An Approximation Scheme for Planar

Graph TSP
Michelangelo Grigni* Elias Koutsoupias'
mic@mathcs.emory.edu elias@cs.ucla.edu
Dept. of Mathematics and C.S. Computer Science Department
Emory University Univ. of California, Los Angeles
Atlanta, GA 30322 Los Angeles, CA 90095

Christos Papadimitriou*

christos@cs.ucsd.edu
Computer Science Department
Univ. of California, San Diego

La Jolla, CA 92093-0114

November 22, 1995

Abstract

We consider the special case of the traveling salesman problem
(TSP) in which the distance metric is the shortest-path metric of a
planar unweighted graph. We present a polynomial-time approzima-
tion scheme (PTAS) for this problem.

*Initial work performed at UCSD, supported by NSF grant No. DMS-9206251.
TWork supported by NSF grant No. CCR-9521606.
Work supported by NSF grant No. CCR-9301031.



1 Introduction

The traveling salesman problem [5] (TSP) has been the testbed of every new
algorithmic idea during the past half-century: linear programming, cutting
planes and polyhedral combinatorics, probabilistic algorithms, local search
(and more recently Boltzmann machines, genetic algorithms, simulated an-
nealing, and neural nets), dynamic programming, Lagrangean relaxation,
even NP-completeness. Approximability was no exception: The TSP was
shown early to be non-approximable in its general case, and the 3/2 approx-
imation algorithm for the triangle inequality case due to Christofides [2] is
well-known. It has been open for two decades whether this bound can be
improved, even in two important special cases: The Fuclidean TSP, and the
graph TSP —in the latter the distance metric is the shortest-path metric
of an unweighted graph. It was shown in [11] that another special case, in
which all distances are either one or two (1-2 TSP), can be approximated
within 7/6, and also that it is MAXSNP-hard [10] (and, as it easily follows
from the proof, so is the graph TSP).

It has also been open whether the Euclidean TSP is MAXSNP-hard!. The
current work was motivated by unsuccessful attempts to prove that it is. We
now conjecture that the Fuclidean TSP has a polynomial-time approximation
scheme. The results in the current paper lead us to this conjecture in two
ways: First, the planar graph TSP (defined in the next paragraph), for which
we provide a PTAS, seems a necessary intermediate step in any MAXSNP-
hardness reduction to the Euclidean TSP. Second, it seems plausible that the
techniques used for deriving our PTAS, appropriately extended, would be of
use in a PTAS for the Euclidean case.

In the planar graph TSP we are given a planar graph and we are looking
for the shortest closed walk that visits all nodes at least once. Equivalently,
we are considering the TSP with distance metric the shortest-path metric
of this graph. Our main result is an algorithm which, for any given planar
graph with n nodes and error bound € > 0, returns a tour of length at most
¢ - n above the optimum (and thus within an (1 4 €) multiplicative factor of
the optimum), in time n°(/9), Our algorithm is very much unlike the approx-
imation algorithms discovered in the wake of the original planar separator

'Due to a widespread misunderstanding of the results in [11] it has been often reported
that it is.



theorem [6, 7], and the approximations by outerplanar decomposition [1]. It
is based on dynamic programming and a novel planar separation theorem. To
introduce the basic ideas, we describe below a simpler quasipolynomial-time
approximation scheme for this problem.

Fix some parameter f depending only on n (the number of vertices in
() and e. Consider the f/2 largest faces of the given planar graph G, and
triangulate them (each from a vertex). We now have a planar graph with
largest face d = O(n/f). According to Miller’s planar separator theorem
[9] (Theorem 3.2), there is a simple cycle of length Vnd = O(n/\/F) that
separates (7 into two graphs with no more than 2n/3 nodes each. Now if the
triangulation edges are removed, this cycle (with at most two triangulation
edges per face) breaks up into f paths that still separate G. We contract
these path segments into single nodes, and call the result G’. The set I of
contracted nodes in ' is shared by the interior and exterior subgraphs G
and (5.

Consider the optimum tour of G. It crosses each path segment of the
separator either an even or an odd number of times, and these parities are
preserved in G’. Since we do not know which of the 2/~! cases prevails, we
must solve each of the following 2/~! subproblems in (; and (5, one for each
even subset X of I: “Cover the nodes of (; with paths between the endpoints
in X.” We solve each of these problems recursively, and select the set X
that minimizes the sum of costs of the two path covers. Our approximate
tour for GG’ is now the union of the two path covers, which may however
contain up to f/2 cycles. The approximate tour in GG uses the edges of the
approximate tour in G, plus at most two copies of each contracted edge to
cover the contracted vertices. Finally we patch these f/2 cycles together into
a single tour, at an additional cost of at most f edges.

This argument is repeated down through a graph decomposition, stopping
at subgraphs of size S = O(f?), which are solved exhaustively. We may then
show that the overall additive error is O(n/f + (nlogn)/\/f) (terms from
patching edges and contracted edges, respectively), which forces us to take
f = 0((log*n)/e?). The running time obeys the recurrence

2n

T(n) =2 -T( ;

)+,

with base case T(S) = 2°0%) with the solution T'(n) = 2°(5) = O ((log” n)/e*)



Three ideas are needed to turn this quasipolynomial-time approximation
scheme into a true PTAS (each idea removes a factor of logn from the ex-
ponent). First, instead of adapting Miller’s planar separator theorem to our
needs, we prove our own planar separator theorem (Theorem 3.1), possibly
of interest in its own right; this allows us to balance the patching and con-
traction error terms with a smaller f parameter. Our theorem separates a
planar graph by a cycle of A ordinary edges and B “faces-edges,” subject to
a multiplicative trade-off between the two—Miller’s theorem provides only
an A - /B trade-off. Second, we use a weighing scheme to avoid crowding
too many collapsed “constraint points” into any one subproblem; this makes
dynamic programming useful. Third, we use a modified algorithm to handle
the base case problems, in roughly 20(V5) time.

2 The Algorithm

We are given a connected planar graph G on n vertices, with some embedding.
We are also given a constant € > 0. Our goal is an algorithm that runs in
time n®1/9) and outputs a tour 7' whose total weight w(7') is within a factor
of 1 + € of the weight w(7T™) of the minimum weight tour. In fact we know
n < w(T*) < 2n, so it suffices to stay within an additive error of en.

Our algorithm uses divide and conquer, together with dynamic program-
ming. First, in the decomposition stage, we build a decomposition tree
of the graph G into contracted connected subgraphs, each subgraph with
O((log n)/¢€) constraint points. This part of the algorithm is fully polynomial-
time (in fact nearly linear), independent of €. Second, in the approzimation
stage, in bottom-up order we compute for each subgraph a table of n?(/9)
approximate solutions. Each table is computed from the tables of the two
children subgraphs.

2.1 Decomposition Stage

For our decomposition, we need the following theorem for finding cycle sepa-
rators in planar graphs. This is a special case of Theorem 3.1, together with
a tree-separator argument on the 2-connected components and bridge-points
of graph H. Let |H| denote the size of H, its number of vertices. A face-
edge in a planar graph is a simple arc that connects two vertices through the



interior of a face.

Theorem 2.1 Given a connected embedded planar graph H with weights on
its vertices and a parameter [ such that 1 < f < \/|H|, there is a simple
planar cycle C through O(|H |/ f) vertices of H such that at most f of the arcs
of C are face-edges, the remaining arcs are ordinary edges, and the interior
and exterior of C' both have at most 2/3 of the total weight. Such a C may
be found in polynomial time (in fact nearly linear time).

Starting from the input graph G, we iteratively apply Theorem 2.1 to
construct a binary decomposition tree 7 where each node is a contracted
subgraph of GG. At the beginning we fix two parameters depending only on
the initial size |G| = n and the target approximation ratio e. Parameter
f = 0((logn)/e) is used as in Theorem 2.1, and parameter S = O(f?) is a
stopping size used to define the leaves of 7.

At the root of 7 we have (7 itself. Let all the vertices of G have weight
one, so the total weight of GG is W((G) = n. Theorem 2.1 gives a simple cycle
(', consisting of p < f paths in G connected by p “face-edges” jumping across
some faces of (G. We construct two children graphs from G as follows (see
Figure 1). First contract each path to a point, resulting in graph G’ (remove
any self-loops and multiple edges to keep GG’ simple). The cycle C' becomes
a simple cycle C' in (&7, consisting of p vertices connected by face-edges. Let
(71 be the subgraph of G' induced by vertices on or interior to C’. Similarly
define (G5 by vertices on or exterior to C’. These graphs GG; and G5 are the
children of G in 7. There is one exception to this construction: if some
vertex on C’ would become isolated in (;, then we do not include it in G;.

The following lemma simplifies our discussion; the proof is delayed to the
end of Section 3.

Lemma 2.2 When C is constructed as in Section 3, the graphs G1 and Gy
are connected planar graphs.

Graphs 1 and (75 each have at most f constraint points (the white circles
in Figure 1). Every vertex of ¢ was either contracted into a constraint point,
or inherited as an original vertex in exactly one of GGy or GG3. In each of the
two children, we assign weight W((G)/6f to each constraint point.

We repeat this construction recursively. That is, let H be a graph in the
tree. If H has size at most S vertices (counting both original and constraint



Figure 1: A separating cycle in ¢ (shaded), the contracted graph G’, and
the two child graphs G; and (.

points), it is a leaf of 7. Otherwise, we already have weights on the vertices
of H defined during the split at its parent; let W(H) be the sum of those
weights. Apply Theorem 2.1 again (with the same f) to construct the sep-
arator C'. Contract the paths in ' and split H to construct H; and H, as
above; they are the children of H in 7. Note that each H; (z = 1,2) contains
both old constraint points (that were already present in H) and new con-
straint points (created during this split). Give every constraint point in H;
the weight W(H)/6f. That is, old constraint points from H get new weights
when inherited by a child.

Claim 2.3 Suppose H; is a child of H in T, then W(H;) <5/6 W (H).

Proof: This is clearly true at the root when H = (G has no constraint
points: the interior (respectively exterior) vertices inherited by H; (resp.
H3) have weight at most 2/3 W((), and the new constraint points (at most
f of them) add weight at most f-(W(H)/6f) = W(H)/6. Now by induction
down the tree, old constraint points inherited from H are reweighted with
smaller weights in H;, thus the reweighted interior (or exterior) vertices in H;
still have weight at most 2/3 W(H), so the same inequality works at every
level. a



This has two immediate consequences. First, since constraint points are so
heavy, any H in 7 has at most 5f = O((logn)/¢) constraint points. Second,
since S > 5f, every non-leaf contains some original vertex (a vertex from &)
with weight one, thus the tree has depth at most D =log5n < 4lgn.

We need to bound the sum of the sizes of all the leaf graphs in 7. Clearly
every original node from (G appears in at most one leaf, so our problem is to
bound the total number of constraint points that appear in the leaves.

Consider tree 7', which is tree 7 with all its leaves removed; 7' may
have many nodes with only one child. We want to bound the total size (in
vertices) of all the leaves of 7'. Every leaf of 7' has at least S vertices, of
which at most 5f are constraint points, and hence not from the original n
vertices from (. Set S = 10Dcf /e, for some large enough constant ¢ (since
D = O(logn), this is consistent with our earlier statement that S = O(f?)).
The constraint points are at most an ¢/2¢D fraction of all vertices in each
leaf graph, so there are at most ne/cD = o(n) constraint points in all the
leaves of T".

Now consider the leaves of 7. We simply bound the number of leaves
of T by one plus the number of all nodes in 7', which is at most D times
the number of leaves in 7’. Thus by charging D leaves of 7 to each leaf of
7', we see that in all of the leaves of 7 there are at most (¢/c¢)n constraint
points. Thus there are at most (1 + €/c¢)n vertices in all the leaves of 7.

Note finally that the construction of 7 took polynomial time (in fact
nearly linear), independent of the parameter e.

2.2 Approximation Stage

We build approximate solutions up from the leaves of 7, using a simple form
of dynamic programming. First we define a slightly more general optimiza-
tion problem that we must approximately solve.

Suppose H is a connected graph, and X is a subset of its vertices, with
| X| even. An (H, X)-solution is a collection P of paths in H that visit every
vertex of H at least once, and such that their boundary is exactly X. That
is, their endpoints are in X, and each vertex in X is an endpoint exactly
once. Or in the special case that X is empty, P should contain a single tour
that covers H (the usual TSP). Let ¢*(H, X) be the minimum cost (total
length of all the paths) of any (H, X)-solution.

For each graph H in 7, let ¢(H) < 5f be the number of constraint points



in H. For every subset X of these constraint points, we want to find an
(H, X)-solution P with total cost approximating ¢*(H,X). We will store
these approximate solutions in a table T[H, X]. For a fixed H, we have a
subtable of size 2¢(H)=1 = /<),

We begin at the leaves. A leaf graph H has size at most S = O((log”n)/e?).
We use a simpler approximation scheme described in Section 2.4, returning a
solution within ¢/4 fraction of the optimum. We repeat this for every subset
X of the the constraint points. The base case computation takes time n®(/¢).

At an internal graph H with children H; and Hj, consider the children
as subgraphs of H', which is H with its separating paths contracted. The set
N of at most f new constraint points is common to both children. For each
subset X of constraint points of H, define X’ to be the “mod-2 contraction”
of X. That is, we include those vertices in X’ which correspond to an odd
number of vertices from X. In particular X’ outside N is identical to X
outside the cycle. Now define X; on H; as the restriction of X’ to Hy, and
define Xy = X’ — X; (which we think of as a constraint set in Hy). Thus
X'= X1 & Xy in H' (& denotes symmetric difference).

Now consider all subsets Y of N of the same parity as X; (and hence
X3). Choose Y* to be the Y that minimizes the sum of the costs of the two
solutions T'[Hy, X1 & Y] and T[Hz, X2 & Y]. We construct our approximate
(H, X)-solution T'[H, X] as follows:

Figure 2: Patching solutions from H; and H, in H'.

e Put the two child solutions T'[Hy, X1 & Y*| and T[H,, X5 & Y] together
in H'. Their endpoints match up so that we can join paths and exactly
meet the endpoint constraints of X’ on H'’. However, we may have
created at most f/2 extra tours in H'. Since H' is connected, we may
splice these loops back into a proper (H, X)-solution using at most



[ edges and some Fulerian tour techniques. This is an approximate
solution for H’, costing at most f more than the sum of the two child
solutions.

This patching process is illustrated in Figure 2. In (a) we have approxi-
mate solutions in Hy and H,, meeting the endpoint constraints indicated
by open circles. When these solutions are joined in (b), the resulting
tours in H' require further patching along an edge of H’, resulting in
single tour (c). In this example, H' itself has two endpoint constraints.

e Given the approximate (H', X')-solution, extend it to an (H, X)-solution
by using each contracted edge at most twice, and meeting the original
contracted constraints of X. That is, each contracted path can is dou-
bled to make a tour, and that tour can be patched in to the solution in
H' (which visits at least one vertex of this tour). Furthermore we can
meet any contracted endpoint constraints by appropriately breaking the
tour.

The total cost over all the contracted paths in H is 2|C| = O(|H|/f).

The result is our approximate solution stored in T[H, X].

We repeat the above for every subset X of constraint points in H, before
working further up the tree. Finally we output the approximate solution

TG, 0].

2.3 Analysis

The running time of the above dynamic program is clearly n®(/9) times
a factor of n?(/9 to handle the base cases (the base case time is slightly
different for small n, see the end of Section 2.4). The main problem is to
analyze the quality of this approximation. There are three sources of error
to bound:

Leaf Error: At leaf problems, it suffices to use an approximation algorithm
with relative error €/4 (Section 2.4).

Patching Error: When patching the child solutions together in H’, the cost
is O(f) units. This includes f/2 patching edges to join tours (formed
by merging solutions) into adjacent paths, and O(f) further inefficiency
because cut points were visited by both child solutions, but they only
need to be visited once.



Contraction Error: When uncontracting the solution from H’ to H, we

used up to 2|C| = O(|H|/f) new edges.

The patching error allows us to recover an approximate solution in H’
from approximate solutions in Hy and Hy, with additive error O(f). Let X’
be a subset of constraint points of H’. An unknown optimal solution P* of
cost ¢*(H', X') crosses each new cut point (contracted path) an even or odd
number of times. By simple planar tour techniques, we may rearrange P*
so that each cut-point is crossed either once or zero times. Note that P* re-
stricted to Hy and H, creates valid solutions of the corresponding constrained
problems; actually these solutions may not be entirely valid, because they
may fail to visit the cut points in Hy or Hy. Since 2f additional edges can
fix this, we have that ¢*(Hy, X1 ®Y)+¢*(Hz, XoBY)=2f < ¢*(H', X'). On
the other hand, our algorithm will eventually try the correct subset Y and
therefore its cost ¢(H, X) is at most ¢(Hy, X1 8Y)+¢(Hz, XoBY)+ f, where
the final f term is what we may have to pay to splice any unwanted tours
into adjacent paths. Therefore, the additional patching error is at most 3f.

The contraction error lets us recover an approximate (H, X )-solution from
an approximate (H', X')-solution (here X' is the contraction of the constraint
set X). The error bounds are summarized in the following.

Lemma 2.4 Suppose GG is a connected graph, X is a subset of its vertices,
and P is a path in G. Let G\P denote graph G with path P conlracted to a
single point p.

1. If [P N X| is even, then ¢*(G\P,X — P) < ¢*(G,X) < *(G\P, X —

P)+2|P|.
2. If|[PNX| is odd, then ¢*(G\P,X — P+{p}) < *(G,X) < *(G\P, X —
Py () + 2P

Now to bound the total error of our final solution, it suffices to sum the
additive errors at each step.

For the leaf error, we use our estimate that the sum of the sizes of all
leaves of 7 is at most (1 + €/c¢)n, where ¢ is some constant. Thus for large
enough ¢, the total leaf error is at most en/2.

For the patching error, we note |H| > S = O(f?), so again a large enough
¢ will keep the patching error at each H less than the contraction error at H.

For the contraction error, consider a single level of 7. The total size of
subgraphs at this level is n 4+ o(n), and for each split H the size of the cycle

10



Cyg is O(1/f) (the hidden constant is from Theorem 3.1). Thus the total
error for one level is O(n/f). Finally, the tree has depth D < 41gn, so the
total contraction error over the entire tree is O(nlogn/f). By an appropriate
choice of f = 0O((1/€)logn), this is at most en/4.

Thus the total additive error is at most en, which is close enough. Note
there was no circularity in choosing the constants. First of all D did not
depend on any constant choices. Second f is chosen depending only on D,
¢, and the hidden constant in Theorem 3.1. Finally S is chosen large enough
to make everything else work.

Remark. The algorithm could further decompose each subgraph H into
its 2-connected components, and then solve the constrained subproblems
on these components. This would introduce no new error terms, since to
find a (constrained) optimal solution in a connected graph H, it suffices to
find solutions in each 2-connected component, and then greedily splice these
together.

2.4 The Base Case

For the base case problem, we have a connected planar graph H of size at
most S = O((logn)?/e*), with at most 5f = O((logn)/e) constraint points.
For every subset X of the constraint points, we want to compute an (H, X)-
solution with cost within €/4 of the minimum ¢*(H, X'). Assuming logn >
1/e, we will do this in n°(/9 time.

Our strategy is very similar to the above algorithm (decomposition fol-
lowed by dynamic programming), with the following modifications:

e In the decomposition we stop at leaves of size less than S” = (¢'logn)/e =
O(f), where ¢ is some large enough constant, and solve those problems
exactly.

e All vertices (original vertices and constraint points) have weight one.

e Instead of using a fixed parameter (f in the main algorithm) in Theo-
rem 2.1 for every subgraph K, we simply look for a cycle separator in

K with at most (/| K| face-edges and O(4/|K|) vertices.

e By the previous choice of cycle size, the contraction error from splitting
K will be within a constant factor of the patching error bound (the

11



constant hidden in Theorem 2.1). Hence for our analysis, it will suffice
to bound the patching error.

We could even use the original Lipton-Tarjan planar separator theorem [6,
7], except that it is convenient for us to keep the subgraphs connected by
Lemma 2.2.

Fix H, and build the decomposition tree 7 of H as before. Let graph K
be any node in 7, and let K; be a child. Since we are using an unweighted
separator, |K;| < 3/4|K|. We use 3/4 rather than 2/3 here to allow some
slack for the vertices that K; gets from the separator. Thus the size of graphs
decreases geometrically with depth in 7', and so does the number of new cut
points at each split. Hence for any K in 7, the total number of constraint
points (cut points from all ancestors) in K is O(f). Suppose we have chosen
S" = O(f) large enough so that at least half the vertices in a leaf graph are
still ordinary vertices.

We wish to bound the overall number of constraint vertices created at
all levels of 7', since this will bound the patching error, and hence also the
contraction error. If an ordinary vertex v survives (without ever being con-
tracted) to a leaf graph, call it a survivor. Consider a non-leaf graph K in 7

it contains at least |K|/2 survivors. To account for the 2,/| K| new constraint

points created by splitting K, we will charge 4“/@ to each survivor in K.
If we trace a single survivor v down through 7, we see that these charges are
geometrically increasing, so that the total charge given v is O(1/y/S’) (within
a constant of its last charge). Summing over all survivors, the total number
of constraint points created in 7 is O(|H|/v/S"), which is O(e|H|)/v/¢ (recall
that here we assume that € is at least 1/logn).

Since the total patching error, and thus the total error, is in the worst
case proportional to the total number of constraint points, we can choose
large enough ¢ to make the total relative error at most ¢/4.

Finally, we need a way to find an optimal (K, X)-solution when K is a
connected planar graph of size S’ = O(logn/¢), and X is arbitrary (perhaps
| X| is half of |K]). Note that to find such a solution P, it suffices to guess
its multi-set of edges. That is, if £ is a multi-set of edges in K such that
its mod-2 boundary is X, £ covers the vertices of K, and every edge in £ is
connected (through £) to some element of X (or if X is empty, £ spans K),
then by Fulerian tour techniques we can recover a solution P using exactly
the edges of £. Notice that each edge appears at most twice in the optimal

12



solution. Since K is planar, it has at most O(|K|) edges and we simply need
to test all 3°(KD = n%01/9) such multi-sets of edges.

Remark. The preceding analysis assumed logn > 1/¢. For smaller n, we
should choose S = ¢/(1/€)?, giving total time 2°(/<), In other words, when
we do not treat € as a constant, the general running time for the base case

(@) €
(and indeed for the entire algorithm) is (n + 21/5) / ).

3 Yet Another Planar Separator Theorem

In the following, let G be an embedded 2-connected planar graph with n
vertices. Suppose C is a Jordan curve that passes through some of the
vertices, and the arcs of C (its arc components between the vertices) are
either edges of GG or face-edges: arcs that pass through the interior of some
face of G. We call such a curve a V-cycle (vertex cycle), and its size is the
number of vertices it passes through. The faces, edges, and vertices of G not
traversed by (' fall into either its interior or its exterior. For example, the
V-cycle in the GG of Figure 1 has size twenty, four face-edges, and five faces
of GG in its interior.

Suppose the vertices, faces, and edges of G are weighted, so that all
weights are nonnegative, at most 2/3, and sum to one. If the interior and
exterior of V-cycle C both have weight at most 2/3, we call C a V-cycle
separator.

Theorem 3.1 Let G be an 2-connected planar graph with weights as above,
and 1 < f < \/n. Then there exists a V-cycle separator C with size O(n/ f)
and O(f) face-edges, and such a C may be found in polynomial time.

This theorem applied to the dual graph allows us to extend the claim to
larger values of f: we can always find a “cycle” of O(f) faces and O(n/f)
vertices whose removal separates (G. The theorem and its proof are closely
related to the following [9] (also [4]):

Theorem 3.2 (Miller) Let G be a weighted 2-connected planar graph with
mazimum face size d. Then G has a simple cycle separator C of size O(vVnd),
and such a C' may be found in polynomial time.

13



Theorem 3.1 implies part of Theorem 3.2: set f = \/m, and replace
the face-edges of ' with paths around the boundaries of the crossed faces.
The resulting cycle has size O(\/@), but further work is required to make it
simple. Also, Theorem 3.2 implies a weaker version of Theorem 3.1: for each
face of size greater than d = n/f?, choose a bounding vertex and triangulate
the face with “pseudo-edges” from that vertex. Now find a simple cycle
separator of size O(v/nd) = O(n/f); the pseudo-edges become face-edges in
the original graph, at most two in each of the O(f?*) large faces.

Proof: Given a 2-connected planar graph G, we give it a vertez-face labeling
as follows. Pick an arbitrary root face fo, and give it label I(fo) = 0. Next,
give all vertices v around fo the label [(v) = 1. Next, give each unlabeled face
f around a level 1 vertex the label I(f) = 2. Repeat this until all vertices
and faces are labeled. This is simply a breadth first search (BFS) in the
vertex-face graph of (G: the vertex-face graph is a bipartite planar graph
whose points are the vertices and faces of ¢, with the obvious adjacencies
(the four-sided faces of the vertex-face graph correspond to edges of ). If
we only consider the faces (the even levels), the labeling mimics a BFS from
fo where faces are “adjacent” iff they share a vertex, as done in [9].

Figure 3: An F-boundary edge of G at level 2¢ 4 1.

Consider an edge e in (G. It has two vertices vy, vy and two faces fi, fs.
By the properties of BFS, either I(vy) # [(vy) or I(f1) # [(f2) may occur,
but not both. If I(f;) # I(f:), then we call e an F-boundary edge at level
l(e) = l(v1) = l(vg) = 20+ 1, since it separates faces at levels 2¢ and 2(z + 1).
Furthermore such edges have an orientation, say with the smaller face label
“to the left” (Figure 3). A local argument shows that the F-boundary edges
around a vertex must alternate in and out. Thus the F-boundary edges at
level 22 + 1 decompose uniquely into a collection of non-nesting edge-disjoint
simple oriented cycles (F-cycles).

14



Define the interior of a simple cycle as the side containing fy. Then F-
cycles at level 2: 4+ 1 all have f; in their interiors, and have disjoint exteriors.
Furthermore, F-cycles at different levels are vertex disjoint, and an F-cycle
at level 27 4+ 3 lies in the exterior of a unique F-cycle at level 2: + 1. Let 7
be the partition tree whose nodes are the F-cycles ordered by their exteriors,
and rooted at Fj, the level 1 boundary edges of fj.

We next identify a subtree 7' of 7, rooted at an F-cycle F' and with leaf
F-cycles Ly, ..., L,, such that:

e cach of these bounding F-cycles have size O(n/ f);
e 7' has diameter O(f);

e F has interior weight at most 2/3;

e cach L; has exterior weight at most 2/3.

This tree pruning is done as shown by Miller [9]. If any of these F-cycles is
a separator, then we are done. So for the remainder of the proof, assume
that F' has exterior weight greater than 2/3, and each L; has interior weight
greater than 2/3.

Prune GG as follows: replace the interior of F' and the exterior of each
L; with a new pseudo-face of the same weight; call these new faces f(F),
f(La), ..., f(L;). Give these faces labels [(f(F)) = I(F) — 1 and I(f(L;)) =
[(L;) 4+ 1. The resulting graph G’ now has a vertex-face labeling rooted at
the pseudo-face f(F'), and its F-cycle tree is exactly 7.

We further modify G’: for each original face f (that is, not a pseudo-
face) choose a parent vertex v(f) with label I(f) — 1, and add internal “face-
edges” triangulating f from v(f). Call the result G”. Divide the weight of
each subdivided face f among its triangles, and give the triangles the same
label I(f). This labeling is a vertex-face labeling of G" rooted at f(F'), and
furthermore the vertex labels are now consistent with an ordinary BFS in
G" starting from the vertex set of F.

We construct a spanning tree T'in GG" as follows:

e For each pseudo-face, add all its edges but one.

e For each vertex v not on a pseudo-face, choose a parent face f(v) with
label I(f) = I(v) — 1, and connect v to its grandparent v(f(v)), which
has label I(v) — 2.

e For each leaf pseudo-face f(L;), connect one vertex to a grandparent,
chosen as above.

15



Unlike 77, tree T does not have O(f) diameter, because of its long paths
around the pseudo-faces. Any simple path in 7" involves at most O(f+n/f) =
O(n/f) vertices and diam(7’) = O(f) face-edges of G (edges added in the
construction of G").

Any edge of G” induces a simple cycle in T'; say its “interior” is the side
containing the root pseudo-face f(Fp). If the cycle bounds a single face of G,
we call it a leaf face. Note that we constructed T' so that each pseudo-face is
a leaf face. We summarize some conditions on 7" and G":

e 7' is a spanning tree in planar graph G”.

e Every non-leaf face of G” is a triangle.

e 7' has an induced cycle (F') with exterior weight greater than 2/3.

e T has an induced cycle (any L;) with interior weight greater than 2/3.

Under these conditions, a simplified version of Theorem 5 from [9] shows
that some induced cycle C of T' is a simple cycle separator for G”, and hence
(by the choice of weights) also a V-cycle separator of (. The bounds on
simple paths in 7" above give us the claimed bounds of O(n/f) size and O(f)
face-edges; all other edges of (' are ordinary edges in G. O

Figure 4: Splicing two consecutive face-edges.

Remarks. A review of the above proof shows that there is at most one
face f of G with two face-edges in C, and those two edges (if they exist)
are consecutive through the “parent vertex” v of the face. All other faces
of GG have at most one face-edge of C'. This observation implies that when
our algorithm splits G into G; and G (and throws out the one isolated

16



parent vertex if it is isolated in Gy or (Fy), it is effectively treating the two
consecutive face-edges as the one spliced face edge in Figure 4. Hence the
effective split of G uses at most one face-edge per face of G. To make GGy or
(3 disconnected, the cycle would have to use two face-edges in some face.
Hence the two contracted subgraphs G; and G5 will remain connected.

To prove Theorem 2.1, we must consider the case when the given weighted
graph H is connected but not necessarily 2-connected. In this case we con-
sider the bipartite tree whose vertices are the 2-connected components and
articulation points of G. By a standard tree-separator argument, we find
a 2/3-separating vertex in this tree. If separating vertex is an articulation
point v of H, let C' be a cycle through v and the exterior face. Otherwise
some 2-connected component G of H is a good tree separator, and we ap-
ply Theorem 3.1 to this component, with all weights outside G pushed to
the articulation points on (. This tree-argument preserves the connectivity
remarks of the previous paragraph, so we also have Lemma 2.2.

4 Discussion

The main open problem suggested by our work is whether there is a PTAS
for the Euclidean TSP. We conjecture that there is. A first step in this
direction would be a PTAS for the weighted planar graph TSP. To handle this
extension, our ideas must be enhanced with a more sophisticated balancing
scheme, as well as with clever rounding-off methods. It could be that such
an algorithm, applied to the Delaunay triangulation, already improves on
Christofides” algorithm. Finally, to approach the Euclidean TSP, we may
need planar separator theorems for planar point sets.

It is also not clear whether Euclidean TSP is MAXSNP-hard in three or
higher dimensions, since the hard examples of [11] are expanding graphs, and
any set of well-spaced points in Euclidean space will instead have sublinear
separators, when defined appropriately [8, 3].

References

[1] B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. Journal of the ACM, 41(1):153, 1994. See also 24th

17



[10]

[11]

FOCS, 1983.

N. Christofides. Worst-case analysis of a new heuristic for the traveling
salesman problem. In J. F. Traub, editor, Sympos. on New Directions
and Recent Results in Algorithms and Complexity, page 441, New York,
NY, 1976. Academic Press.

D. Eppstein, G. L. Miller, and S.-H. Teng. A deterministic linear time
algorithm for geometric separators and its applications. In Proc. 9th

Annual ACM Symposium on Computational Geometry, pages 99-108,
1993.

Hillel Gazit and Gary L. Miller. Planar separators and the euclidean
norm. In st International Symposium on Algorithms, pages 338-347,
1990.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.
The Traveling Salesman Problem: A Guided Tour of Combinatorial Op-
timization. Wiley, New York, 1985/1992.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36:177-189, 1979.

R. J. Lipton and R. E. Tarjan. Applications of a planar separator the-
orem. SIAM Journal on Computing, 9(3):615-627, 1980.

G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric ap-
proach to graph separators. In Proc. 32nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 538-547, 1991.

Gary L. Miller. Finding small simple cycle separators for 2-connected
planar graphs. Journal of Computer and System Sciences, 32:265-279,
1986.

Papadimitriou and Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43, 1991. Also
in STOC’88.

C. H. Papadimitriou and M. Yannakakis. The traveling salesman prob-
lem with distances one and two. Mathematics of Operations Research,

18:1-11, 1993.

18



