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ABSTRACT: We present an improvement of Khrapchenko’s theorem which gives lower
bounds for the size of Boolean {A,V,—}-formulae. Our main theorem gives better lower
bound than the original Khrapchenko’s theorem or at least the same, although we know
of no function where it gives an improvement factor larger that two. This lower bound is
the largest eigenvalue of a certain matrix associated with the formula. Moreover, we give
an approximation of this bound which is easier to compute and is never smaller than the

bound given by Khrapchenko’s theorem.
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Let ¢ be a Boolean function on n variables and L(y) denote the number of leaves of the
minimal size {A,V,—}-formula that computes ¢. For A C ¢~ 1(0) and B C ¢7'(1) we
define the |B| x |A| matrix @ with ¢;; =1 if ¢ € B and j € A differ in exactly one variable;

otherwise ¢;; = 0. Khrapchenko’s theorem|[3] can be restated as follows:
- 1 2
Lip) > K, = W(Z gij)
6

Let P, = QQT and P, = QTQ. Obviously, for i,j € B, p,;; is the number of their
common neighbors in A, i.e. the number of elements in A that differ from both ¢z and j in
exactly one variable. Similarly for p, ;;. Notice that P, and P, are symmetric matrices.

Let A(X) denote the largest eigenvalue of matrix X. By elementary properties of

matrices|2], the nonzero eigenvalues of P, are the same as the nonzero eigenvalues of P,,.
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Since trivially A(P,), A\(P,) > 0, we have that A(P,) = A\(P,). Our main theorem relates
the leaf size of ¢ to A(Py):

Theorem 1. For any Boolean function ¢ and any nonempty sets A,B defined as above:
L(p) > \(P,)

Proof. We prove the theorem by induction on the size of the minimal {A,V,—}-formula
that computes ¢. For the basis case, ¢ = x;, it is easy to see that p,;; = 0 or 1 and
Pe.ij = 0 for ¢ # j and consequently, A(P,) <1 = L(y).

Suppose now that the theorem holds for 1) and 6. It suffices to show that it holds for
minimal formulae of the forms ¢ = =, ¢ = Y A and ¢ = ¥ V 6. The first case follows
immediately from the fact that A(P,) = \(P,) and L(¢) = L(~¢).

For the second case, ¢ = ¢ A0, let B, = B, = B. Moreover, we can find 4, C 1 ~!(0)
and Ag C 671(0) such that Ay U A4g = A and 4y, N Ay = 0, eg. Ay = ¥ 71(0) and

Ay = A — Ay. By the induction hypothesis, we have:
L(p) = L() + L(6) = A(Py) + A(Py)
But P, = Py + Py and because P,, Py, Py are symmetric matrices we have that:
A(Py) + A(Po) = A(P,)
Thus L(p) > A(Py).
The case ¢ = ¥ V 0 is treated similarly and the theorem follows. O

The lower bound on the leaf size L(¢) in this theorem is at least as good as the lower bound
given by Khrapchenko’s theorem. In other words, for any A, B as above: K, < A(P,).
But in many cases it is not easy to apply Theorem 1, because of the difficulty in computing
the largest eigenvalue of a matrix. However, it is easy to find lower bounds for the largest
eigenvalue of a symmetric matrix. These are also lower bounds for the leaf size of the
associated formula. We give here such a lower bound for the largest eigenvalue of the
symmetric matrix P,. First let us define s; to be the sum of the elements in column 2 of

matrix @, i.e. s; is the number of neighbors in B of ¢ € A, and let
1 < 1
PR R
* = [H & T [

2



Similarly, for matrix P.:
— 1 _
Do = 74 2 Peui
Al 4=

D, and D, are easy to compute and it turns out that they both lie between the values

given by Khrapchenko’s theorem and our theorem.

Proposition 1. For any formula ¢ and any A, B defined as above we have:

K, < Dy < A(Py)

Proof. We have that a
A

1
K = )2
%o = Taym (2 )

=1

and
| Al

1 2
D¢ = E Z S
=1
Using the inequality (> ., z;)* < n).._, 7, it is easy to see that K, < D, and the

equality holds iff all s;’s are equal. On the other hand, since A(P,) is the largest eigenvalue

of the symmetric matrix P, we have:

T
P,:
A(P,) = max < TSOAE

r#0 X

Choosing x = 1, 1.e. z is the vector with all entries equal to 1, we have that:
D, < AN(Pp)

and equality holds iff + =1 is the eigenvector of P, associated with A(P,). O

Obviously, we can replace D, with D, in the above proposition.
Our theorem cannot help us find large lower bounds. The next proposition illustrates

its limitations.

Proposition 2. The best lower bound that Theorem 1 can give is n?:

AP,) < n?
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Proof. By Gersgorin’s theorem[4] the largest eigenvalue of a matrix with nonnegative

entries is at most the maximum of its row sums. So,
AMP,) < max < n?
(Pp) < ¢ Zp%l] =
j

because each neighbor of ¢ € B can contribute at most n to the sum and there are at most

n neighbors of :. O

Finally, we give an example where Theorem 1 gives almost twice the lower bound obtained
by Khrapchenko’s original theorem. Let ¢(z1,22,...,2,) = 1 iff exactly k of the z;’s are
1. Thenlet B = ¢~ !(1) and let A C »~'(0) contain all the neighbors of B. Khrapchenko’s

theorem gives the following lower bound of the leaf size of :

_ nz(k—l—l)(n—k—l—l)
K, = ~(k+1
e = Tk Do

(assuming k < n). It is not difficult to see that:
D,=K,, D,=\P,)=2k+1)n—2k*~(2k+1)n

Notice that both Theorem 1 and Khrapchenko’s theorem involve two sets A C ¢ ~1(0)
and B C ¢~ (1). For the same sets A and B, Theorem 1 can give much better results. In
the example above, if we pick A = ¢ ~1(0) and B = »~!(1) then Khrapchenko’s theorem
gives

2(n
K, = M — o(1)
while Theorem 1 gives
MP,) = (2k+ 1)n — 2k* ~ (2k + 1)n

The reason is that K, may decrease when we pick larger sets A and B, while A(P,) cannot.
This last remark, based on elementary properties of symmetric matrices, suggests that
Theorem 1 gives the best result when A = ¢~!(0) and B = ¢~ !(1). On the other hand, in
order to get the best results from Khrapchenko’s theorem, one has to pick appropriate A
and B. Intuitively, the best A and B for Khrapchenko’s theorem are the subsets of ‘large’

values in the eigenvectors of P, and P,, associated with A\(P,) and\(P,), respectively.
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It is probably worth mentioning here that we know of no Boolean function where our
method improves upon Khrapchenko’s theorem by a factor larger than two, when A, B

are chosen appropriately.
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