
The Online Matching Problem on a Line?

Elias Koutsoupias1,2 and Akash Nanavati2

1 Department of Informatics, University of Athens,
Panepistimiopolis, Athens 15784, Greece.

elias@di.uoa.gr
2 Computer Science Department, University of California Los Angeles,

Los Angeles, CA 90095, USA.
akash@cs.ucla.edu

Abstract. We study the online matching problem when the metric
space is a single straight line. For this case, the offline matching problem
is trivial but the online problem has been open and the best known com-
petitive ratio was the trivial Θ(n) where n is the number of requests.
It was conjectured that the generalized Work Function Algorithm has
constant competitive ratio for this problem. We show that it is in fact
Ω(log n) and O(n), and make some progress towards proving a better
upper bound by establishing some structural properties of the solutions.
Our technique for the upper bound doesn’t use a potential function but
it reallocates the online cost in a way that the comparison with the offline
cost becomes more direct.

1 Introduction

We study the online version of the weighted bipartite matching problem in which
the nodes of one partition, called the servers, are known in advance and the nodes
of the other partition, the requests, arrive online and must be matched immedi-
ately. The objective is to minimize the cost of the matching. The more general
problem in which the nodes of both partitions arrive online and must be matched
as soon as possible is not essentially different; by appropriate partitioning the
sequence of points, it is simply a repeated version of the simple version and all
our results apply to the more general problem. Of special interest is the metric
matching problem in which the points, both servers and requests, lie in some
metric space and especially in a Euclidean space.

The offline matching problem is one of the most fundamental algorithmic
problems and it has played a central role in the development of the theory of
algorithms [2, 3, 10]. The online version of the problem has also been studied
before.

Karp, U. Vazirani, and V. Vazirani [8] were the first to study some online
version of the matching problem. They studied randomized algorithms for online
matching in an unweighted bipartite graph when the optimum matching was a
perfect matching. Khuller, Mitchell, and Vazirani [9] studied the online version
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of minimum bipartite matching. They showed that for non-metric spaces the
competitive ratio is unbounded. They also proposed a natural algorithm, Per-
mutation, which has optimal competitive ratio for arbitrary metric spaces; its
competitive ratio is 2n − 1, where n is the number of requests. The same algo-
rithm was studied independently by Kalyanasundaram and Pruhs [5, 7]. They
conjectured that the Work Function Algorithm has constant competitive ratio
(see their review article [6]).

Unlike the minimization version of the online matching the maximization
version has been completely settled. For non-metric spaces the competitive ratio
is unbounded [9] and for metric spaces the greedy algorithm is optimal and has
competitive ratio 3 [5].

Here we are concerned with the special case of the metric online minimum
matching where the servers and requests lie on a line (1-dimensional Euclidean
space). This is perhaps the most interesting case of online matching for many
reasons. First, the offline matching problem for this case is trivial and therefore
competitive analysis appropriately captures the deterioration of performance
(that is, the approximation ratio or competitive ratio) due to lack of complete
information. Second, it is a natural generalization of other fundamental online
problems such as the cow-path problem (also known as the bridge problem)
[1]. Third, versions of online matching problem play a central role in electronic
markets where “buyers” and “sellers” arrive online, name their prices, and must
be “matched”. One can view the prices as points on a line that must be matched
online. The version of the matching problem that we study in this work together
with the analogous maximization version, are the simplest, pure abstractions of
these online matching problems.

It is easy to show that no online algorithm can have competitive ratio less
than 9 since the online matching problem is a generalization of the cow-path
problem (see the beginning of the Section 3). Very recently Fuchs, Hochstättler,
and Kern [4] gave a lower bound of 9.001 which suggests that the problem
is not simply a disguised generalization of the cow-path problem. It has been
conjectured [6] that the matching problem on the line and in particular the Work
Function Algorithm (WFA) have constant competitive ratio. Here we disprove
the conjecture and establish a lower bound of Ω(log n) where n is the number of
requests. We also show an upper bound O(n) for the competitive ratio of WFA.
The bound by itself is weak but the proof technique is more important. It exhibits
structural properties of the solutions that can lead to improved bounds. Using
these properties we show that the competitive ratio is no more that the height of
the online matching (i.e., the maximum number of lines through a point). We can
also establish a tight upper bound (O(log n)) for some special cases (restricted
adversaries), but due to lack of space we omit these results from this abstract.

Outline

In Section 2 we define the WFA and prove some properties that are useful in
general and in particular they simplify the argument for the lower bound. We
then give the relatively simple lower bound (Section 3).



To prove the upper bound, we first establish some useful properties and
invariants of the WFA (beginning of Section 4). We now want to compare the
cost of the WFA to the optimal matching (opt). However, the optimal matching
can use different set of servers than WFA. We show (Subsection 4.1) that this
is not a serious problem: the WFA uses an almost optimal set of servers in the
sense that the optimal offline matching involving the servers of WFA (popt)
is within a constant factor from the optimal (opt). We need therefore only to
compare the online cost with popt. We don’t know how to do it directly though.
As it is frequently the case, it is not easy to apply the potential function method
to online algorithms with non-constant competitive ratio. Indeed, we don’t use a
potential function but we find a way to reallocate the online cost in such a way
that it becomes easier to compare it to popt. A major obstacle is that popt is not
monotone: more requests can decrease the matching. Furthermore, new requests
may decrease the number of popt lines that cross a particular point (see βx in the
Section 2). We get around these problems by introducing a monotone quantity,
the alive parts of the offline matchings (alive), which counts each interval with
multiplicity roughly equal to the maximum number of popt lines that crossed it
in the past. We then show that alive is also within a constant factor from popt
(Subsection 4.2). Finally, it is easy to bound the online cost by alive, and thus
indirectly with the optimum (Subsection 4.3).

We conclude and mention some open problem in Section 5.

2 Properties of the Work Function Algorithm

The metric online matching problem is defined on a metric space M endowed
with distance d. A (possibly infinite) subset of S ⊆ M is the set of servers.
Some of these servers are going to be matched with a sequence of requests
{r1, r2, . . .} ⊆ M3. Let Rn = {r1, . . . , rn} denote the set of the first n requests
and let Sn = {sr1

, . . . , srn
} denote the set of servers used by the online algorithm

to match these requests.

For the problem we study here the metric space is the 1-dimensional Eu-
clidean space. Let M(A, R) denote the optimal (minimum) matching between
sets A and R with |A| = |R|. Clearly M(A, R) can be obtained by matching the
leftmost request to the leftmost server and recursing in the same fashion. There
may be other optimal matchings but we will use the notation M(A, R) for this
particular matching. For simplicity, we also denote the weight of the optimal
matching by M(A, R).

Given the definition of the matching M(A, R) we define

βx(A, R) = |{a : a ∈ A and a < x}| − |{r : r ∈ R and r < x}|,

3 Here we assume that all servers and requests are distinct points. It is obvious that
the general case of allowing multiple servers and/or requests on the same point is
the limit case when some distances tend to zero. For simplicity we sometimes allow
multiple servers/requests on points though. Also, all sets are assumed to be multisets.



which is the number of lines in M(A, R) that cross point x with appropriate
sign.

We denote singletons {a} by their unique element a, and the multiset con-
sisting of k copies of a by ak. In particular, B + ak will denote the multiset that
results if we add k copies of a to multiset B.

Definition 1 (Work Function Algorithm). The Generalized Work Function
Algorithm (γWFA) matches request rn to an unmatched server srn

∈ S −Sn−1

that minimizes the expression: γM(Sn−1 + srn
, Rn−1 + rn) + d(srn

, rn).

We state the following easy result without proof.

Proposition 1. For γ = 0 this is the greedy algorithm with competitive ratio at
least 2n − 1, and in general, for 0 ≤ γ < 1, competitive ratio is exponential, at
least (ζn − 1)/(ζ − 1), where ζ = 2/(γ + 1). The case γ = 1 is known simply as
the Work Function Algorithm, with competitive ratio at least n. The case γ = ∞
(i.e. ignore d(x, r) and choose srn

that minimizes M(Sn−1 + srn
, Rn−1 + rn))

is the retrospective algorithm also known as the Permutation algorithm [5] with
competitive ratio at least n (and at most 2n − 1).

Our analysis applies to any γ > 1. There are indications that the minimum
competitive ratio is achieved for approximately γ = 3; in particular for the
special case of the cow-path problem the value γ = 3 is optimal. We decided to
state our result for general γ instead of γ = 3 because this slight generalization is
sometimes helpful to the reader (by reducing the number of “magic constants”).

Let r be a request and let s1 be the rightmost unmatched server in the
interval (−∞, r). Similarly let s2 be the leftmost unmatched server in (r,∞).
We call the two servers s1 and s2 the surrounding servers of r. It is easy to see
that any online algorithm can be converted into one that services each request
with one of its two surrounding servers with the same (or better) competitive
ratio. Our first aim is to show that the γWFA has this nice property:

Property 1 (Locality). The γWFA services each request with one of its two sur-
rounding servers.

To show the Locality Property we need to take into account the history of
the matching created by the γWFA. To see this consider the following example:
There are three servers s1, s2, s3 (Figure 1).

2s r s s3 r21 1

Fig. 1. Surrounding servers

The first request r1 is in the interval (s1, s2) and is matched to s2. The second
request is in (s3,∞). If γWFA has Property 1, then it must match r2 to s3. This



can be easily verified, but only if we take into account the history of γWFA and
in particular the fact that d(s1, r1) ≥ d(r1, s2). This example shows that we need
some kind of induction to show that γWFA has the Locality Property. It turns
out that the Locality Property follows from the following invariant (in fact, it is
equivalent to it).

Theorem 1. Let s1, s2 be two servers that, before time t, have not been matched
by the γWFA algorithm but every other server in (s1, s2) has been matched.
Let A, R be the sets of servers and requests before time t in (s1, s2). Then the
γWFA has matched the set of requests R to the same-cardinality set of servers
A; furthermore

γM(A, R) ≤ γM(A + s1, R + s2) + d(s1, s2). (1)

Before we proceed to prove the theorem, we point out that the Locality
Property before time t follows immediately from it and in particular from the
conclusion that A and R have the same cardinality and are matched by γWFA.
Conversely, the theorem follows if we assume that γWFA has the Locality Prop-
erty at time t: let the request r at time t be to the right of s2 within very small
distance; then the γWFA will prefer to match r to s2 than to s1 and this gives
(1).

We will also need the following lemma about matchings:

Lemma 1. Let s1, s2 be two servers and let A and R be two sets of points
(servers and requests) in (s1, s2) of equal cardinality. Let also r1 ≤ r2 be two
points (requests) in [s1, s2]. Then

M(A+s1, R+r1)+M(A+s1, R+r2) ≤ M(A+s1+s1, R+r1+r2)+M(A, R). (2)

Proof. Fix a point x ∈ [s1, r1). The total number of lines that include x of the
left-hand side is |βx(A+ s1, R + r1)|+ |βx(A+ s1, R+ r2)| = 2|βx(A, R)+1| and
of the right-hand side is |βx(A + s1 + s1, R + r1 + r2)|+ |βx(A, R)| = |βx(A, r) +
2| + |βx(A, r)|. Since 2|a + 1| ≤ |a + 2| + |a| (the absolute function is concave),
it follows that the contribution of x to the left hand side of the inequality is no
more than the right hand side. A similar situation holds when x ∈ [r1, r2) and
x ∈ [r2, s2) and the lemma follows. ut

Proof (of Theorem 1). To prove Theorem 1 we use induction on the number of
requests in R and the properties of the γWFA. Let r be the most recent request
in R and let s be the server matched to r by the γWFA. By induction, the
Locality Property holds and therefore s is in the interval (s1, s2), that is s ∈ A.
We consider two cases.

Case 1: r < s. Let A1 and A2 be the set of servers in (s1, s) and (s, s2),
respectively. Let also R1 and R2 be the associated requests in these intervals
(requests before r). By induction, A1 (resp. A2) has the same cardinality with
R1 (resp. R2).



By the definition of γWFA we have γM(A1 +s, R1 +r)+d(s, r) ≤ γM(A1 +
s1, R1 + r) + d(s1, r). By the induction hypothesis we also have γM(A2, R2) ≤
γM(A2 + s, R2 + s2) + d(s, s2). Therefore:

γM(A, R) = γM(A1 + s, R1 + r) + γM(A2, R2)

≤ [γM(A1 + s1, R1 + r) + d(s1, r) − d(s, r)]

+[γM(A2 + s, R2 + s2) + d(s, s2)]

= γM(A1 + A2 + s1 + s, R1 + R2 + r + s2)

+[d(s1, r) − d(s, r) + d(s, s2)]

≤ γM(A1 + A2 + s1 + s, R1 + R2 + r + s2) + d(s1, s2)

= γM(A + s1, R + s2) + d(s1, s2)

Case 2: r ≥ s. Let again A1, R1 and A2, R2 be as in the first case. Then
M(A, R) = M(A1 + A2 + s, R1 + R2 + r) = M(A1, R1) + M(A2 + s, R2 + r).

By induction on the left interval, we have γM(A1, R1) ≤ γM(A1 + s1, R1 +
s) + d(s1, s). Also by induction on the right interval, we have γM(A2, R2) ≤
γM(A2 + s, R2 + s2) + d(s, s2) or equivalently

γM(A2, R2) − γM(A2 + s, R2 + s2) ≤ d(s, s2).

But by Lemma 1 we have

M(A2+s, R2+r)−M(A2+s+s, R2+r+s2) ≤ M(A2, R2)−M(A2+s, R2+s2).

Combining the two inequalities we get γM(A2 +s, R2 +r)−γM(A2 +s+s, R2 +
r + s2) ≤ d(s, s2). Therefore:

γM(A, R) = γM(A1, R1) + γM(A2 + s, R2 + r)

≤ [γM(A1 + s1, R1 + s) + d(s1, s)]

+[γM(A2 + s + s, R2 + r + s2) + d(s, s2)]

= γM(A1 + A2 + s + s1, R1 + R2 + r + s2) + d(s1, s2)

= γM(A + s1, R + s2) + d(s1, s2)

Notice the crucial use of Lemma 1. We remark that it we could get away
without it when A1 6= ∅, but it is absolutely necessary otherwise. This is because
in that case |A2 + s| = |A| and so we cannot apply induction.

We also remark that in the second case we used only induction, no property
of the γWFA at all. ut

The following invariant is a generalization of Theorem 1 and we state it
without proof:

Theorem 2. Let s1, s2 be as in Theorem 1. Then for any points v1, . . . , vk with
s1 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤ s2 we have

γM(A+sk
1, R+v1+· · ·+vk) ≤ γM(A+sk+1

1 , R+v1+· · ·+vk+s2)+d(s1, s2), (3)

where sm
1 denotes m copies of s1.



Definition 2 (Balanced Interval). Let s1, s2 be two unmatched servers such
that inside (s1, s2) all servers are already matched. We will call such an interval
balanced.

Because of the Locality Property, we can focus our analysis to a balanced
interval.

3 Lower bound

We remark that the cow-path problem is a special case of the matching problem
and this implies a lower bound of 9 for any online algorithm. In the reduction
to the cow-path problem, there is a server on each integral point of R except 0.
The first request is at r1 = 0, and request rt, t > 1, is at srt−1

, the server used
to service the previous request.

We will now show a lower bound of Ω(log n) on the competitive ratio of
γWFA. This disproves a conjecture of Kalyanasundaram and Pruhs. We take
advantage of the Locality Property of γWFA to simplify the argument.

Theorem 3. The competitive ratio of γWFA is at least 2 + blog nc, where n is
the number of requests.

Proof. Without loss of generality n is a power of 2. The set of servers is defined
as follows: There is one server at 0, one server at n and 2 servers at each of the
even integers in (0, n). The requests come in stages. In the first stage all odd
points in (0, n) are requested. Consider the request at 2j +1. Using the Locality
Property, we see that the γWFA can service it by either a server on the left,
at 2j, or a server at the right, at 2j + 2, because they are at equal distance
from the request. We want to allow the adversary to break the tie. This can be
enforced by perturbing the request slightly. In particular, we service all requests
with the servers at positions 2 + 4k, as shown in Figure 2. Notice now that the

Fig. 2. Stage 1 (x denotes request and o denotes server)

Fig. 3. Stage 2

remaining servers are in a configuration similar to the initial one, only now they



are placed apart at distance 4 instead of 2. So we can repeat the construction.
In particular, in the second stage all points 2+4k are requested and are serviced
by the servers at points 4 + 8k. We repeat it until only the server at 0 remains
(in the last stage, a request is placed at n/2 which is serviced by the server at
n). At the end, just to finish the construction we place a request at n and it is
serviced by the only remaining server at 0.

The online cost at each stage is n/2 and the cost of the last request is n.
There are log n stages, so the total online cost is n + n

2
log n. The total offline

cost is easily seen to be n/2. The competitive ratio is 2 + log n. ut

4 Upper bound

We define the set of points crossed exactly j times by the optimal matching
M(A, R) as

Bj(A, R) = {x : βx(A, R) = j}.

We also use the notation B−(A, R) = ∪j<0B
j(A, R) and B+(A, R) = ∪j>0B

j(A, R).
To keep the expressions simple, we use the same symbols for the measure of these
sets. Given these definitions, observe that

M(A, R) =
∑

j

|j| · Bj(A, R). (4)

Thus for any balanced interval (s1, s2) which includes the set of servers A and
set of requests R, we have M(A+s1, R+s2) = M(A, R)+B+(A, R)+B0(A, R)−
B−(A, R) and d(s1, s2) = B+(A, R) + B0(A, R) + B−(A, R). Substituting these
values in Theorem 1, we have:

2γ B−(A, R) ≤ (γ + 1) d(s1, s2), and

2γ B+(A, R) ≤ (γ + 1) d(s1, s2).

Now we are ready to prove a generalization that will be very useful later.

Lemma 2. Let (s1, s2) be a γWFA balanced interval which includes the set of
servers A and set of requests R. For any x ∈ (s1, s2)

2γ ‖B−(A, R) ∩ [s1, x]‖ ≤ (γ + 1) d(s1, x), and

2γ ‖B+(A, R) ∩ [x, s2]‖ ≤ (γ + 1) d(x, s2).

Proof. The intuition behind the lemma is that since s1 is an unmatched server,
it was rejected in favor of other servers in the interval (s1, s2). This in turn
indicates that ‖B−(A, R) ∩ [s1, x]‖ cannot be very large.

We prove only the first part, the second is similar. Suppose that the statement
was true before the last request, rt ∈ (s1, s2), was matched to a server srt

∈
(s1, s2). Let At−1 = A−srt

and Rt−1 = R−rt. We consider two cases depending
on whether srt

is to the left of rt or not. The first case when srt
< rt is trivial

because such a request increases the values βx(At−1, Rt−1).



The other case, rt < srt
, is more involved. We first notice that when x is

in (s1, rt) then the lemma holds directly by induction. Also if the lemma holds
for x = srt

then it immediately holds for any x ∈ [srt
, s2) from the induction

hypothesis for the balanced interval (srt
, s2).

Therefore we concentrate on the case x ∈ [rt, srt
]. To show that the lemma

holds for x = srt
we don’t need the induction hypothesis, only the fact that

γWFA services rt with srt
instead of s1:

γM(At−1 + s1, Rt−1 + rt) + d(s1, rt) ≥ γM(At−1 + srt
, Rt−1 + rt) + d(rt, srt

).

With some work we can rewrite it as

2γ ‖B−(A, R) ∩ [s1, srt
]‖ ≤ (γ + 1) d(s1, srt

) − 2 d(rt, srt
), (5)

which is slightly stronger than the lemma when x = srt
.

Finally, for the case x ∈ [rt, srt
), we use (5) and the second inequality of the

inductive hypothesis for the interval (x, srt
). Specifically, by induction on this

interval, we get 2γ ‖B+(At−1, Rt−1) ∩ [x, srt
]‖ ≤ (γ + 1) d(x, srt

), which can be
rewritten as

−2γ ‖B−(A, R) ∩ [x, srt
]‖ ≤ −(γ − 1)d(x, srt

) (6)

Summing (5) and (6) we get

2γ ‖B−(A, R) ∩ [s1, x]‖ ≤ (γ + 1)d(s1, x) − 2d(rt, x)

and the lemma follows. ut

4.1 Optimal vs Pseudo-Optimal matching

Suppose that after n requests, γWFA has matched Rn to servers Sn. The (offline)
optimal matching though may match Rn to some other set S′

n. We call the
optimal matching M(Sn, Rn) the pseudo-optimal matching and denote its weight
by poptn to distinguish it from the optimal matching M(S ′

n, Rn) whose weight
is optn. Although γWFA cannot use the optimal set of servers (in general Sn 6=
S′

n), it has the nice property that it uses an almost optimal set of servers.

Theorem 4. For any set of servers and requests,

optn ≤ poptn ≤
γ + 1

γ − 1
optn.

We now proceed to prove this theorem with the help of Lemma 2. To prove
Theorem 4, we assume without loss of generality that all requests are in a bal-
anced interval (s1, s2), otherwise we sum up the parts for each balanced interval.
We need to compare poptn = M(Sn, Rn) and opt = M(S′

n, Rn), for any S′
n such

that |S′
n| = |Sn| = |R|. We can obtain the matching M(S ′

n, Rn) by putting re-
quests at server points in Sn − S′

n and matching them to servers in S ′
n \ Sn:

M(S′
n, Rn) = M(S′

n∪Sn, Rn +Sn−S′
n). Observe now that in the worst case the

servers in S′
n that are outside the interval (s1, s2) are at s1 or s2. Thus, instead

of proving Theorem 4, we shall prove the following stronger lemma.



Lemma 3. Let (s1, s2) be a γWFA balanced interval that contains the set of
servers A which is matched to requests R. For any points v1, . . . , vk+m in (s1, s2)

M(A + sk
1 + sm

2 , R + v1 + v2 + · · · + vk+m) ≥
γ − 1

γ + 1
M(A, R)

Proof. Assume v1 ≤ · · · ≤ vk+m and denote v0 = s1. We concentrate in showing
the special case with m = 0 and then observe that the same proof applies
to the general case. Define ζj

i = ‖{x : βx(A, R) = j} ∩ [vi−1, vi]‖ to be the
measure of points between vi−1 and vi which the optimal matching crosses j
times (with appropriate sign). Applying Lemma 2 to interval (s1, vt) we obtain
γ−1

γ+1

∑t
i=1

∑
j<0

ζj
i ≤

∑t
i=1

∑
j≥0

ζj
i and summing for t = 1, . . . , k, we get:

γ − 1

γ + 1

k∑

t=1

t∑

i=1

∑

j<0

ζj
i ≤

k∑

t=1

t∑

i=1

∑

j≥0

ζj
i ,

which can be rewritten as

γ − 1

γ + 1

k∑

i=1

∑

j<0

(k + 1 − i)ζj
i ≤

k∑

i=1

∑

j≥0

(k + 1 − i)ζj
i .

Using this and the assumption γ > 1, we can bound

M(A, R) − M(A + sk
1 , R + v1 + · · · , vk) =

k∑

i=1

∑

j

|j|ζj
i −

k∑

i=1

∑

j

|j + k + 1 − i|ζj
i

≤
2

γ + 1

k∑

i=1

∑

j<0

|j|ζj
i

The last quantity is at most equal to 2

γ+1
M(A, R) and the lemma follows

(for m = 0). When m > 0 the proof is very similar but now the right-hand side
includes also the terms with j > 0; this is still bounded by 2

γ+1
M(A, R) and the

lemma holds. ut

This theorem implies almost immediately that γWFA is O(n)-competitive as
follows: It is not hard using the βx values to verify that d(rn, srn

) ≤ M(Sn−1, Rn−1)+
M(Sn, Rn) which in turn implies that the cost to service request rn is bounded
above by poptn−1 + poptn ≤ γ+1

γ−1
(optn−1 + optn). Since optn is non-decreasing

function (which by the way is not true for poptn) the claim follows. We how-
ever show a stronger result and in the process we will discover some important
properties that may be useful to improve the competitive ratio. We will show
that the competitive ratio is bounded (up to a constant factor) by the maximum
number of crossing lines in the γWFA matching.



4.2 Alive vs Pseudo-Optimal

In this section, we take a closer look at the structure of the pseudo-optimal
matching, and use this analysis to derive an O(n) bound on the competitive
ratio of γWFA.

We say that a point x contributes to poptn at time t if

0 ≤ βx(St−1, Rt−1) < βx(St, Rt) ≤ βx(St+1, Rt+1), . . . , βx(Sn, Rn)

or
0 ≥ βx(St−1, Rt−1) > βx(St, Rt) ≥ βx(St+1, Rt+1), . . . , βx(Sn, Rn)

We say that a point x contributes to aliven at time t if the same inequalities
hold but not necessarily the leftmost ones (involving 0). For example, in Figure
4, x contributes to alive8 at times 3,6,7, and 8 (which correspond to the bold
lines; intuitively these are the lines that are visible from the point (∞, 0). In the
same figure, x contributes to popt8 at times 7 and 8 (which correspond to the
bold lines after the last visit to the horizontal axis).
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Fig. 4. aliven and poptn

We say that a point contributes to aliven (or optn) k times when it con-
tributes to aliven (or optn) at exactly k distinct times. For example, the point
x above contributes 4 times to alive8 and 2 times to popt8. Clearly poptn is
the measure of all points, each taken with multiplicity equal to the number of
times that it contributes to poptn. Similarly, aliven is the measure of all points,
each taken with multiplicity equal to the number of times that it contributes to
aliven.

Theorem 5.
γ − 1

2γ
aliven ≤ poptn ≤ aliven.

Proof. The second inequality is obvious from the definitions. The first inequality
is based on Lemma 2. Consider a request rt which is serviced by request srt

and
assume without loss of generality that srt

< rt. The points that contribute to



aliven at time t form an interval (srt
, q) for some point q. By Lemma 2 at least

a fraction γ−1

2γ of this interval has βx(At−1, Rt−1) ≥ 0. This fraction contributes
also to poptn at time t. ut

4.3 Alive vs Cost

We can now put everything together to obtain the desired upper bound. We
have considered the four quantities: optn, poptn, aliven and costn (the last one
is the weight of the online matching). Theorems 4 and 5 establish that the first
three quantities are almost equal within some constant factors:

optn ≤ poptn ≤ aliven ≤
2γ

γ − 1

γ + 1

γ − 1
optn

It is remarkable though that optn and aliven are non-decreasing while poptn is
not. Furthermore, the cost to service request rt is at most equal to alivet (each
point in the interval (rt, srt

) contributes to alivet). Therefore we can bound the
total costn by

costn ≤
n∑

t=1

alivet ≤ n · aliven ≤
2γ

γ − 1

γ + 1

γ − 1
· n · optn.

We showed

Theorem 6. The γWFA has competitive ratio at most 2γ
γ−1

γ+1

γ−1
· n = O(n),

where n is the number of requests. In particular, when each point x is crossed by
at most k lines of the matching of γWFA, the competitive ratio is O(k).

5 Conclusions and Open Problems

For the online matching problem on a line, we showed that the WFA has com-
petitive ratio between Ω(log n) and O(n). We believe that the lower bound is
tight and that the tools we developed here can be very useful. We don’t know
whether there exists some other algorithm which has constant competitive ratio.

One important property is the relation between popt and opt which states
that although WFA may not use the optimal subset of servers —the one that
minimizes the matching with the requests— it uses an almost optimal one (up
to a constant factor). This may be true for arbitrary metric spaces.

For the Euclidean space Rd, the lower bound for the cow-path problem,
Ω(n1−1/d), can be extended to the matching problem. Is this tight and what is
the competitive ratio of WFA? Finally, randomized algorithms may have much
better competitive ratio; the best randomized lower bound for arbitrary metric
spaces is only Ω(log n) [6].
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