain its truthfulness. The first generalization is the
task-independent mechanisms, which allocate each task independently of the rest. The sec-
ond generalization is the affine minimizers, which multiply the value of each player by some
constant, but more importantly, they alter the value of each allocation by a constant. It is
this set of additive constants, one per allocation, which make this generalization different
than the first generalization.

Both these generalizations are known to be truthful, but they make very poor algorithms.
The reason is that they allocate each task independently, or almost independently. The
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question is whether there are other truthful mechanisms. Unfortunately, we show here that
this is not the case for 2 players (with a single uninteresting exception). For 3 or more
players however, we know that there are some truthful mechanisms, which are slightly more
general; we call them threshold mechanisms: For each task j and each player i, there are
thresholds hij such that the player gets the task if and only if the value tij is less than hij ;
the characterizing property of threshold mechanisms is that the threshold depends on the
values of the other players, otherwise every mechanism can be expressed with thresholds
(see Figure 1[c1 = 0] for the geometric fingerprint of these mechanisms which partition the
space with orthogonal hyperplanes). For two players the definition of threshold algorithms
coincides with the definition of task-independent mechanisms. For 3 or more players, the
class of threshold mechanisms is richer than the class of task-independent mechanisms (see
for example [15, subsection 4.3]).

The question is whether, the affine maximizers and the threshold mechanisms exhaust
the class of truthful mechanisms. The answer appears at first to be negative: For example,
the mechanism that allocates all tasks to one player, the one with minimum sum of execution
times, is truthful but it is neither affine minimizer nor threshold. However, this negative
answer is not satisfactory because some allocations are never used, no matter how high or
low are the values of the players. (One of the undesired properties of these mechanisms is that
they have unbounded approximation ratio.) In contrast, we usually require that mechanisms
have a much stronger property: decisiveness. A mechanism is called decisive when a player
can enforce an outcome (allocation), by declaring very high or very low values. In fact, for the
scheduling problem, it makes more sense to consider locally-decisive mechanisms: A player
can enforce his allocation by declaring very low or high values, but cannot determine how the
remaining tasks are allocated among the other players. When there are only two players, the
notions of decisiveness and local-decisiveness coincide, but for 3 or more players decisiveness
is a stronger property. We will restrict the discussion in this work to local-decisiveness.

A natural question is to characterize the decisive truthful algorithms. Unfortunately, by
restricting our interest to decisive algorithms, we leave out important truthful specimens
because some affine minimizers are not decisive: in some cases, a task will not be allocated
to a player even when he declares 0 value for the task. To circumvent this problem, we allow
negative values and we characterize the decisive truthful mechanisms for the domain of real
values (both positive and negative). These algorithms include the affine minimizers and the
monotone threshold algorithms; furthermore, every such algorithm is also truthful (but not
necessarily decisive) for the nonnegative domain. By allowing negative values, we obtain not
only a clean characterization but a useful one too, because we can still use it to argue about
the approximation ratio for nonnegative values.

Our characterization leads us to conjecture:

Conjecture 1. For any number of players, a decisive truthful mechanism partitions the tasks
into groups. Each group of tasks is allocated by either an affine minimizer or a threshold
mechanism.

In this work, we show that the conjecture holds for 2 players (Theorem 1). If this turns
out to be true for more players, it will show that the class of truthful mechanisms is limited to
a few algorithms with poor performance. This will also apply directly to richer domains, such
as combinatorial auctions (the richer the domain the more restrictive the class of truthful
mechanisms). In fact, for 2 players our theorem is stronger than the conjecture in two aspects:
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first, in the statement of the conjecture, we can replace the threshold mechanisms with the
stronger notion of task-independent mechanisms; this is possible because for 2 players the
thresholds mechanisms are also task-independent. Second, for 2 players, each part is allocated
independently of the rest. This is not necessarily true for 3 or more players, as the following
example shows:

Example 1. Consider a mechanism with 3 players and 3 tasks, where the first 2 tasks are
allocated by an affine minimizer, while the third task is allocated by a threshold mechanism as
follows: the task is given to the first player when he has minimum value (t31 ≤ min{t23, t33});
otherwise it is given to the second player if and only if t23 + t11 ≤ t33. Notice that the value
t11 of the affine minimizer affects the part of threshold mechanisms.

On a side note, when the affine minimizer in the above mechanism is the VCG mechanism,
we obtain an example of a truthful threshold mechanism which is not task-independent.

The decisiveness restriction is necessary to keep our presentation simple. We don’t know
whether one could drop it and still preserve the essence of the proof. In fact, for the case
of two tasks we only assume decisiveness for 3 allocations (in the sense that a mechanism is
decisive for an allocation if each one of the players can impose this allocation by changing
his values while the values of the other player remain fixed).

In our presentation we deal a lot with payments and, since we are only interested in the
difference of payments, we will use the following notation

f i
a:a′(t−i) = pi(a

′
i, t−i) − pi(ai, t−i).

For simplicity, we write fa:a′ in place of f1
a:a′ . We also represent the allocations using only

the allocation of player 1, since the allocation of player 2 can be inferred. For example, we
write f00:10 for the difference in payments of player 1 when he gets only task 1 and when he
gets no task. There is an extra reason to define fa:a′ : at some point in our proof, we will use
the inverse function f−1

a:a′ .
The main reason for using negative values in our characterization is that the values fa:a′ ,

being the differences of payments, can take negative values.
As we mentioned, the allocation of a mechanism can be expressed with argmin expressions,

one for every player: ai = argmina{ai · ti − pi(ai, t−i)}. For two players and two tasks, we
essentially seek the payments that satisfy the following equation, which expresses the fact
that the allocations for the two players must be consistent (i.e. each task is allocated exactly
once):

argmin{t11 + t12 − p1(11, t2), t11 − p1(10, t2), t12 − p1(01, t2),−p1(00, t2)} =

argmin{−p2(11, t1), t22 − p2(10, t1), t21 − p2(01, t1), t21 + t22 − p2(00, t1)}.

Therefore the problem of characterizing the argmin mechanisms for two players and two
tasks boils down to the following simple question: Which payments p satisfy the above
equation? This is precisely the problem that we are trying to solve here.

The following theorem provides the answer, which applies also to any number of tasks.
But first we give a precise definition of the affine minimizers:

Definition 1 (Affine minimizers). A mechanism is an affine minimizer if there are constants
λi > 0 (one for each player i) and γa (one for each of the nm allocations) such that the
mechanism selects the allocation a which minimizes

∑

i λiaiti + γa.
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We now state our main result:

Theorem 1. For the scheduling problem with real values every decisive truthful mechanism
for 2 players partitions the tasks into groups so that the tasks in each group are allocated
independently of the other groups. Tasks in a group of size at least two are allocated by an
affine minimizer and tasks in singleton groups by a task-independent mechanism.

2 Related Work

The scheduling problem on unrelated machines is one of the most fundamental problems in
combinatorial optimization [18]. Lenstra, Shmoys, and Tardos [25] gave a 2-approximation
polynomial-time algorithm for the classical version of the problem. They also showed that
the problem cannot be approximated in polynomial time within a factor less than 3/2.

Here we study its mechanism design version which was introduced by Nisan and Ronen
in their paper [31, 32] that initiated the algorithmic theory of Mechanism Design. They gave
a truthful n-approximate (polynomial-time) algorithm (where n is the number of machines);
they also showed that no mechanism (polynomial-time or not) can achieve approximation
ratio better than 2 when there are at least three tasks. We strengthen this result by proving
that it holds even for only two tasks.

The lower bound for deterministic mechanisms has been improved in [11] to 2.41 (this is
the best-known lower bound for 3 machines) and [20] to 2.618 for n → ∞ machines.

Nisan and Ronen [31] also gave a randomized truthful mechanism for two players, that
achieves an approximation ratio of 7/4. Mu’alem and Schapira [29] proved a lower bound of
2− 1

n
for any randomized truthful mechanism for n machines and generalized the mechanism

in [31] to give a 7n/8 upper bound. Recently Lu and Yu [27, 26] give an 1.59-approximation
universally truthful randomized algorithm.

In another direction, [10] shows that no fractional truthful mechanism can achieve an
approximation ratio better than 2 − 1/n. It also shows that fractional algorithms that treat
each task independently cannot do better than (n + 1)/2 and this bound is tight.

Lavi and Swamy [24] consider a special case of the same problem—namely when the
processing times have only two possible values low or high—and devise a deterministic 2-
approximation truthful mechanism. Recently Yu [35] extends their results.

A special case of the problem is the problem on related machines in which there is a single
value (instead of a vector) for every machine, its speed. Myerson [30] gave a characterization
of truthful algorithms for this kind of problems (one-parameter problems), in terms of a
monotonicity condition. Archer and Tardos [4] found a similar characterization and using
it obtained a variant of the optimal algorithm which is truthful (albeit exponential-time).
They also gave a polynomial-time randomized 3-approximation mechanism, which was later
improved to a 2-approximation, in [2]. This mechanism is truthful in expectation. Auletta
et al. [6] gave a 4-approximation deterministic algorithm for any fixed number of machines.
Andelman, Azar, and Sorani [1] gave a 5-approximation deterministic truthful mechanism,
for any number of machines. Kovacs improved the approximation ratio to 3 [21] and to 2.8
[22].

Much more work has been done in the context of combinatorial auctions (see for example
[3, 8, 9, 13, 7, 14] and the references within).

5



Our approach of aiming at a complete characterization of truthful mechanisms, regardless
of approximation ratio, is analogous to Roberts [19] result for unrestricted domains, but also
resembles the approach in [23, 5], and it was influenced by the limitations of the current
methods in establishing the known lower bounds [31, 11, 20].

Saks and Yu [33] proved that, for mechanism design problems with convex domains, which
includes the scheduling problem, a simple necessary monotonicity property, between different
inputs (and without any reference to payments) is also sufficient for truthful mechanisms,
generalizing results of [17, 23]. Monderer [28] shows that the domain cannot be further
generalized in the case of quasi-linear utility functions, because in this case a domain of
valuations is a monotonicity domain iff its closure is convex. Our characterization of additive
mechanisms without any reference to payments is in the same direction with this work.

A very recent paper [15] by Dobzinski and Sundararajan is very close in spirit to this
work. Dobzinski and Sundararajan restrict their attention to mechanisms with bounded
approximation ratio. They show that the truthful mechanisms with bounded approximation
ratio are task-independent. In contrast, our work provides a more complete characterization
of all mechanisms including those with unbounded approximation ratio.

3 The characterization of decisive mechanisms for 2 tasks

Our main theorem is based on the following theorem which applies to 2 players and 2 tasks
and which is the subject of this section.

Theorem 2. For the scheduling problem with real values the decisive truthful mechanisms
for 2 players and 2 tasks are either task-independent or affine minimizers. The same char-
acterization applies to mechanisms that are decisive for only three outcomes.

We proceed in our proof carefully, revealing gradually the properties of fa:a′ . We assume
here that the payments take real (positive or negative) values, so that fa:a′ is also a real
function. An indispensable part of the proof is the following lemma.

Lemma 1. For allocations a and a′ that differ in only one task, the quantity fa:a′(t2) depends
only on (a − a′) · t2 (and therefore it depends on only one variable).

Proof. This lemma holds for every number of tasks. We will first prove the lemma for m = 2
tasks. We will focus on the case of a = 00 and a′ = 10 since the other cases are very similar.

We will show by contradiction that f00:10(t21, t22) does not depend on t22. Suppose that
there are t21, t22, and t′22 with t22 6= t22′ with f00:10(t21, t22) < f00:10(t21, t

′
22).

From the definition of f00:10(t21, t22), the tasks of the form
(

f00:10(t21, t22) + ε ∞
t21 ? t22 ?

)

have the indicated allocation for every ε > 0, where infty indicates an arbitrarily high value
which guarantees that the second task will not be allocated to player 1 (i.e., ∞ is greater
than max{f00:01(t2), f00:11(t2)}).

Similarly, the tasks of the form
(

f00:10(t21, t
′
22) − ε ? ∞

t21 t′22 ?

)
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have the indicated allocation for every ε > 0. As we mentioned before, ∞ denotes an
arbitrarily high value. We assume of course that the two occurrences of this symbol above
denote the same value.

By the Monotonicity Property, if we decrease the values of t22 to t′22 to min{t22, t
′
22}, the

allocations remain the same.
This leads to a contradiction when ε = (f00:10(t21, t

′
22) − f00:01(t21, t22))/2, because the

task
(

f00:10(t21,t22)+f00:10(t21,t′
22

)
2 ∞

t21 min{t22, t
′
22} ?

)

would have two allocations.
The proof can be extended to the case of m > 2 tasks: We reduce it to the m = 2 case by

fixing all tasks except of two. For example, for every t2 = (t21, t22, t23) and t′2 = (t21, t
′
22, t

′
23)

we have: f000:100(t21, t22, t23) = f000:100(t21, t
′
22, t23) = f000:100(t21, t

′
22, t

′
23).

t11

t12

11
00

00
11

10
01

01
10

t11

t12

t11

t12

c >01 c <01

11
00

00
11

10
01

01
10

11
00

00
11

10
01

01
10

c =01

c1

c1

c1

c1

-c1

-c1

f (t )01:11 21
f (t )00:01 21 f (t )01:11 21

f (t )00:01 21

Figure 1: There are three ways a truthful mechanism can partition the input space of player
1 for fixed t2, according to the sign of c1. For c1 = 0 you can see that there is a threshold
hj(t2j) for each task j.

Corollary 1. The quantities c1 = f01:11(t2)−f00:10(t2) and c2 = f2
10:00(t2)−f2

11:01(t2) do not
depend on t2.

Proof. First observe that the following equality

f01:11(t2) − f00:10(t2) = f10:11(t2) − f00:01(t2),

follows directly from the definitions because both parts are equal to p1(11, t2) − p1(01, t2) −
p1(10, t2) + p1(00, t2). The above lemma states that f01:11(t2) and f00:10(t2) depend only on
t21. Consequently the left part of the above equality depends only on t21. Similarly the
right part of the above equality depends only on t22. Therefore, both differences are constant
(independent of t2). We denote this constant by c1 (the 1 stands for player 1), and we define,
in a similar way, a constant c2 for player 2.

We can now define the regions of truthful mechanisms. For fixed t2, let R11 denote the
set of values t1 for which the mechanism allocates both tasks to player 1. Region R11 which
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is defined by the following constraints:

t11 < f10:11(t21)

t12 < f01:11(t22)

t11 + t12 < f01:11(t21) + f00:01(t22).

Similarly, the inequalities for region R00 are

t11 > f00:10(t21)

t12 > f00:01(t22)

t11 + t12 > f01:11(t21) + f00:01(t22).

There are similar constraints that define the other two regions R10 and R01. What hap-
pens at the boundaries, where the inequality becomes an equality is not determined by the
Monotonicity Property. These undetermined values are a major source of difficulty in the
characterization of the mechanisms.

From the above inequalities we get that the boundary between regions R00 and R11, if
it exists, is of the form t11 + t12 = f01:11(t21) + f00:10(t22). Since a similar constraint holds
for player 2 (in which the sum t21 + t22 appears), one could be tempted to conclude that
the boundary between allocations 00 and 11 is of the form t11 + t12 = h(t21 + t22) for some
function h. Although this conclusion is exactly the one that we will eventually reach, the above
argument is fallacious: There is no justification to identify the boundary between regions R00

and R11 for the first player when t2 is fixed and the boundary between the same regions for
the second player when t1 is fixed. In fact, we don’t even know that the boundary is some
surface when we consider the 4-dimensional space of t. We tried many shortcuts in our proof
but we couldn’t make them rigorous. This in part is reflected in the writing of the proof, in
which we proceed carefully and use elementary and straightforward arguments.

To proceed to the characterization of mechanisms, we need to understand the functions
f00:10 and f00:01. The first property is easy:

Lemma 2. The functions f01:11 and f00:01 are nondecreasing.

Proof. By symmetry, it suffices to establish the lemma only for the function f00:01. Suppose
that it is decreasing. Then there are t21, t′21 with t21 < t′21 and f00:01(t21) > f00:01(t

′
21).

Consider the instance
(

f00:01(t21)+f00:01(t′
21

)
2 ? 0 ?
t21 ∞

)

,

which should have the indicated allocation because
f00:01(t21)+f00:01(t′

21
)

2 < f00:01(t21). Similarly,
the instance

(

f00:01(t21)+f00:01(t′
21

)
2 0 ?

t′21 ? ∞

)

,

should have the indicated allocation. But since t21 < t′21, this contradicts the Monotonicity
Property.

For most reasonable mechanisms, a stronger statement seems to apply for these two
functions: that they are strictly increasing. This however is not generally true as the following
example shows.
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Example 2 (Task-independent mechanism but not-strictly increasing). Consider the task-
independent mechanism with

f01:11(t21) =











t21 t21 ≤ 1

1 1 ≤ t21 ≤ 2

t21 − 1 2 ≤ t21

and f00:01(t22) = t22. The interesting property of this mechanism is that the function
f01:11(t21) is not strictly increasing.

But we can show that the functions f01:11 and f00:01 are indeed strictly increasing when
c1 6= 0. In fact, we show in the next lemma that either the functions are strictly increasing
or they are like the following mechanism, which is not a decisive mechanism.

Example 3 (Mechanism with some oblivious player). Consider the mechanism with f00:10(t21) =
b1, f00:01(t22) = b2 where b1, b2, and c1 are constants. In this mechanism the first player de-
cides independently of the values of the second player. For given values t1 of the first player,
the second player has the same allocation for every t2. This mechanism is not decisive, since
the second player cannot force all allocations.

f ( )
11:01 t21

f (t + )00:01 22 δ2

f (t )00:0 221

t11

t12

11
00

00
11

10
01

01
10

Figure 2: The points we use to prove Lemma 3

Lemma 3. In a truthful mechanism with c1 6= 0 the functions f01:11 and f00:01 are either
both strictly increasing or both constant. (The same holds for the pair f00:10 and f10:11.)

Proof. We will prove the lemma for c1 > 0 since the case c1 < 0 is very similar. We will show
that there are no t21, t22, 0 < δ2 < δ1 such that

f01:11(t21) = f01:11(t21 + δ1)

f00:01(t22) < f00:01(t22 + δ2)

Before we prove this, we show that it implies the lemma. Indeed, if some of the functions f01:11

and f00:01 is not strictly increasing, say the function f11:01, then it is somewhere constant,
as we have already established in Lemma 2 that it is non-decreasing. Therefore there are
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t21 and δ1 > 0 with f01:11(t21) = f01:11(t21 + δ1). But then for every δ2 < δ1, we must have
f00:01(t22) = f00:01(t22 + δ2). It follows that f00:01 is constant. This in turn (with similar
reasoning) implies that f00:10 is also constant.

We now return to the proof of the above statement. Towards a contradiction we assume
that there is such a mechanism with c1 > 0. For 0 < ε < c1/2 we consider the inputs (see
Figure 2)

(

f01:11(t21) − ε ? f00:01(t22)+f00:01(t22+δ2)
2 + ε ?

t21 t22 + δ2

)

and
(

f01:11(t21) − ε f00:01(t22)+f00:01(t22+δ2)
2 + ε

t21 + δ1 ? t22 ?

)

The claim is that the mechanism will allocate the tasks as indicated by the stars, i. e., both
tasks to the first player in the first input and both tasks to the second player in the second
input. Indeed, it is easy to verify that the first input satisfies the inequalities that define R11

and the second input satisfies the inequalities that define R00.
But these allocations contradict the Monotonicity Property for player 2. The inputs are

identical for the first player while for the second player the sum of the values are t21 + t22 +δ2

and t21 + t22 + δ1. Since we assumed that δ2 < δ1, the sum of the values of the second player
in the first input is less than the sum in the second input. The allocations clearly violate the
Monotonicity Property.

The above lemma establishes that the mechanisms with c1 6= 0 are either one of the
mechanisms of the Example 3 or both functions f01:11 and f00:01 are strictly increasing.
As we consider decisive mechanisms, from now on we will consider only strictly increasing
functions.

Lemma 4. If c2 6= 0 then the functions f01:11 and f00:01 are bijections from R to R.

Proof. (Recall that the superscript 2 in f2
00:10 stands for the second player. By definition, the

allocations of the subscript however are still allocations of the first player. The corresponding
allocations of player 2 can be obtained by changing the roles of 0 and 1.) We want to establish
that the functions f00:10, f

2
10:00 are inverse. We use the assumption c2 6= 0 only to guarantee

that f2
10:00 is strictly increasing.

From the definitions of the function, we get the following implications:

t11 < f00:10(t21) ⇒ f2
10:00(t11) ≤ t21

t11 > f00:10(t21) ⇒ f2
10:00(t11) ≥ t21

The claim is that the above conditions imply that the two functions are inverse.
Assume towards a contradiction that for some t11 we have f00:10(f

2
10:00(t11)) = t′11 with

t′11 > t11 (the other case, t′11 < t11, is similar). Then (t11 + t′11)/2 > t11, which by the
strictly increasing property of f2

10:00 implies that f2
10:00((t11 + t′11)/2) > f00:10(t11). On the

other hand, (t11 + t′11)/2 < t′11 = f00:10(f
2
10:00(t11)) which by the above implications gives

f2
01:11((t11 + t′11)/2) ≤ f2

01:11(t11), a contradiction.

The assumption c2 6= 0 is essential in the above lemma. When c2 = 0, there are mecha-
nisms in which f00:10 and f00:01 are not bijections; for example, the mechanism of the following
example.
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Example 4 (Non-decisive task-independent mechanism). Consider the mechanism with f00:10(t21) =
et21 , f00:01(t22) = et22 , and c1 = c2 = 0. This is a task-independent mechanism which is not
decisive; the allocation cannot be expressed as argmin for both players.

Lemma 5. The constants c1 and c2 are either both positive, both negative, or both 0.

Proof. It suffices to show that if c1 > 0 then it follows that c2 > 0. Consider the tasks

(

f01:11(t21) − ε ? f00:01(t22) + 2ε/3 ?
t21 t22

) (

f01:11(t21) f00:01(t22) + ε/3
t21 ? t22 ?

)

It is straightforward to check the indicated allocations (for c1 > ε > 0).

f ( )
11:01 t21

f (t )00:0 221

t11

t12

11
00

00
11

10
01

01
10

Figure 3: The points we take for Lemma 5

Let’s denote the above values as: t12 = f00:01(t22) + 2ε/3 and t′12 = f00:01(t22) + ε/3.
Now, if c2 ≤ 0, we should have that t22 ≥ f2

11:10(t12) and t22 ≤ f2
11:10(t

′
12) + c2. (Consider

the situation player 2 faces when the values of player 1 are fixed to t1 and t′1.) But since
t12 > t′12 and since f2

11:10 is strictly increasing (as the inverse of a strictly increasing function)
this leads to a contradiction when c2 ≤ 0.

We now strengthen the characterization of f00:10 and f00:01 in the case when c1 6= 0.

Lemma 6. For c1 6= 0, the functions f00:10 and f00:01 are semiperiodic and in particular they
satisfy

f00:10(t21 + c2) = f00:10(t21) + c1

and
f00:01(t22 + c2) = f00:01(t22) + c1.

Proof. Again by symmetry we need only to establish the lemma for f00:10.
Notice first that f01:11 is a bijection, for the same reasons that f00:10 is a bijection. We

also know that
f01:11(t21) = f00:10(t21) + c1.

11



The associated equation for player 2 is

f−1
00:10(t11) = f−1

01:11(t11) + c2.

We therefore have

f00:10(t21) + c1 = f00:10(f
−1
00:10(f00:10(t21) + c1))

= f00:10(f
−1
01:11(f00:10(t21) + c1) + c2)

= f00:10(f
−1
01:11(f01:11(t21)) + c2)

= f00:10(t21 + c2)

The first equality is based on the trivial fact that t11 = f00:10(f
−1
00:10(t11)). Similarly for the

last equality. The second and third equalities follow from the above mentioned equalities for
player 2 and player 1.

We will focus on the case of c1 > 0 as the case c1 < 0 is very similar. Consider the
diagonal boundary between the regions R11 and R00. This boundary is on the line t11 + t12 =
f01:11(t21) + f00:01(t22). We have f00:11(t21, t22) = f01:11(t21) + f00:01(t22). The heart of the
characterization is that the function f00:11(t21, t22) depends only on the sum of t21 + t22.

Lemma 7. The function f00:11(t21, t22) = f01:11(t21) + f00:01(t22) depends only on t21 + t22,
i. e., there is some function h such that f00:11(t21, t22) = h(t21 + t22).

Proof. Suppose not. That is suppose that there are t2 and t′2 such that t21 + t22 = t′21 + t′22
and yet f00:11(t21, t22) < f00:11(t

′
21, t

′
22). If the values differ, they have to differ for some t21

and t′21 that are very close.
Without loss of generality then we assume that t21 < t′21 < t21 + c2.
This implies that t′22 < t22 < t22′ + c2 and therefore

f00:01(t22) < f00:01(t
′
22 + c2) = f00:01(t

′
22) + c1.

Let ε be a positive parameter with ε < f00:11(t
′
21, t

′
22)−f00:11(t21, t22) and ε < f01:11(t

′
22)−

f00:01(t22). By the above inequalities, ε belongs to an open interval and more specifically it
can take at least two distinct values. Consider then the values

t11 = f01:11(t21)

t12 = f00:01(t22) + ε

We can easily verify that the following inputs satisfy the boundary constraints of the
appropriate regions (R00 and R11) and have the indicated allocations:

(

t11 t12
t21 ? t22 ?

) (

t11 ? t12 ?
t′21 t′22

)

This means that, when we fix t1, the points t2 and t′2 are on the boundary between regions
R11 and R00 of player 2. Equivalently, that

t21 + t22 = f−1
01:11(t11) + f−1

00:01(t12 − ε).

(A similar equation holds for t′2 which however is not different since we assumed that t21+t22 =
t′21 + t′22). This equality should hold for every ε in some open interval. But this contradicts
the fact that f−1

00:01 is strictly increasing.

12



f ( )
11:01 t21

f (t ’)00:01 22

t11

t12

11
00

00
11

10
01

01
10

f (t )00:01 22

f ( )
11:01 t ’21

t21

t22

11
00

00
11

10
01

01
10

Figure 4: The point we use to prove Lemma 7 for player 1 and for player 2.

From the last lemma, we get that h(t21 + t22) = f01:11(t21) + f00:01(t22). We claim that
the functions involved are affine as the following lemma shows.

Lemma 8. If for some real functions h, h1, h2 which are continuous at some point, we have
h(x+y) = h1(x)+h2(y), then all three functions are affine, i. e., they are of the form ax+ b
for some constants a and b.

Proof. Let g(x) = h(x) − h1(0) − h2(0). We can easily verify that g(x + y) = g(x) + g(y).
But this is the Cauchy functional equation. Its only solution is g(x) = ax, from which the
proof of the lemma follows.

We have established that the functions f01:11 and f00:01 are affine but we can say more
about their coefficients:

Lemma 9. When c1 6= 0, there are constants λ > 0 and γa such that

f01:11 = λt21 + γ01 − γ11,

f00:01 = λt22 + γ00 − γ01,

f00:11 = λ(t21 + t22) + γ00 − γ11, for c1 > 0,

f01:10 = λ(t21 − t22) + γ01 − γ10, for c1 < 0.

Moreover λ = c1
c2

.

Proof. The three functions have the same multiplicative constant λ because f00:11(t21+t22) =
f01:11(t21)+ f00:01(t22) and all three functions are linear. It follows that f01:11(t21) = λt21 +β
for some constant β. We can rewrite the constant β as γ01 − γ11. Similarly for the other
functions.

The fact that λ = c1
c2

follows directly from the linearity and the semiperiodicity of the
functions. For example, since f01:11(t21 + c2) = f01:11(t21) + c1 and f01:11 is linear it follows
that f01:11(t21) = c1

c2
t21 + β.

From this and the fact that c1 and c2 have the same sign, we get:

13



Lemma 10. When c1 6= 0, the payments of the first player (up to a common additive term
which depends on t2) are of the form p1(a1, t2) = −λ · a2 · t2 − γa, for some constants λ > 0
and γa.

With the above payments, the mechanism is the following affine minimizer:

argmin
a

{a1 · t1 + λ · a2 · t2 + γa}.

4 The case of many tasks

The generalization of the characterization to more than two tasks is almost straightforward.
Fix a truthful mechanism. For two distinct tasks j1 and j2 we will write j1 ∼ j2 when there
are some values for the other m− 2 tasks such that the mechanism restricted to tasks j1 and
j2 is an affine minimizer (i.e., with the associated constant c1 6= 0). It should be stressed that
we require the mechanism restricted to these two tasks to be an affine minimizer for some
values of the other tasks, not necessarily for all values, but we are going to see that the two
are equivalent.

Our aim is to show that the relation ∼ is transitive; since it is clearly symmetric, it
essentially partitions the tasks into equivalence classes with the exception that classes of size
one are not affine minimizer but task-independent mechanisms. Assume that j1 ∼ j2 and
j2 ∼ j3. That is, assume that when we fix some values of the other tasks, the mechanism for
tasks j1 and j2 is an affine minimizer and when we fix some (not necessarily the same) values
of the other tasks the mechanism for tasks j2 and j3 is also an affine minimizer, not necessarily
with the consistent coefficients. Our aim is to show that the coefficients are consistent. We
start with the case of two tasks and then we generalize.

Lemma 11. When j1 ∼ j2, the payments of player 1 satisfy the following for allocations a
and b that agree on all other tasks (i.e., tasks not in {j1, j2}):

pa(t2) − pb(t2) = λj1,j2 · (a − b)t2 + ζa:b,

where λj1,j2 > 0 and ζa:b are constants.

Proof. For each task j not in {j1, j2} we consider inputs with t1j = ∞ or t1j = −∞ if aj = 0
or aj = 1, respectively. These inputs have allocations that agree with a and b on tasks not
in {j1, j2}. For a fixed value then of the tasks not in {j1, j2}, the mechanism allocates tasks
j1 and j2 with an affine minimizer. We therefore have

pa(t2) − pb(t2) = λj1,j2 · (a − b)t2 + ζa:b,

where λj1,j2 > 0 and ζa:b may depend only on the values of the other tasks.
The crucial observation is that when a and b differ in only one task these are constants

(and do not depend on other tasks). It remains to show that this also holds when a and b
differ on both tasks. However, if a′ is the allocation which differs from a on task j1, we have
that

pa(t2) − p′a(t2) = λj1,j2 · (a − a′)t2 + ζa:a′

p′a(t2) − pb(t2) = λj1,j2 · (a
′ − b)t2 + ζa′:b,
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from which we get that ζa:b = ζa:a′ + ζa′:b is also constant since it is equal to the sum of two
constants.

We now generalize this lemma to many tasks.

Lemma 12. When j1 ∼ j2, j2 ∼ j3, . . . , jk−1 ∼ jk, the payments of player 1 satisfy the
following for allocations a and b that agree on all other tasks (i.e., not in {j1, . . . , jk}):

pa(t2) − pb(t2) = λj1,...,jk
· (a − b)t2 + ζa:b,

where λj1,...,jk
> 0 and ζa:b are constants.

Proof. We show the lemma for k = 3 since the generalization is straightforward. We first
show that the λ coefficients are equal. We know that

pa(t2) − pb(t2) = λj1,j2 · (a − b)t2 + ζa:b (1)

pâ(t2) − p
b̂
(t2) = λj2,j3 · (â − b̂)t2 + ζ

â:b̂ (2)

when a and b agree on all tasks not in {j1, j2} and â and b̂ agree on all tasks not in {j2, j3}.
But the above sets of equations overlap when a and b differ only on task j2. Therefore
λj1,j2 = λj2,j3 (we call this constant λj1,j2,j3).

The proof of the lemma for the ζ terms, is identical to the proof of the previous lemma
(the case of two tasks): Let a′ be the allocation which differs from a in task j1. With the
same argument as in the previous proof, we conclude that ζa:b = ζa:a′ + ζa′:b. This shows that
ζa:b is constant.

The relation ∼ is symmetric and transitive and it partitions the tasks into equivalence
classes. Suppose for simplicity that all tasks belong to one class. Then the mechanism is an
affine minimizer (when there are at least 2 tasks). This follows from the last lemma: Fix
b = 1, i.e. in b all tasks are allocated to player 1. The payment pb can be set arbitrarily, so we
set it to some arbitrary constant γb. Then pa(t2) = λ·(a−b)·t2+ζa:b+pb(t2) = −λ·a2 ·t2−γa,
where we defined γa = −ζa:b + γb (a constant) and used λ > 0 as an abbreviation of λ1,...,m.
Then the allocation for player 1 is given by

argmin
a1

{a1t1 − pa(t2)} = argmin
a1

{a1t1 + λa2t2 + γa},

with λ and γa constants.
The above lemma allows as to partition the tasks so that each part is independent of the

other parts. Parts that have 2 or more tasks are affine minimizers. Parts that have only 1
task are not necessarily affine minimizers.

5 Lower bound for 2 tasks

Although our characterization involves only decisive mechanisms and negative values, it can
be extended directly to show that the approximation ratio even for two tasks is at least 2. The
following claim from [15] shows a non-decisive mechanism for positive values has unbounded
ratio:
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Suppose for example that the allocation 10 does not occur for some t2, and take the input
(

ε ∞
t21 ? t22 ?

)

. Since the allocation of the first player cannot be 10 the allocation is indicated

by the stars. By monotonicity the allocation is the same for the instance

(

ε ∞
t21 ? ε ?

)

. But

this gives approximation ratio 1 + t21/ε → ∞.
The following theorem reproduces the result in [15] for any number m ≥ 2 of tasks.

Theorem 3. No truthful mechanism for 2 players with c1 6= 0 can have a bounded approxi-
mation ratio. Consequently any mechanism for 2 players with bounded approximation ratio
is a task independent mechanism.

Proof. The reason is that for small values of t21 and t22, the constant c1 dominates the
algebraic expressions of the mechanism and as a result the mechanism is far from optimal.

Towards a contradiction suppose that a mechanism with c1 6= 0 has bounded approxima-
tion ratio r. We essentially look at the one dimensional case. Specifically, consider the case of
t12 = ε. In this way the optimal cost for the second task is almost zero and we can concentrate
on the first task. The mechanism gives the first task to player 1 iff t11 ≤ f10:00(t21) + c1. For
the instances with t11 = f10:00(t21) + c1 ± δ, for some arbitrarily small δ, the approximation

ratio is at least max{t21,f10:00(t21)+c1}
min{t21,f10:00(t21)+c1}

. So we must have

t21/r ≤ f10:00(t21) + c1 ≤ rt21.

Similarly, if we consider the case t22 = ε, we get that the first player gets the first task iff
t11 ≤ f10:00(t21), from which we can conclude that

t21/r ≤ f10:00(t21) ≤ rt21.

By subtracting the above inequalities and letting t21 to tend to 0, it is clear that the above
inequalities cannot hold unless c1 = 0.

We can now show that even for 2 tasks and 2 players, no mechanism can have approxi-
mation ratio less than 2.

Theorem 4. No mechanism for 2 players and 2 tasks has approximation ratio less than 2.

Proof. By Theorem 3 the mechanism is task-independent. Suppose that when the processing
times of both players for the first task are both 1, player 1 gets it. Then the allocation for

the instance

(

1 ? 1 ?
1 ∞

)

is indicated by the stars and the resulting approximation ratio is 2.

(In the other case we take the matrix

(

1 ∞
1 ? 1 ?

)

)

In fact, for 2 tasks, we can show that the only truthful mechanism which achieves ap-
proximation ratio 2 is the VCG mechanism.

Theorem 5. The only truthful mechanism for 2 players with approximation ratio 2 is the
VCG mechanism.
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Proof. By symmetry, it suffices to show f01:11(t21) = t21. Consider the instance
(

f01:11(t21) − ε ? t21 ?
t21 ∞

)

.

The second task is allocated to player 1 (otherwise the approximation ratio of the mechanism
is infinite) and the first tasks is also allocated to player 1 as the value of the first player does
not exceed the threshold f01:11(t21). Therefore, by letting ε tend to 0, the approximation
ratio is at least

f01:11(t21) + t21
t21

.

This ratio is at most 2, only when f01:11(t21) ≤ t21. Consider also the instance
(

f01:11(t21) + ε ∞
t21 ? f01:11(t21) ?

)

.

(This is similar to the previous instance, where we exchanged the 2 players). By letting ε
tend to 0, the approximation ratio is at least

f01:11(t21) + t21
f01:11(t21)

.

This ratio is at most 2, only when f01:11(t21) ≥ t21. In conclusion, the mechanism has
approximation ratio at most 2 only when f01:11(t21) = t21.

6 Concluding remarks

We gave a characterization of decisive truthful mechanisms. What happens for non-decisive
mechanisms? For two tasks we have the following cases:

Mechanisms with some oblivious player A mechanism where one player is decisive and
the other is not, as in Example 3.

Mechanisms decisive for only 3 allocations Our proof can be extended to this case and
shows that the only mechanisms are affine minimizers. An example is the mechanism
with only three allocations: 00, 01, 11 and f01:11(t21) = t21, f00:01(t22) = t22, f00:11(t21+
t22) = t21 + t22 and c1 = ∞.

Mechanisms with only 2 allocations Consider the mechanism which gives either both
tasks to player 1 or both tasks to player 2. It gives both tasks to player 1 iff t11 + t12 ≥
h(t21 + t22) for some increasing function h. This is a mechanism which is neither affine
minimizer nor task independent when h is not linear. (In this case we treat two tasks
as a single task, so things are like in a single-parameter domain.)

Can our characterization be extended to more than two players? Threshold mechanisms
seem to play a central role in the characterization of truthful mechanisms. In fact, we can
show that they are exactly the additive mechanisms, i.e. mechanisms where the payment to
player i can be expressed as the sum of payments, one for every task allocated to player i.
Notice that the definition of threshold mechanisms involves the allocation and the definition
of additive mechanisms involves only the payments. We leave the proof of the next theorem
for the full version of the paper.
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Theorem 6. A mechanism is additive iff it is a threshold mechanism.
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