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A services the t-th request by moving the server from some point z, z ¢
B;_,. Observe that A; can differ from B; in more than n points only if
x € A1 N B;_y. However, z can belong to B;_y — B;_, only if = was
requested at least once in the stepst —n+1,t —n+2,...,t — 1, because B
moves servers only to service requests. Therefore, A moved a server at x in
the last n steps and it cannot move it again. Hence, A; and B; cannot differ
in more than n points.

The theorem now follows from the observation that for every n + 1 con-
secutive moves of A there is a move of some server of B. The reason is this:
if B stays in the same configuration then A will converge to the same con-
figuration in at most n moves (recall that A moves a different server each
time). O
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we get that the cost of algorithm A is at most

D o (d(bj—1,bjey) + (Tj—1,bj—1) + d(bj—p—1, bj—y) + d(bj—y, b;) + (T}, b;)) <
7=1
> (20 + 1)d(bj—1, ;) + 2¢(Tj,b;)) <
7=1

(204 1) (d(bj—1,b5) + (T}, b))

i=1

The last expression is (2¢ + 1) times the cost of algorithm B.

For the converse, observe that when ¢(7},2) = 0, for all z, and when
all triangle inequalities above hold as equalities then a comparative ratio of
2¢ + 1 can be achieved. O

Of course, for certain tasks systems the comparative ratio may be less
that 2¢ 4+ 1. For the paging problem it is £ 4 1.

Theorem 5 For the paging problem
R(Ly, Ls) = min{k,{ + 1}

Proof. Let n = min{k — 1,¢} and let B be an algorithm for the paging
problem in the class £,, that is, with lookahead ¢. Without loss of generality
we assume that B moves its servers only to service requests. Consider the
following on-line algorithm A:

In order to service a request r, A moves a server that has not
been moved in the last n times such that the resulting configu-
ration is as close as possible to the last known configuration of

B.

Fix a worst request sequence p and let Ag, Ay,... and Ay = By, By, ... be the
configurations of A and B in order to service p. Without loss of generality,
we assume that A moves a server in each step. By definition, A services the
t-th request by moving a server not in B;_, (unless A;_1 = B;_,).

We will first show by induction that A; and B;, t = 0,1, ..., differ in at
most n points, that is |B; — A;| < n. This is obviously true for ¢ < n. Assume
that it holds for t — 1. If A;_; = B;_, then clearly the statement holds,
because in each step the difference can increase by at most one. Otherwise,
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there are metrical task systems for which R(Lqo, L;) =20 + 1.

Proof. Trivially the theorem holds for £ = 0. Assume that ¢ > 0 and fix an
algorithm B in £,. We shall define an on-line algorithm A without lookahead
whose cost on any sequence of tasks is at most 2/ + 1 times the cost of B.
A knows the position of B { steps ago. In order to process the next task, A
moves first to B’s last known position, and then processes the task greedily,
that is, with the minimum possible cost.

Let T1,T5, ... be a sequence of tasks and let by, by, ... be the points where
algorithm B processes each task and aq,as,... the corresponding points for
algorithm A. For simplicity, we define also points b; = a; = a for negative
7’s.

Then the cost of algorithm B is

Y (d(bj1, ;) + (T}, b5))

i=1

and the cost of algorithm A is

Yo (d(aj1,0j0) + d(bjs, a;) + (T}, a5))

i=1

Recall that in order to process the j-th task, algorithm A moves to B’s last
known position b;_, and then processes the task greedily, that is d(b;_s, a;)+
¢(T},a;) is the smallest possible. In particular,

d(b; s, a;) + (T}, a;) < d(bj—y, b;) + (T}, b;)

From this, the fact that costs are nonnegative and the triangle inequality we
get

d(aj_1,bj 1) d(aj_1,b;r1) +d(bj—r—1,b; )

<
< d(bj-1,bj—p-1) + c(Tj—1,bj—1) + d(bj—s-1,bj—s)

Combining these with the triangle inequalities of the form

d(bs, biga) < d(biy biy1) + d(big1, biy2)
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a phase (all transitions in the cycle have cost one except the last one). It is
not hard now to verify expression (3.3).

Notice that each of the first /n numbers has probability at most 1/\/n
to end the phase. In contrast, each of the next y/n numbers has probability
at least 1/y/n to end the phase. Elaborating on this observation we get that
1++€/2 < R(2,¢) <1+2/e. O

3.3 Comparative Analysis

On-line algorithms deal with the relations between information regimes. For-
mally but briefly, an information regime is the class of all functions from a
domain D to a range R which are constant within a fixed partition of D.
Refining this partition results in a richer regime. Traditionally, the literature
on on-line algorithms has been preoccupied with comparisons between two
basic information regimes: The on-line and the off-line regime (the off-line
regime corresponds to the fully refined partition). As we argued in the intro-
duction of this chapter, this has left unexplored several intricate comparisons
between other important information regimes.

Comparative analysis is a generalization of competitive analysis allowing
comparisons between arbitrary information regimes, via the comparative ra-
tio defined in equation (3.2). Naturally, such comparisons make sense only if
the corresponding regimes are rich in algorithms—single algorithms do not
lend themselves to useful comparisons.

We apply comparative analysis to the lookahead problem in task systems.
An on-line algorithm for a metrical task system has lookahead ¢ if it can base
its decision not only on the past, but also on the next ¢ tasks. All on-line
algorithms with lookahead ¢ comprise the information regime £,. Thus, £y
is the class of all traditional on-line algorithms.

Metrical task systems are defined on some metric space M; a server
resides on some point of the metric space and can move from point to point.
Its goal is to process on-line a sequence of tasks 71,75, ... The cost ¢(1},a;)
of processing a task 77 is determined by the task 7} and the position a of the
server while processing the task. The total cost of processing the sequence is
the sum of the distance moved by the server plus the cost of servicing each

task 75,7 =1,2,...
Theorem 4 For any metrical task system, R(Lo, Ly) < 20+1. Furthermore,
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that corresponds to the case r ¢ P;. The cost of each transition is the
associated off-line cost. So, all transitions have cost zero, except the last
one, which has cost one, because a request r increases the minimum value of
the work function if and only if r & P.

Finally, the transition probabilities are determined by the worst dis-
tribution discussed above. The total probability of the first ¢ transitions,
t=1,...,k—1is e for each point in P, except the k£ points occupied by
the servers of LRU (in case p;41 < k the probability is zero). Therefore, the
probability of the first ¢ transitions is max{(pi+1 — k)¢,0}. The probability
of the last transition is the remaining probability 1 — (p — k)e, which also
shows that there is no need to consider types with py greater than k + 1/¢
because these types are ‘unreachable’. The importance of this fact is that
the Markov process My is finite (it has O((k 4+ 1/€)"~1) states), despite the
fact that the metric space is infinite.

Let ¢(Mjy,) be the expected cost of each step of the Markov process M,
which is also the expected off-line cost. Since the on-line cost of each step is
one, we get

Theorem 3 Algorithm LRU ts optimal against a diffuse adversary with com-
petitive ratio

R(k,e) =1/c(Mg,)

It seems difficult to determine the exact competitive ratio. In fact, the
next corollary suggests that it may not be expressible by a simple closed-form
expression.

Corollary 1 The competitive ratio for k = 2 s

1
I+(1—¢)(14+(1—=2¢)(--- (L +2e(14+¢€)--+))

In particular, 1 + v/¢/2 < R(2,¢) <14 2¢/c.

R(2,6) =1+ (3.3)

Proof. It is not difficult to see that the Markov process is identical to the
following process: in each phase repeatedly choose uniformly a number in
1,...n, where n = 1/¢; a phase ends when we choose a number twice. A
phase is a cycle in the Markov chain that starts (and ends) at state with type
(1,2). The cost of the Markov chain is one less than the expected length of
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a;, respectively, with ¢ < j and notice that if a; € Py then p(w)) < p(w]).
This means that the worst distribution prefers to give probability to a; than
to a;. Similarly, using Lemma 10 we deduce that a request in P, should be
preferred to a request not in .

In summary, the worst distribution assigns probability € to points not
covered by on-line servers in the order ay,ay,.... Clearly, an optimal on-
line algorithm should try to prevent this and hence, Ag = {ay,as,...,a;} is
the best configuration for an on-line algorithm—A, achieves the minimum
value of ¥(w, Ag). Notice that there is a familiar algorithm that achieves
exactly this: the LRU algorithm. Algorithm LRU moves the server from ay,
to the next request. Moreover, the LRU is always at the best configuration
{ai,ay,...,a;} at no extra cost other than servicing the requests. This also
shows that the assumption above that we charge only cost one to the on-line
algorithm at each step while we allow its servers to move to any configuration
with no extra cost is a valid assumption for LRU. So, we have

Lemma 12 Algorithm LRU is optimal against a diffuse adversary.

Notice that LRU is indeed a refinement of the Work Function Algorithm.
We still need to estimate the competitive ratio of LRU. Although LRU does
not have to remember all the values of the work function (or equivalently
its signature), the analysis of its competitive ratio depends on it. From the
discussion above, we need only to estimate the off-line cost, which is the
expected cost of a Markov process M .

The states of My, . are the types of the work functions (p1, p2,. .., px) with
Il =p1 <py < -+ < pg. From state (p1,pa,...,pr) which corresponds to a
signature P = (P1, Py,..., P), there are transitions to the following k& — 1
types:

(Lipr+ 1,p3, P4, -, )
(Lpr+1L,pa+1,pa,... pr)

(Lpr+Lpa+Lps+1,...,pe1+ 1)

They correspond to the case of the next request r being in P;, ¢t =2,3,... k.
There is also a transition to the type

(17]92 + 17]33 + 17"'7pk + 1)
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that if w is a work function with signature P(w) = (Py, Ps, ..., Px) then an
optimal on-line algorithm has all its servers in the set P. The reason is that
if this is not the case, future distributions that assign non-zero probability
to points outside P, can avoid the points in Ay (the assumption that there
are infinite points is very useful here); so, the servers at these points are
useless. Let us call an on-line algorithm that keeps its servers in the current
Py reasonable. The next lemma is about the worst distribution against any
reasonable algorithm.

Lemma 11 For any reasonable on-line algorithm A there is a worst distri-
bution that assigns probability zero to the points covered by the servers of

A.

Proof. Let w be a work function with signature P = (Py, Pa, ..., Py) and let
Ag be the configuration of the on-line servers. Assume that the next request
r belongs to Ag and let w’ be the resulting work function. So, the on-line cost
to service r is zero. Since A is reasonable the request r belongs to Py and
hence, the off-line cost is zero, i.e. the minimum value of w’ is the same with
the minimum value of w. So, a request r € Ay does not affect the on-line or
the off-line cost. It does affect the support though: the support of w’ is a
subset of the support of w, and by Lemma 10 this gives some advantage to
the on-line algorithm at Ag. O

From now on, we will consider only distributions that assign probability
zero to points occupied by on-line servers. For these distributions the on-line
cost at each step is one. Clearly, the worst distribution is the one that keeps
the off-line cost small.

Assume for the moment that the on-line algorithm can move to any con-
figuration with no extra cost. This assumption is useful because it removes
from consideration the actual configuration of the on-line servers. In partic-
ular, it allows us to compare work functions by comparing their types (and
not their signatures): Lemma 10 applied in this context gives that the worst
distribution should favor a work function w; to wq if p(wy) = p(w).

Let w be the current work function with signature P = (P, Pa, ..., Py).
Consider an ordering ay, as, . .. of the points with respect to P, such that the
points in P; are before the points in P, and so on; points in the same set P;
are ordered arbitrarily; finally the points in P; come before the points not in
Py,. Consider the resulting work functions w] and w) after requests a; and
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Definition 7 The disadvantage of a configuration Ay with respect to a work
function w s

p(w, Ag) = Hhinlr)nea& Eren(costa(x, Ag) — R - opt(z,w))

where cost4(x, Ag) is the cost of an on-line algorithm A to service the request
sequence x starting at configuration Ao and opt(x,w) is the related optimal
cost.

The disadvantage is what in literature is called potential function; in fact,
it is the minimum potential function. It is clear that the algorithm A that
achieves the minimum in 9 (w, Ag) is optimal and the associated distribution
D € A, is the worst distribution for A. So, we can use ¥ as a guide to
determine an optimal algorithm and the worst distribution for it. It seems
very difficult to determine ¢, but fortunately, we don’t need to do it; it
suffices to use some general properties of ¥. The next lemma describes a
very useful property of .

Lemma 10 Let wy, wy be work functions and Ag be a configuration. We
have

U(wr, Ao) < h(wq, Ao) + R XIGIEE(LEQ) Yglsi(gl) D(X,Y)
Proof. Notice first that the on-line cost cost4(z, Ag) in the definition of ¢ is
independent of the work function; only the off-line cost opt(z,w) depends on
the work function. An off-line algorithm that starts with work function w,
and has its servers at a configuration Y in the support of w; can first move
to a configuration X in the support of w; and then simulate any off-line
algorithm that starts with wy. The difference in their cost is just the cost of
the initial step, which is at most
max min D(X)Y)
XeS(ws) YeS(wr)

and the lemma follows. O

Notice that when S(w;) C S(wz) then Lemma 10 gives that o (wq, Ag) <
Y(wz, Ag). For simplicity, we may sometimes treat the inequality in the
lemma as a strict inequality.

We are now ready to describe some properties of the optimal on-line
algorithm and the worst distribution in Definition 7. The first observation is
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Suppose that we have the P;’s for w, and let w’ be the resulting work function
after request r. Then the corresponding sets for w’ are, if r € F;:

P = {r}
Pl = Ptr,  2<i<t;
P = P t<i.

K3

If r does not belong to any of the P,’s, then

Pl = {r}
P = P+r, 1<

The induction step now follows. O

Definition 6 The signature P(w) = (P, Py, ..., Py) of a work function w
is the sequence in Lemma 9, and ils type is the k-tuple p(w) = (|P1| =
L |Psl, ..., |Pk]). Moreover, for two types p(wy) = (p1,p3, ..., pp) and p(wy) =
(P}, p3,...,p}) we use p(wy) < p(ws) zﬁp} < p? forall j =1,... k.

Consider a work function w and let w’ be the resulting work function after
request r. If r € Py(w) then the support of w’ consists of the configurations
in the support of w that contain r. In particular, we have that S(w’) C S(w)
and p(w’) < p(w). In contrast, if r € Py(w) then p(w) < p(w’). Notice also
that in this case we have

1 ‘1/ = 1 1w
min uw (X) H}}nu(X) +1

and for each X € S(w’) there is an Y € S(w) that differs in one point. That
is

max min D(X,Y) =1
XeS(w')YeS(w)

We want to find an optimal on-line algorithm and the worst distribution
for this algorithm. So, let A be an on-line algorithm. After servicing a request
sequence the servers of A are at a configuration A, and the work function is
w,. We want to estimate the disadvantage ¥(w,, A,) of the position A, with
respect to the work function w,. So, if A is an optimal on-line algorithm with
competitive ratio R then the expected future on-line cost in the worst case
is approximately R times the expected future off-line cost. Their difference
expresses exactly the disadvantage of A, with respect to w,.
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because it can simulate the behavior of an off-line algorithm at configuration
X by first moving to it (with no extra cost other than D(X,Y)). From now
on, we will consider only off-line algorithms that always occupy configurations
in the support of the current work function.

The following lemmata, specific for the paging problem and not true in
general for the k-server problem, characterize all possible work functions by
characterizing the values of each on its support. The first lemma states that
all values in the support are the same, and hence what matters is the support
itself, not the values of w on it.

Lemma 8 The support of a work function w contains only configurations
on which w achieves its minimum value.

Proof. Suppose not. Then there is a configuration A in the support such
that w(A) > miny w(X). Let B be a configuration with w(B) < w(A) and
D(A, B) minimum. By the quasiconvexity condition, there is an a € A — B
and b € B — A such that

w(A) +w(B) > w(A—a+b)+w(B—b+a).

Because w(A) > w(B, either w(A) > w(A —a+b) or w(A) > w(B —b+a).
In the first case w(A) = w(A —a+b) + 1, so A is not in the support. In the
second case B — b+ a contradicts the choice of B with minimum D(A, B). O

An immediate consequence of Lemma 8 is that the off-line cost is always
equal to the minimum value of a work function. The next lemma specifies
the structure of the support.

Lemma 9 For each work function w there is an increasing sequence of sets
P C P, C...C P, with Pp = {r}, the last request, such that the support of
w is precisely

S(w)={X:|X NP >jforall j}

Note that the converse, not needed in the sequel, also holds: Any such tower
of P;’s defines a work function.

Proof. The proof is by induction on the length of the request sequence.
Initially take P; = {a1,...,a;}, where {aq, ..., ai} is the initial configuration.
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In Section 3 we use comparative analysis to evaluate the power of look-
ahead in on-line problems. Specifically, we answer the question of the power
of look-ahead for metrical task systems of [7, 8]: If £, is the class of all
algorithms with lookahead ¢, and L is the class of on-line algorithms, then
we show that,

R(ﬁo,ﬁg) =20+ 1,

(that is, the ratio is at most 2¢ 4+ 1 for all metrical task systems, and it is
exactly 20 4+ 1 for some), while in the more restricted context of paging

R(ﬁo,ﬁg) =/{+1.

3.2 Diffuse Adversaries

The competitive ratio for a diffuse adversary is given in equation (3.1). A is
a class of acceptable conditional probability distributions; each D € A is the
distribution of the relevant part of the world conditioned on the currently
available information. In the case of the paging problem with a set of pages
M, A may be any set of functions of the form D : M* x M +— [0, 1], where
for all p € M* Y ,cm D(alp) = 1. In the game-theoretic interpretation,
as the sequence of requests p develops, the adversary chooses the values of
D(alp) from those available in A to maximize the ratio. Since we deal with
deterministic algorithms, the adversary knows precisely the past decisions of
A, but the adversary’s choices may be severely constrained by A.

In this section we shall focus on the class of distributions A., which
contains all distributions D : M* x M — [0, ¢]—that is to say, all conditional
distributions with no value exceeding e.

We will treat the paging problem as a k-server problem with a uniform
metric space. We will make use of the convenient assumption that the metric
space has an infinite number of points. We will also assume that 1/¢ is an
integer.

Definition 5 The support S(w) of a work function w is the set of configu-
rations X such that there is no Y with w(X) = w(Y)+ D(X,Y). Intuitively,

the values of w on its support completely determine w.

If X is not in the support and w(X) = w(Y) 4+ D(X,Y) then it is better

for an off-line algorithm to be at configuration Y than at configuration X,
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an operating system knows this distribution precisely. On the other hand,
it seems unrealistic to assume that any distribution at all is possible. For
example, suppose that the next page request is not predictable with absolute
certainty: prob(a|p) < e, for all a and p, where € is a real number between
0 and 1 capturing the inherent uncertainty of the request sequence. This
is a simple, natural, and quite well-motivated assumption; call the class of
distributions obeying this inequality A.. An immediate question is, what is
the resulting competitive ratio R(A)?

As it turns out, the answer is quite interesting (Section 2). If k is the
storage capacity, the ratio R(A.) is shown to coincide with the expected cost
of a simple random walk on a directed graph with O((k + %)k_l) nodes. For
k = 2 this value is easy to estimate: It is between 1 + /¢/2 and 1 4 2,/¢; for
larger values of £ we do not have a closed-form solution for the ratio. There
are two important byproducts of this analysis: First, extending the work of
Chapter 2, we completely characterize the work functions of this special case
of the k-server problem. Second, the optimum on-line algorithm is robust—
that is, the same for all €’s—and turns out to be a familiar algorithm that is
very good in practice: LRU. It is very interesting that LRU emerges naturally
from the analysis of this problem as an optimal algorithm (other algorithms
may also be optimal).

The second refinement of competitive analysis that we are proposing is
comparative analysis. Comparative analysis can be used to evaluate informa-
tion regimes: Suppose that A and B are classes of algorithms—typically but
not necessarily A C B; that is, B is usually a broader class of algorithms, a
more powerful information regime. The comparative ratio R(A, B) is defined
as follows:

_ : A(z)
R(A,B) = max min max Bl)

(3.2)

This definition is best understood in terms of a game-theoretic interpre-
tation: B wants to demonstrate to A that it is a much more powerful class
of algorithms. To this end, B proposes an algorithm B among its own. In
response, A comes up with an algorithm A. Then B chooses an input z.
Finally, A pays B the ratio %. The larger this ratio, the more powerful
B is in comparison to A. Notice that, if we let A be the class of on-line
algorithms and B the class of all algorithms—on-line or off-line—then (3.2)
becomes the definition of the competitive ratio. Hence, comparative analysis

is also a refinement of competitive analysis.
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Chapter 3

Beyond Competitive Analysis

3.1 Introduction

In this chapter, we propose and study two refinements of competitive analy-
sis. The first refinement, the diffuse adversary model, removes the assump-
tion that we know nothing about the distribution—without resorting to the
equally unrealistic classical assumption that we know all about it. We as-
sume that the actual distribution D of the inputs is a member of a known
class A of possible distributions. That is, we seek to determine, for a given
class of distributions A, the performance ratio

R(A) = minmax Ep(A(2))

4B p (opt(a)) &)

That is, the adversary picks a distribution D among those in A, so that the
expected, under D, performance of the algorithm and the off-line optimum
algorithm are as far apart as possible. Notice that, if A is the class of
all possible distributions, (3.1) reduces to the definition of the traditional
competitive ratio, since the worst possible distribution is the one that assigns
probability one to the worst-case input, and probability zero everywhere
else. Hence the diffuse adversary model is indeed a refinement of competitive
analysis.

In the paging problem, for example, the input distribution specifies, for
each page a and sequence of page requests p, prob(a|p) —the probability that
the next page fault is a, given that the sequence so far is p. It is unlikely that
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a minimum spanning tree that contains X [32, Chapter 12]. In particular,

edge A has weight
w'(A%) + C(A)

We can rewrite it as

w'(AC) — Z d(r,a) + Z d(r,a)

a€ A€ a€V

Recall that AC is a minimizer of r with respect to w’ and notice that 3 ,cy d(r, a)
is independent of A. From these, we can conclude that A is a minimum
weight edge adjacent from r. Therefore, there is a minimum spanning tree
that contains A; the theorem follows. O

We feel that the technique used in the solution of this important special
case may point the way to the ultimate proof of the k-server conjecture. In
fact, it was the proof of Theorem 2 that led us to Theorem 1.
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Theorem 2 The k-server conjecture holds for metric spaces with k + 2
points.

Proof. Let T be a tree on the points of a metric space M with k + 2 points.
For an edge X of T let X¢ denote the complement of X (set of points not
in X). Let Hy be the set of complements of all edges in T—since the metric
space has k4 2 points the complement of an edge is a configuration—and let
G'r be the set of all edges (pairs of points) not in 7. Define

L ={(Hr,Gr): T is a spanning tree}

Following the general technique described above, we define W(w, Hy, Gr) as

in (2.4):
U(w, Hr,Gr) = > w(X) — > d(a,b)
XeT [a,b]€Gr

Since a spanning tree of all points of M has k + 1 edges, there are k + 1
configurations in each Hp. So, in order to prove the theorem, it suffices to
show that W(w', Hr, G'r) achieves its minimum value ®(w’) (over all spanning
trees), when one of the configurations in Hr is a minimizer of r with respect
to w.

Let V be the set of all points of the metric space M. We add the sum of
all distances, C(V), to U:

U(w', Hy,Gr)+ C(V) = > w'(X)+ > d(a,b)
XeT [a,b]€Gr

= Z'LU’(XC)—I— Z d(a,b)

XeT [a,b]eT

= > (W(X9)+0X))

XeT

Clearly, the minimum value of W(w', Hy, Gr) is achieved when 7' is a mini-
mum spanning tree of the graph with nodes V' and weights w/(X¢) + C(X)
on each edge X.

Let A® be a minimizer of r with respect to w; by Lemma 5, it is also a
minimizer of r with respect to w’. All we need to show is that some minimum
spanning tree (with weights as above) contains the edge A.

For this we will need an important property of minimum spanning trees:
for each node a and a minimum weight edge X adjacent from a, there is
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Let Ag and A, be the initial and final configurations. We have

(I)(wf) S \I/(wf, An, An, ceey An)

= 2kws(A,) — 2C(A,)
The value of ®(w,.) is given by Lemma 7, ®(w.) = —2C(Ap). Therefore,
the extended cost is at most 2kw,(A,) 4+ 2C(Ap). Because the off-line cost is
w,(Ay), the total extended cost is bounded above by 2k times the off-line cost
plus a constant depending only on the initial configuration. Using Fact 5, we
conclude that the work function algorithm is (2k — 1)-competitive. o

2.5 The Case of k + 2 Points

The proot of Theorem 1 has the following skeleton: Let £ be a set of pairs of
hypergraphs and graphs on the points of the metric space; that is, £ contains
elements (H, ), where hypergraph H is a multiset of ¢ configurations (or
ordered k-tuples); graph G is a collection of edges (unordered pairs of points).
In Theorem 1, H is a collection of 2k configurations: U (k times) and B;,

J=1,...,k; G contains the edges [u;, b;]. Consider now the function
U(w, H,G)= > w(X)— > d(a,b) (2.4)
XeH [a,b]eG

and let the potential ®(w) denote its minimum value over all pairs (H,G) €
L.

As usual, let w be a work function and let w’ be the resulting work
function after request r. We want to choose ¥ so that it has the following
important property:

U(w', H, () achieves its minimum value ®(w’), when one of the
configurations in H is a minimizer of r with respect to w.

If this holds and if furthermore ®(w,) is bounded, then the Work Function
Algorithm has competitive ratio { — 1 by an argument similar to that of
Theorem 1. In this section we use the same schema to prove the k-server
conjecture when the metric space has exactly k& + 2 points.
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d(ui, bi;) < d(a,u;) + d(a,b;;) we see that we can replace u; with a without
increasing the value of W(w,U, By,..., By). Therefore, the minimum ®(w.)
of U(w,U, By,...,By) is achieved for U = Ap. Similarly, we can show that
B; = Agfor i =1,...,k and the lemma follows. O

We are now ready to prove the main result of this chapter:

Theorem 1 The competitive ratio of the Work Function Algorithm s at
most (2k — 1).

Proof. Consider a work function w and let w’ be the resulting work function
after request r.

According to Lemma 6, the minimum value ®(w’) of U(w', U, By, ..., By)
is achieved for u; = r, for some 7. Let A be a minimizer of » with respect
to w. Then by Lemma 5, A is also a minimizer of r with respect to w’ and
it is not difficult to see that the minimum value of W(w',U, By, ..., By) is
unaffected if we fix B; = A. Fix the remaining points u; and b;;, where
U(w' U, By, ..., Bg) achieves its minimum. Let ¥, ¥,, denote the values of
U on these points with respect to v’ and w. From the definition of ®(w) we
get that ®(w) < W,,. Obviously then,

P(w') — O(w) > ¥, — U,

Consider now the expression ¥, — W,,. All distances appearing in the def-
inition of W, appear also in the definition of ¥,,, because they are defined
on the same set of configurations U, B;, j = 1,..., k. Therefore they cancel
out. By Fact 4, w'(U) > w(U) and w'(B;) > w(B;), 3 =1,...,k. From this
we get:

Uy — U, > w'(A) —w(A)
Putting these together:

O(w') — ¢(w) > w'(A) — w(A)

According to Lemma 5, the extended cost is w'(A) —w(A), because A is a
minimizer of r with respect to w. Thus, we conclude that the extended cost
to service request r is bounded above by ®(w') — ®(w). Summing over all
moves we get that the total extended cost is bounded above by ®(w,)—®(w.),
where w, and w, are the initial and the final work functions, respectively.
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2.4 A Potential for (2k — 1)-Competitiveness

We are now ready for the last act of the proof, the definition of an appropriate
potential. For configurations U = {uy,...,uz} and B; = {b;1,...,bix}, 1 =
1,...,k, let

J=1

U(w,U, By,...,Bx) = kw(U) + Xk: (w(BZ) — Zd(uz’, bij))

Let ®(w) denote its minimum value over all configurations U and B;, ¢ =

L,..., k; ®(w) is called the potential of the work function w'.

The next two lemmata provide some properties of ®(w).

Lemma 6 For any work function w, the minimum value ®(w) of ¥(w, U, By,
..., By) is achieved for r € U, where r is the last request.

Proof. By Fact 2, for some ¢ € 1...k:
w(lU) =w(lU —u; +r)+d(r,u;)

If we substitute this to W(w, U, By,..., Bi), using the k triangle inequalities
d(r,u;) — d(ui, bi;) > —d(r, b;;) we get

U(w,U, By,y...,Bx) > V(w,U —u;+r,Bq,...,B)

and the lemma follows sincer € U —u; +r. O
The next lemma estimates the potential of the initial work function.

Lemma 7 For the initial work function w.(X) = D(Ag, X):
O(w.) = —2C(Ap)

Proof. It is not hard to see that the lemma follows if the minimum value
O (w.) of ¥(w,U, By,...,By) is achieved when U = Ay and B; = Ag for
J=1,..., k. Consider a point u; € U. In the minimum matching D(Ao, U),
u; 1s matched to some point ¢ € Ag. By using the £ triangle inequalities

1Our potential differs from what is usually termed as “potential function” in the liter-
ature of on-line problems by a constant multiple of the optimal off-line cost.
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Lemma 4 Let w be a work function. Consider a new request at r and the
resulting work function w'. If A is a minimizer of r with respect to w then
the extended cost occurs at A, that is

w'(A) = w(A) = max{w'(X) —w(X)}
Proof. It suffices to show, for all configurations B, r ¢ B:
W/(4) + w(B) > w/(B) + w(A)
Rewriting w'(A) and w'(B) in terms of w, as in Fact 1, we get that
min{w(A —a 4+ r)+d(r,a’) + w(B)} >

a’cA

min{w(B — b + 1)+ d(r,b') + w(A)}

b'eB
or equivalently, for all ¢’ € A:
w(A—d +r)+d(r,ad)+w(B) >
min{w(B — 0 +r)+d(r,b') + w(A)} (2.3)

b'eB
From the hypotheses we get that
w(A) = > d(r,a) <w(A—d +0)— > d(r,a)
acA aEA—a’+b'
and by simplifying it
w(A) +d(r,b) <w(A—d +b)+d(r,ad)
Substituting this in (2.3), it becomes:
w(A—d +r)+wB)>
gleig{w(/l —d +b0)+wB—-b+r)}
which holds because of the quasiconvexity of w. O

Lemmata 3 and 4 can be combined into the following result which char-
acterizes where the extended cost occurs.

Lemma 5 (Duality Lemma) Let w be a work function and let w' be the
resulting work function after request r. Then any minimizer A of r with
respect to w is also a minimizer of v with respect to w', and the extended cost
of servicing the request r occurs on A.

We call this the “duality lemma” because it relates a maximum (extended
cost) to a minimum (minimizer).
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Proof. It suffices to show that for all configurations B, r ¢ B:

w'(B) = > d(r,b) > w'(A) = }_ d(r,a)

beB a€A

Using Fact 1, we get

mm{ (B—=0bV +r)+d(rb)— Zdrb

[
be beB

mm{( —a +r)+d(r,a) Zdra

a'€A )
or equivalently, for all ¥’ € B:
w(B—=V+r)+d(rb)— Zdrb

beB

mm{( —a +r)+d(r,a) Zdra

a'cA )

We add w(A) to both sides:

w(B—=0+4r)+w(A)+d(rb)— Zdrb

beB

mm{ (A—d' +r)+w(A)+d(r,d) Zdra (2.2)

a’€A )
Because A is a minimizer of r with respect to w:

=Y d(r,a) <w(B+d =bV)— > drb)

a€A beB4a'—b’

or equivalently

w(A)—I—d(r,a’)—Zd(r,a)gw(B—l—a'—b +d(r,b') — Zdrb

a€A beB
From this and the quasiconvexity condition:
w(B=b+7r)4+w(A) > miﬂ{'w(B —V+d)+wA—d+r)}
a’€e
we get (2.2). O

The following lemma has the same premises with Lemma 3, but a different
conclusion:
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Consider now the bijection ' : A — B:

=13 i

We will show that A satisfies the requirements of the quasiconvexity condition
of w’. Consider a bipartition of A into X and Y and without loss of generality
assume that a € X. We have:

w'(A) + w'(B)
=w(A—a+r)+w(B-—>b+r)+d(r,a)+d(rb)
=w(X—a+r)UY)+w(B-b+r)+d(r,a)+d(r,b)
>w((X—a+r)URY))+wh(X —a+r)uY)
+d(r,a) + d(r,b)

=w(X —a+r)ULY))+w((h(X)—b+r)UY)
+d(r,a) + d(r,b)

> w (X UR(Y)) +u'(A(X)UY)

w

w

where the first inequality is based on the quasiconvexity of w and the second
one on Fact 1. So, w' is quasiconvex and the lemma follows. O

Now we use the quasiconvexity condition to prove the next two lemmata.
In fact, we use the weaker condition:

VYVae A—B:w(A)+w(B) >
rbréiél{'w(A —a+b+wB-b+a)}
We need a definition first:

Definition 4 A configuration A is called minimizer of a point a with respect
tow, ifa € A and A minimizes the expression w(X) — > ,cx d(a,x), that is

w(A) = > d(a,z) = H}im{w(X) — > d(a,z)}

€A reX

Lemma 3 Let w be a work function. Consider a new request at r and the
resulting work function w'. If A is a minimizer of r with respect to w then
A is also a minimizer of r with respect to w'.
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Consider now a bipartition of A into X and Y and assume (without loss of
generality) that A7 (a) € X. If @ € X then h(X) = A'(X) and A(Y') = A'(Y)
and (2.1) holds. Otherwise, when a ¢ X, we reduce the quasiconvexity
condition of X' = X +a and Y’ =Y — a to the quasiconvexity condition of
X and Y as follows:

w(A) +w(B) > w(X'URY"))+wh(X)UY")

(X"UR(Y")+w(h(X)UY")

= w(X+a)UR(Y —a))+w(h (X +a)U(Y —a))
(

— w(XURK(Y))+w((X)UY)

= w

Therefore, k' satisfies the quasiconvexity condition. Because A’ maps at least
one more element in A N B to itself than A, it contradicts the assumption
that A maps the maximum number of elements in A N B to themselves.

We conclude that h(a) = a for all a € AN B, and the lemma holds. O

We are now in a position to show the following important lemma:
Lemma 2 (Quasiconvexity Lemma) All work functions are quasiconvez.

Proof. We use induction on the number of requests.
Recall that the initial work function w.(X) of a configuration X is equal
to D(Ap, X), where Ag is the initial configuration. So we have that

w(A) + w(B) = D(Ag, A) + D(Ao, B)

Fix two minimum matchings D(Ag, A) and D(Ag, B). Each point z; in Ag
is matched to some point a; in A and b; in B. Obviously, by mapping a; to
b; we obtain a bijection that satisfies the requirements of the lemma.

For the induction step, assume that w is quasiconvex. We want to show
that the resulting w’ after request r is also quasiconvex.

Fix two configurations A and B. Using Fact 1 to express w’ in terms
of w we get that w'(A) = w(A —a+ r) 4 d(r,a) for some ¢ € A; similarly
w'(B) = w(B — b+ r)+d(r,b) for some b € B. The induction hypothesis is
that w is quasiconvex, so there exists a bijection A from A—a+rto B—b+r
that satisfies the quasiconvexity condition. Furthermore, Lemma 1 allows us
to assume that A(r) = r.
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Function Algorithm is competitive we have only to show that a certain in-
equality holds for all work functions. Its disadvantage, of course, is that it
may overestimate the cost of the Work Function Algorithm (although in view
of the main result, Theorem 1, of this chapter, the overestimation factor is
less than 2).

2.3 Quasiconvexity and Duality

Facts 2 and 3 provide some properties of the work functions. Unfortunately,
other functions can satisfy both of them; that is, there are functions that
satisfy them and are different from w, for all request sequences p (and for
all initial configurations Ag). In order to study the behavior of the Work
Function Algorithm, it is important to understand the properties of work
functions. One very useful property is that all work functions are quasicon-
vex:

Definition 3 A function w is called quasiconvex if for all configurations A,
B there exists a bijection h : A — B such that for all bipartitions of A into
X, Y:

w(A)+w(B) > w(X URr(Y))+wh(X)UY) (2.1)

Before we show that all work functions are quasiconvex, we need the fol-
lowing lemma, which provides a stronger form of the quasiconvexity condition
by restricting the set of possible bijections.

Lemma 1 If there exists a bijection h that satisfies the conditions in Defi-
nition 3 then there exists a bijection h' that satisfies the same conditions and

h'(z)=x forallz € AN B.

Proof. Let h be a bijection from A to B that satisfies the conditions of the
definition above and maps the maximum number of elements in A N B to
themselves. Assume that for some a € AN B we have h(a) # a. Define a
bijection k' that agrees with h everywhere except that

h'(a) =a and R'(h7'(a)) = h(a)

(h" interchanges the values of h on @ and h™'(a)).
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Notice that since r € A’ we can replace w'(A’) with w(A’) in the above
definition. Moreover, because of the triangle inequality we can assume that
A'=A—a+rforsomea € A; A’ = A — a+ r minimizes w(A") + D(A, A').
Using this we see that w'(A) = mingesa{w(A — x4+ r) +d(z,r)} = w(A") +
d(a,r).

The cost of the Work Function Algorithm to service request r is simply
d(a,r). We need also to estimate the cost of an optimal off-line algorithm.
Instead, we define the off-line pseudocost to be w'(A’) — w(A). By summing
over all moves, the total off-line pseudocost is equal to the total off-line
cost, since in the worst case the final configuration of the on-line algorithm
is the same with the final configuration of the optimal off-line algorithm;
if this is not the case, by extending the request sequence with requests in
the final configuration of the off-line algorithm, the off-line cost remains
unaffected while the on-line cost increases. Consider now the sum of the
off-line pseudocost and the on-line cost:

w'(A") —w(A) + d(a,r)

which is equal to w'(A) — w(A). This quantity is bounded by its maximum
over all possible configurations. Therefore, the off-line pseudocost plus the
on-line cost is bounded above by

m)?x{'w’(X) —w(X)}

We call this quantity the extended cost of a move. The total extended cost
is the sum of the extended cost of each move. We say that the extended cost
occurs on a configuration A when A maximizes the quantity in the extended
cost.

Clearly, by the definition of the competitive ratio we have:

Fact 5 If the total extended cost is bounded above by c+ 1 times the off-line
cost plus a constant then the work function algorithm is c-competitive.

The extended cost is an overestimation of the actual on-line cost (plus the
optimal off-line cost). It was first introduced in [14] in a somehow different
form (they called it on-line pseudocost). The advantage of using extended
cost instead of real cost is that we don’t have to deal at all with the con-
figuration of the on-line servers. Instead, in order to prove that the Work
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Fact 2 If w is a work function and r is the last request, then for all config-
urations X
w(X) = g%l)r(l{w(X —z+r)+drx)}.
Recall that in the definition of w(X) we require that servers end up at
configuration X; this can be done by moving first to configuration ¥ and
then to X. So we have:

Fact 3 For a work function w and two configurations X, Y
w(X) <w(Y)+ D(X,Y).
Consider a work function w and the resulting work function w’ after
request r. By Fact 3 we get
w'(X) = min{w(X —z +7r)+d(r,z)} > w(X)

zeX

which translates to:

Fact 4 Let w be a work function and let w' be the resulting work function
after request r. Then for all configurations X : w'(X) > w(X).

Consider a request sequence p and let w = w,. Let A be the configuration
of some on-line algorithm after servicing p. Presumably, the most natural
on-line algorithm for the k-server problem is the Greedy Algorithm, which
moves the closest server to a request, that is, it moves its servers to a new
configuration A’, with r € A’, that minimizes D(A, A’). It is easy to see that
the Greedy Algorithm, being too conservative, has no bounded competitive
ratio. At the other end of the spectrum lies the Retrospective Algorithm: it
moves its servers to a configuration A’, with r € A’, that minimizes w’( A’).
The idea is that the off-line algorithm that has its servers at A’ seems the
best so far. Unfortunately, the Retrospective Algorithm, contrary to the
Greedy Algorithm, is too reckless. It appears that a combination of these
two algorithms may be a good idea; the Work Function Algorithm combines
the virtues of both of them:

Definition 2 (Work Function Algorithm) Let p be a request sequence
and let A be the configuration of an on-line algorithm after servicing p. The
work function algorithm services a new request r by mouving its servers to a
configuration A', with r € A, that minimizes w,.(A") + D(A, A").

11



parts: the cost of servicing the request sequence p; starting at the initial
configuration and ending up at X and the cost of servicing p, starting at X.
An on-line algorithm A that knows algorithm B cannot know the position
X, because X may depend on the future request sequence p,. However,
algorithm A can compute the cost of servicing p; of any possible optimal
off-line algorithm. In particular, algorithm A can compute the optimal cost
of servicing p; starting at Ag and ending up at configuration Y, for every
possible configuration Y. This leads to the following definition:

Definition 1 (Work function) Fiz a metric space M and an initial con-
figuration Ag. For a request sequence p define the work function w, from
configurations to the positive real numbers: w,(X) is the optimal cost of ser-
vicing p starting at Ay and ending up at configuration X.

We usually omit the subscript p from w,. Furthermore, for a work func-
tion w = w, we refer to w’ = w,, as the resulting work function after request
r, when p and r are understood from the context.

Intuitively, the importance of work functions stems from the almost ob-
vious fact that they encapsulate all the useful information about the past;
what an on-line algorithm needs to remember is w,, not p, because any other
algorithm can be transformed to one with this property without deteriorating
its competitiveness.

The initial work function w.(X) of a configuration X is merely the cost
of moving the servers from the initial configuration Ay to the configuration
X: we(X) = D(Ag, X).

The value w,,(X) for some configuration X can be computed as follows:
Clearly, if r € X then w,,(X) = w,(X). Otherwise, if r ¢ X, some server
moved from r to some point € X and therefore w,,(X) = w, (X —x +r)+
d(r,z) = w,(X —x +r)+ d(r,z). Combining the two cases, we get:

Fact 1 Let w be a work function; then the resulting work function w' after
request r is

w'(X) = min{w(X —z+7r)+d(r,z)}.

reX

We also get:
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Chapter 2

The k-Server Problem

2.1 Introduction

In this chapter we prove a 2k — 1 upper bound for the competitive ratio of the
k-server problem. The algorithm we employ is the Work Function Algorithm,
a rather natural idea for this problem that was first made explicit in the work
of [14] and it has been successfully applied to other problems [9, 10, 16]. In
[14], it was shown that the Work Function Algorithm is 2-competitive for
k = 2. One of the ingredients of our technique is the notion of the extended
cost, a concept very similar to the pseudocost of [14].

Previous attacks on this and other on-line problems involved a poten-
tial function, a numerical invariant that enables the inductive proof. Our
technique is based on more complex invariants, which provide valuable infor-
mation about the structure of the reachable work functions. There are two
invariants that proved crucial: A quasiconvexity property of the work function
(Lemma 2), and a duality condition (Lemma 5). Actually, quasiconvexity is
used only in the proof of duality, and the main result (Theorem 1) follows
from a potential function and the duality condition.

2.2 The Work Function Algorithm

Consider an optimal off-line algorithm B servicing a request sequence p =
p1p2. After servicing the request sequence p; the k servers of algorithm B
occupy some position X. The cost of servicing p can be divided into two



the absolute power of the adversary blurs practically important distinctions.
Still, lookahead is obviously a valuable feature of paging algorithms. How
can we use competitive analysis to evaluate its power? Notice that this is not
a question about the effectiveness of a single algorithm, but about classes of
algorithms, about the power of information regimes—ultimately, about the
value of information [31].

Admittedly, there have been several interesting variants of the framework
of competitive analysis that were at least partially successful in addressing
some of these concerns. Randomized paging algorithms have usually more
realistic performance [18, 30, 34]. Some alternative approaches to evaluating
on-line algorithms were proposed in [1, 33] for the general case and in [6, 22,
25, 36] specifically for the paging problem.

In Chapter 3, we propose and study two refinements of competitive anal-
ysis which seem to go a long way towards addressing the concerns expressed
above. Perhaps more importantly, we show that these ideas give rise to in-
teresting algorithmic and analytical problems (which we have only begun to
solve in this thesis).



pared against the performance of an all-powerful off-line algorithm, which is
called ‘adversary’ in the literature. The definition of the competitive ratio is
both the weakness and the strength of competitive analysis. It is a strength
because the setting is clear, the problems are crisp and sometimes deep, and
the results often elegant and striking. But it is a weakness for several reasons.
First, in the face of the devastating comparison against an all-powerful off-
line algorithm, a wide range of on-line algorithms (good, bad, and mediocre)
fare equally badly; the competitive ratio is thus not very informative and it
fails to discriminate and to suggest good approaches. Another aspect of the
same problem is that, since a worst-case input decides the performance of the
algorithm, the optimal algorithms are often unnatural and impractical, and
the bounds too pessimistic to be informative in practice. Even enhancing the
capabilities of the on-line algorithm in obviously desirable ways (such as a
limited lookahead capability) brings no improvement to the ratio. The main
argument for competitive analysis over the classical approach is that the
distribution is usually not known. However, competitive analysis takes this
argument way too far: It assumes that absolutely nothing is known about
the distribution, that any distribution of the inputs is in principle possible;
the worst-case “distribution” prevailing in competitive analysis is, of course,
a worst-case input with probability one. Such complete powerlessness seems
unrealistic to both the practitioner (we always know, or can learn, something
about the distribution of the inputs) and the theoretician of another persua-
sion (the absence of a prior distribution, or some information about it, seems
very unrealistic to a probabilist or mathematical economist).

The paging problem, perhaps the most simple, fundamental, and prac-
tically important on-line problem, is a good illustration of all these points.
An unreasonably wide range of deterministic algorithms (both the good in
practice LRU and the empirically mediocre FIFO) have the same worst-case
competitive ratio—k, the amount of available memory.

In traditional competitive analysis, the all-powerful adversary frustrates
not only interesting algorithms, but also powerful information regimes. The
classical example is again from paging: In paging the best competitive ratio
of any on-line algorithm is k. But what if we have an on-line algorithm with a
lookahead of ¢ steps, that is, an algorithm that knows the immediate future?
It is easy to see that any such algorithm must fare equally badly as algo-
rithms without lookahead. In proof, consider a worst case request sequence
abdc- - - and take its ({4 1)-stuttered version, a"*1b*+*1d* 1+t ... Once more,
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ratio is O(k%4%). The result of [21] was improved in [3] to O(2F log k), estab-
lishing a deterministic competitive ratio of O(4*log® k), which was the best
known competitive ratio for the general case before this work. Specifically
for the 3-server problem, the best result was an 11-competitive algorithm for
any metric space [15].

The lack of significant progress towards the k-server conjecture led to the
study of special cases of the problem. One of the first results in this area [4],
which preceded the work of [19, 21], was a proof that the Harmonic Algo-
rithm for 3 servers is competitive (although with a terribly high competitive
ratio). Attacking the problem in special metric spaces led to a k-competitive
algorithm for the line [11], which was extended to trees [12]. Finally, an O(k?)
competitive deterministic algorithm for the circle was presented in [20].

One of the problems with competitive algorithms for the k-server prob-
lem is that they are not space-efficient. In order to address this problem,
[17] considered memoryless randomized algorithms and showed a competi-
tive ratio of k for the class of resistive metric spaces. By derandomization,
this results in a O(k*) deterministic competitive ratio for resistive or approx-
imately resistive metric spaces (one of them is the circle). Especially for the
2-server problem, [23] gave a 10-competitive space-efficient deterministic al-
gorithm and [13] showed that the Harmonic Algorithm is 3-competitive. We
should also mention a series [5, 24, 26] of lower bound results for the ran-
domized version of the k-server problem against an oblivious adversary and
the absence of any interesting upper bound (or even a candidate algorithm).

Although the k-server conjecture remains unsettled, we come very close
in proving it in Chapter 2 (Theorem 1) (see also [27]).

1.3 Critique of Competitive Analysis

Although the importance of competitive analysis cannot be reasonably denied
(an algorithmic theory of decision-making under uncertainty is of obvious
practical relevance and significance), certain aspects of its basic premises,
modeling assumptions, and results have been widely criticized with respect
to their realism and relation to computational practice. We think that now is
a good time to revisit some of the most often-voiced criticisms of competitive
analysis and to propose and explore some better-motivated alternatives.

In competitive analysis, the performance of an on-line algorithm is com-



D(A;_1,A;). The cost, cost(p), of servicing p is the sum of the cost for all
steps.

Since an on-line algorithm cannot base its decisions on future requests,
Aj can depend only on Ay and the subsequence of requests ry7y...7;. On
the other hand, an off-line algorithm knows the whole request sequence in
advance and consequently in this case A; depends on Ay and ryry...r,. If
opt(p) denotes the optimal off-line cost then the competitive ratio of an on-
line algorithm is simply

cost(p) + ¢
ax ————
» opt(p)
where the constant ¢ may depend on the initial position Ay but not on the
request sequence p.

The paging problem is the special case of the k-server problem when all
distances between different points (pages) are the same. The reason is that
the cost for bringing a page into the fast memory is the same for all pages.

In metric spaces M with k or fewer points an on-line algorithm can
initially cover all points with its servers; it never again moves them and
therefore, its competitive ratio is 1. The problem becomes interesting for
metric spaces with at least £+ 1 points. In [28], it was shown that no on-line
algorithm can have competitive ratio less that & and the following conjecture
was posed:

Conjecture 1 (The k-Server Conjecture) For any metric space there is
an on-line algorithm with competitive ratio k.

It was also showed that the conjecture holds for two special cases: when
k = 2 and when the metric space has exactly & 4+ 1 points. The special
case of paging had already been shown k-competitive in [35]. The k-server
conjecture attracted a lot of interest because of its simplicity, its elegance
and its importance in the study of on-line problems.

For some time, it was open whether any finite competitive ratio at all
is possible. It was shown in [19] that indeed there is an algorithm with fi-
nite competitive ratio for all metric spaces. Unfortunately, the competitive
ratio increases exponentially with k. This was improved somewhat in [21],
where it was shown that a natural memoryless randomized algorithm, the
Harmonic Algorithm, has a competitive ratio O(k2*). Using the derandom-
ization technique of [2], this establishes that the deterministic competitive
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ternal states of the system are all possible sets of pages in the fast memory;
it is easy to see that the cost of changing internal state satisfies the triangle
inequality. A metrical task system is characterized by a metric space (a set
of internal states with the cost of changing states) and a set of possible tasks
with their cost. When all tasks are allowed, the competitive ratio is 2n — 1,
where n is the number of internal states [7, §].

1.2 The k-Server Problem

An important special case of metrical task systems is the k-server problem, a
generalization of the paging problem [28, 29]. The k-server conjecture which
states that there is an algorithm for the k-server problem with competitive
ratio k has been the most outstanding open problem in the study of on-line
algorithms. This conjecture is the main subject of the next chapter.

The k-server problem is defined on a metric space M, which is a (possibly
infinite) set of points with a distance function d (nonnegative real function)
that satisfies the triangle inequality. In particular, for all points z, y, and z:

dz,z) = 0
y) = dy,z)
dlz,y) < d(z,z)+d(z,y)

On the points of the metric space M, k servers reside that can move from
point to point. A possible position of the k servers is called a configuration;
that is, a configuration is a multiset of k£ points of M. We use capital letters
for configurations; we also use D(X,Y) for the minimum distance to move
the servers from configuration X to configuration Y. We always assume that
the k servers are initially at a fixed configuration Ag. For a set X and a point
a we use X +a for X U{a} and X —a for X — {a}. We also use C(X) for
the sum of all distances of points in X.

A request sequence p is simply a sequence of points of the metric space
M to be serviced by the k servers; servicing a request entails moving some
server to the point of request. In particular, it p = ryry...7r, is a request
sequence, then the k servers service p by passing through configurations Ay,
Ay, Ag, ., A, with r; € A;. At step 7, the cost of servicing request r; is
merely the cost of moving the k servers from A;_; to Aj; this is equal to



In classical combinatorial optimization, there is always an algorithm that
can compute an optimal solution for all inputs and the challenge is to do it
efficiently. In contrast, in on-line problems the scarce resource is information,
not computational power. As a result, the study of on-line algorithms so far
has primarily focused on the quality of the solution and not on the efficiency
of the algorithm. On the other hand, for a fixed input there is an especially
tailored on-line algorithm that produces an optimal output. This suggests
that there is no ‘best’ on-line algorithm—one that performs on all inputs
as well as any other on-line algorithm. Nevertheless, the development of
an algorithmic theory for on-line problems can only be based on a concrete
measure of the quality of on-line algorithms.

A novel measure proposed by Sleator and Tarjan [35] is the competitive
ratio of an algorithm: The worst case ratio of the cost achieved by the algo-
rithm divided by the optimal cost. In particular, the competitive ratio of an

algorithm A is

R(A) = max <14 (1.1)

= opt(x)

where z ranges over all inputs. We usually allow a constant independent of
the input z to be added to the cost in order to remove the dependency on
the initial output symbol. An algorithm is called R-competitive or simply
competitive if it has a finite competitive ratio R. The competitive ratio of
an on-line problem is the best (infimum) competitive ratio achieved by an
on-line algorithm. Finally, the study of on-line problems using as a measure
the competitive ratio is termed competitive analysis.

Competitive analysis has been applied successtully to many natural on-
line problems. Furthermore, it served as a unifying measure for studying
general properties of on-line problems. General on-line problems, which con-
tain many natural problems as special cases, have been identified and studied.
One of them, the metrical task systems proposed in [7], generalizes all data
management and memory management on-line problems such as the paging
problem. A task system services a sequence of arriving input symbols, called
tasks; the cost of servicing a task depends on the internal state of the sys-
tem and the type of the task. A metrical task system is a task system with
the property that the cost of changing internal states satisfies the triangle
inequality: changing from state A to state C' costs no more than changing
from A to B and from B to (. In the case of the paging problem, the in-



requests. In reality, the sequence of future page requests is not known and it
cannot be computed from the past. Therefore, any algorithm for the paging
problem has to base its decisions only on the already revealed sequence of
page requests.

The paging problem is a characteristic on-line problem: An optimization
problem where not all relevant input data are available but are revealed
as the computation progresses. In general, an on-line problem is a tuple
(1,0,¢), where I is a (possibly infinite) set of input symbols, O is a set of
output symbols and ¢ : {I" x O™t : n > 0} — R is a cost function. An
on-line algorithm A for a (1,0, ¢) problem is a function A : I* — O. Given
the sequence © = (x1,22,...,2,) of input symbols, A produces a sequence
vy = (Yo, Y1, Y2, - - -, Yn) of output symbols, with

y; = A(xy, zq,. .., 25),

that is, A produces an output symbol for each new input symbol. The cost
of A on input z, costa(z), is just ¢(x,y). For the paging problem with a fast
memory of k pages, [ is the set of all pages and O is the set of all collections
of k pages; that is, y; is the set of pages in the fast memory in step j. The
cost function cis the cost of moving pages in the fast memory as indicated by
Y: In step j the cost is proportional to the symmetric difference of y;_; and
y; provided that y; contains the last requested page x;; this is the number
of pages we have to move in order to change the state of the fast memory
from y;_1 to y; (for a typical paging algorithm it is one). Since the page
x; must be moved into the fast memory, we want y; to contain z; and this
is accomplished by setting the cost of step j arbitrarily high when this is
not the case. The cost ¢(x,y) is the sum of the costs for all steps. Notice
that there is an output yg that embodies the initial situation; in the paging
problem it is the initial set of pages in the fast memory.

For each on-line problem there is an associated off-line problem, where
the output y; of an off-line algorithm B can now depend on “future” inputs:

yj = Blay,xg,. .. 2p).

The optimal (off-line) cost, denoted by opt(z), is the minimum cost* achieved
by an off-line algorithm on input .

1At this point, we can avoid a diversion into a fruitless discussion of computability of
the optimal solution by assuming that there always exists a computable optimal output,
which is the case for all known on-line problems.



Chapter 1

Introduction

1.1 On-Line Algorithms

The development of classical optimization theory has been based on the
assumption that all input data are available to the algorithm. For many
real life problems, however, input data become available piece by piece as
the computation progresses.

Consider for example the paging problem, one of the classical problems in
operating system design: The memory of a typical computer system consists
of the fast memory divided into a small number of equal size parts called
pages, and the secondary memory, which is much larger but slower. The
central processing unit can access only the fast memory, which usually con-
tains copies of certain pages of the secondary memory. Since only data in
the fast memory can be accessed, a decision policy is needed to determine
which set of pages to maintain in the fast memory each time. In particular,
a page replacement policy is needed to decide which page to evict from the
fast memory to make room for a requested page to be moved in. From the
point of view of conventional optimization theory, the input to an algorithm
for the paging problem is a sequence of page requests and the goal is to min-
imize the number of page faults—the number of pages removed from the fast
memory. A simple greedy algorithm is optimal for this problem: Postpone
the next page fault as long as possible by removing the page that is the last
from the pages in fast memory to be requested again. The problem with
this algorithm is that it bases its decision on the sequence of future page



Abstract

The Work Function Algorithm, a natural algorithm for the k-server problem,
is shown to have competitive ratio at most 2k — 1 for all metric spaces. It is
also shown that the k-server conjecture, which states that there is an on-line
algorithm for the k-server problem with competitive ratio k, holds for all
metric spaces with k& + 2 points.

Furthermore, two refinements of competitive analysis are proposed and
studied: diffuse adversaries and comparative analysis. They address success-
fully some of the drawbacks of competitive analysis.
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