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Abstract

We studythe k-serverproblemwhenthe off-line algo-
rithm hasfewerthank serves. e givetwo upperboundsof
the costwrFA(p) of the Work FunctionAlgorithm. Thefirst
upperboundis kOPT, (p)+(h—1)OPT(p), wher OPT,, (p)
denotesthe optimal costto servicep by m serves. The
secondupperboundis 2hoPT,(p) — OPTk(p) for h < k.
Both boundsimply that the Work Function Algorithm is
(2k — 1)-competitive Perhapsmore importantis our tech-
niguewhich seemgpromisingfor settlingthe k-servercon-
jecture. Theproofsare simpleandintuitive andthey do not
involvepotentialfunctions.We also apply the techniqueto
givea simpleconditionfor theWbrk FunctionAlgorithmto
be k-competitivethis conditionresultsin a new proofthat
the k-serverconjectue holdsfor £ = 2.

1. Introduction

Thestandardramework for evaluatingon-lineproblems
is competitive analysisin which we comparethe perfor
manceof anon-linealgorithmwith the performanceof the
off-line (adwersary)algorithm. It is naturalto try to extend
thisframawork by curtailingtheresourcesf theadwersary
For the k-sener [9] problem,a naturalapproachs to com-
parethe performanceof the on-line algorithm againstan
off-line algorithmthathaslessthanh < k seners. To be
morepreciselet'susethenotationA ,,, (p) to denotethecost
of servicingrequessequence by algorithmA thatusesn
seners. We thenwantto comparethe on-line costA(p)
with the optimalcostoPTy (p) of the optimal off-line algo-
rithm thatusesa differentnumberh of seners.

For the pagingproblem,the specialcaseof the k-sener
problemon uniform metric spacesthis approachwassuc-
cessful: Sleatorand Tarjan in their seminal paper[10]
shavedthatthecompetitiveratiois k/(k— h +1). Eventhe
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weightedcachingproblem,a naturalgeneralizatiorof the
pagingproblem,hasthe samecompetitve ratio [11]: there
areon-linealgorithmsA;, with Ag(p) < FL’H_IOPT/Z(/)) +

const andtheratio k/(k — h + 1) is the bestthe possible

[9].

Unfortunately it was soonrealizedthat no suchresult
is possiblefor the generalk-sener problem: Evenfor the
line, the competitve ratio may not evendependon k. For
example,asBar-Noy andSchiebeshoved,theratioagainst
h = 2 senersis atleast2, no matterhow large & is (see
[3], pagel75). Comparethis with the positive resultsfor
the original k-sener problem(h = k): We know thatthe
competitve ratio is betweenk [9] and2k — 1 [6, 7, 8] for
ary metric space.The k-sener conjecturehoughremains
unsettledtheconjecturestateghatfor all metricspaceshe
competitive ratio is exactly k. We have only resohedthe
conjecture,in the affirmative of course,for somespecial
caseqfor k = 2 [9], for treemetrics[], for metric spaces
with k& + 2 points[4], andrecentlyfor & = 3 in the 2-
dimensionaManhattarmetric[2]).

In this paper we presenthe first positive resultson the
k-sener problemwith weak-adersariegh # k). Instead
of comparingheon-linecostA(p) with opT,(p) only, we
compareit with a weightedsumof opPT (p) andoPT(p).
We shav (Theorem1) that the costof the Work Function
Algorithm canbe boundedby combinationof the two off-
line costs:

WFA (p) < kOPTR(p) + (h — 1)OPTL(p) 4+ const (1)

for ary h (evenfor h > k) andk. The specialcaseh =
k, givesthatthe Work FunctionAlgorithm hascompetitize
ratio 2k — 1. Thisis anew simplerandproof of the result
of [6, 8] andit doesnotinvolve a potentialfunction.

We apply the sametechniqueand give a generalization
of the Quasicomexity lemma[8] for acombinatiorof work
functionsthat involve h and k& seners. We usethe new
guasicomexity lemmato shov arelationbetweerextended
coststhatinvolve differentnumberof seners.In particular
it shaws thatthe extendedcostis monotone:more seners



canonly reducethe extendedcost. Although this seems
natural,it cameasa surpriseto usthatit holdsfor ary in-

dividual request. Using this monotonicity propertyof the
extendedcostswe shaw that

WFAg (p) < 2hOPT,(p) — OPTx(p) + const

This bound,unlike (1), holdsonly for A < k. We canim-
provethiswhenh = 2 to

WFA(p) < 30PTy(p) — OPTk(p) + const

Finally, we appliedthe techniqueto attackthe k-sener
conjecture. We succeedednly in (re)proving the special
caseof k = 2, but we believe that our approachmay be
fruitful.

All our proofsaregraphicalor pictorial. Theideasare
extremely simple, but the text versionsof thesepictorial
proofsareunsatisctorily lengthy The underlyingideain
all proofsis to find appropriatepathsin a givengraphmet-
ric. As aresult, we don't have to guessor use potential
functions.

2. Preliminaries

We considerrequesisequencep = rira...r,. Welet
pi to denotetheprefix of p of lengthi; in particular py = €
is theemptysequenceWe shallassumehatthereis afixed
initial configuration(multisetof & points). In the caseof
algorithmswith differentnumberof seners,theinitial con-
figurationof A senersis asubsef theinitial configuration
of k senerswhenererh < k. We oftenassumehattheini-
tial configurationconsistof k (or h) copiesof afixedpoint
To.

The work functionw,(X) is definedto be the optimal
costto servicethe requestsequencep and then move to
configurationX . For simplicity we write w; insteadof w,, .
TheWork FunctionAlgorithm worksasfollows: Let A;
beits configurationjust beforeservicingrequest;. To ser
vice r; it movesto configurationA; that containsr; and
minimizesw;(4;) + d(A;_1, 4;). Foramorethoroughex-
positionsee[8]. TheWork FunctionAlgorithm canbeseen
asthe Greedyalgorithmwhich assumeshatthefuture is a
mirror image of the past

It wassuggesteih [5] thatinsteadf boundingheactual
costof the Work FunctionAlgorithm, it sufficesto bound
its extendedcost (it is called pseudocosin [5]). The ex-
tendedcostfor request; is equalto the maximumincrease
of the work function: maxx {w;(X) — w;_1(X)}. They
shavedthatthe extendedcostis atmostequalto theon-line
plus the off-line (optimal) cost. Therefore,to prove that
theWork FunctionAlgorithm is c-competitive, it sufiicesto
boundtheextendedcostby (c+1)0PT(p)+const.Thegreat
adwantageof usingthe extendedcostis thatwe canignore

completelythe configurationof the on-line algorithm. To
shav a competitveratio ¢ it suficesto prove the following
propertyof work functions:

; max{w; (X)—w; 1 (X)} < (e+1) min{w, (¥)}+const

)

It wasshawn in [8] that the Work FunctionAlgorithm
is (2k — 1)-competitve. The proofis basedon somefun-
damentalpropertiegQuasicomexity and Duality) of work
functions. Structuralpropertiesof work functions,suchas
Quasicomexity and Duality, are very useful in analysing
on-line algorithms. The seemindispensabldor settleing
the k-sener conjecture. For the pagingproblem,the spe-
cial easycaseof the k-senerproblem thestructureof work
functionshasbeencompletelycharacterizeB].

The Duality propertyof k-sener work functionschar
acterizesthe configurationsthat achieze the maximum
maxx {w;(X) —w;—1(X)}. In particular it stateghatthe
expressions maximizedby a minimizerof r; with respect
tow;_1. A minimizerof r; with respecto w;_1 is aconfig-
urationthatminimizesmin x {w;_1(X) = >, . x d(rs,2)}.

The Duality Lemmasuggestghat we could prove the
k-sener conjecturdoy finding appropriatexpressiongpo-
tential functions)that “contain” an appropriateminimizer.
It would be helpful if we could find a minimizer that is
completelyindependenof the work function. But is this
possibleor somespeciaimetricspaceshisis indeedpos-
sible. A typical suchmetricspacds thecircle (thedistance
betweertwo pointsis thelengthof theshortesarchetween
them). The crucialobsenationis thatif X is a minimizer
of r; thenif apointz of X is “pushedaway” from r; the
resultingconfiguratioris alsoaminimizerof r;. Thereason
is thatin theexpressionw; 1 (X) — >, x d(rs, ) ary in-
creasef w;_; (X) is canceledy thedecreasef —d(r;, x).
As aresult,if we pushall pointsof aminimizerasfaraway
aspossiblefrom r;, they will becoméheantipodegdiamet-
rically opposite)7; of r;. Hencethe configuration7? (k
copiesof 7;) is a minimizer of r; for any work function.
A similar metric spaceis the line whosepropertiesare ex-
ploredin [1] to shav that on this metric spacethe Work
FunctionAlgorithm is k-competitive.

In fact,any metricspacel with boundedliamete® can
be extendedo a symmetricmetricspaceM’ with diameter
A = 2§. By symmetrywe meanthe property: Eachpoint
a hasanantipodea suchthatfor ary pointb: d (a,b) +
dyr (b,a) = A. Onewayto extend M is to take two copies
of it anddefined, (a,b) = dps(a,b) if a andb arein the
samecopy anddy (a,b) = A — dy(a,b) otherwise. It
is trivial to verify thatthe triangleinequalityis satisfiedby
M.

For symmetricmetricspacesthesuficient condition(2)
for the Work FunctionAlgorithm to be c-competitive be-



comes:

n

D (i) —wiea (7)) <

i=1

(¢ + Dw,(7F) + const (3)

wherewe usedalsothefactthatminy {w,(Y")} is within a
constanfrom w,, (7).

We shall deal only with symmetric metric spaces.
Clearlyall finite metric spaceshave boundeddiameterand
canbe extendedto a symmetricmetric space.Our results
can be extendedto ary metric space(by simply shawving
thattheconstantslo notdependnthediameternf themet-
ric space).

We alsousethenotionof a k-path: A k-pathis simply a
way to servicearequessequencénot necessarilyn anop-
timal way). We frequentlyusetheterm* k-pathw, (X)" to
meana k-path(againnot necessarilyptimal) thatservices
p andendsup at X. Since,we canrewrite (3) in theform

sz <ZwZ 1

it sufficesto exhibit away to obtainthe k-pathscorrespond-
ing to theleft handsideusingthe k-pathscorrespondingo
theright handside. Almost all resultsin this paperexploit
thissimpleidea.

(¢ + 1w, (7%) 4 const

3. Work Function Algorithm against weak ad-
versaries

Ouirfirst resultrelateshe costof the Work FunctionAl-
gorithmto the optimal costswhenh or k senersareavail-
able.

Theorem 1 For anymetricspaceandanyrequessequence
p, the costwFa(p) of the Work Function Algorithm of &
serves is at mostkopPTy(p) + (h — 1)OPTk(p) + ¢ for
anyh, whee ¢, is a constant(it depend®nly ontheinitial
configuations).

Proof. We needto shav thatthe extendedcostis at most
koPTy(p) + hoPT,(p) + const Equivalently we should

shav
7¥)+kOPT}(p) +hOPT},(p)+const

sz ) < sz 1
(4)

It is very helpful to considera graphicalrepresentation
of the above expression. Picturethe sequencef requests
ro,T1,- -,y andtheir antipodesy,7y,...,7, asin Fig-
ure 1. Thenw;_;(7F) is a k-paththat startsat r%, visits
1,--.,Ti_1, andendsup at7y.

Theunderlyingideaof theproofis strikingly simple: Let
G bethe multigraphconsistingof the edgesof the k-paths
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Figure 1. Creating w;(7¥) from w;_ 1(rf)

of theright handsideof (4). Insteadof trying to shaw that
(4) holdsin the original metric space,it suficesto shav
thatit holdsin thegraphmetricof G. In otherwords,using
thetriangleinequality we wantto form Y"1 | w;(7¥) —the
left handsideof (4)—fromtheedgesof -7 | w;_ 1( 5+
koPT,(p) + hoPT(p) —theright handsideof (4).

In fact,we do somethingnuch morespecific We form
eachk-pathw; (7¥) by takinga k-pathw, _ 1(7; k) andusing
someaddltlonaledges Theseaddltlonaledgescomefrom
the h-pathopT,,(p) (we needk copiesof eachadditional
edge). In particular we expressw;(7}) asw;_1 (%) +
kd(r,, i), for somej > 4. In words,we createa k- pathfor
w;(7*) asfollows: the k senersstartat ry, visit requests
T1,..+,Ti5...,7j—1, Movetor; andfromthereto 7;. Let
us call the edge(r], 7;) badk edgeof the resultingk-path.
Noticethatwe needk copiesof eachbackedge.

The crucial point is the relation between; and j, i.e.,
which backedgeswe use. We usekOPT; (p) asour source
of backedges.For a giveni, we choosej sothatthe edge
(r;,r;) belongsto the h-pathof opT,(p) (we usethe fact
thatd(7;,7;) = d(r;,r;)). Hereis aslightly differentway:
Backedgesareprovidedby theoptimal h-paththatservices
p = F1...Tn. Thetotalweight(distance)pf backedgess
equal(within a constantYo kopPT(p).

We have to take carealsoof the factthatnotall i's can
have corresponding’s: If ¢ is one of the last nodes(re-
quests)of the h-path of back edgesthenthereis no cor-
respondingj. Thereare h suchnodes. This is the rea-
son for the additional term hopPT,(p) in the right hand
side of (4) In summary a k-path w; (7¥) is formed by
w1 (75 ) + kd(7;,7;) wherej is the next vertex afteri in



the h-path oPT,(p), unlessi hasno next vertex, in which
caseit is formedby opPT,(p).

A carefulaccountingshavs thatthe proof holdsfor ary
metricspacgnotnecessarilyinite); theadditive termconst
is independeaf thediameterof the metricspacer

The 2k — 1 upperboundof Koutsoupiasand Papadim-
itriou is the specialcaseof Theoreml whenh = k:

Corollary 1 (Koutsoupiasand Papadimitriou, 1994)
TheWbrk FunctionAlgorithmhascompetitiveratio at most
2k — 1.

Also, by letting h to be equalto the numberof pointsof
themetricspaceandobservinghatin this caseopT, (p) =
0, weget:

Corollary 2 TheWork FunctionAlgorithmhascompetitive
ratio at mostn — 1 on any metric spaceof n points. In
particular, the Work Function Algorithm is k-competitive
for metricspaceof k + 1 points.

3.1. Quasiconvexity and implications

In this sectionwe generalizehe Quasicomexity lemma
of [8] to work functionsof h and k seners. The special
case(whenh = k) of the following lemmawasshaowvn in
[8] andenabledheproofthatthe Work FunctionAlgorithm
is (2k — 1)-competitive.

Lemmal (Quasiconvexity) For any h-configuation A
and k-configuiation B, with A < B, andanypointa € A,
thereis a pointb € B sud that

wp(A) + wp(B) > wy(A—a+b) + wy(B—b+a).

Proof. The proof hasthe sameunderlyingidea: shav that
therelationholdsnotin the original metric spacebut in the
graphmetric spaceof wy(A4) + wy,(B). In otherwords,
consideran h-pathand a k-path of w,,(4) + w,(B) and
shawv haw to obtainpathsfor w,, (A —a+b)+w,,(B—b+a).

Fix an h-pathanda k-path of w,(A) + w,(B). Con-
siderapointa € A. We definean alternatingpathasfol-
lows: Startat a, follow an h-edgebackwards(towardsthe
firstrequest)thenfollow a k-edgeforward(towardsthelast
requestpndrepeatseeFigure?). It is trivial to seethatthis
is a simplepaththatcanonly endup at somepointb € B.
The assumptiorthatthe initial ~ configurationis a subset
of theinitial k-configurationis crucialhere—wheneerthe
aletrnatingpathvisits a nodeof theinitial A configuration,
thereis alwaysa forward k-edgeto continue.For the same
reasontheconstrainth < k in thelemmais essentialpth-
erwisethe alternatingpathmay be trappedat a point of the
initial h-configuratiornthatdoesnot belongto theinitial k-
configuration.

Figure 2. Alternating path

If we exchangehe h-edgeswith thek-edgeof thealter
natingpath,we getanew h-paththatendsupatA —a + b
andanew k-paththatendsup at B — b + a. Theresulting
pathshave lengthat mostw,, (A — a + b) + w,(B — b+ a).
Sincethey useexactlytheedgeof theoriginal pathswe get

wp(A) + wp(B) > wy(A —a+b) + w,(B — b+ a).

|

We canstrengtherthe Quasicomexity Lemmaby notic-
ing that alternatingpathsthat originate at different points
are edge-disjoint. Therefore,we can exchangemorethan
onepoint betweend and B. More preciselly thereis a 1-
to-1 mappingf : A — B suchthatfor ary subsetH of
A:

wn(A)F+wn(B) 2 wn(f(H)I(A\H))+wn(HU(B\ f(H)).

It is interestingto note that becausehe above proof does
not usethe triangleinequality the Quasicomexity Lemma
holdsevenin non-metricspaces.

We cannow usethe Quasicomexity Lemmato show the
following surprisingresult.

Lemma2 For eat requestthe extendedcostof h serves
is greateror equalto the extendedcostof k£ serves when
h <k.

Proof. We have

wn(FZ) + wnfl(Fﬁ)
wnfl('rn?zil) + d(rnaFn) + wnfl(Fﬁ)
wn—l(FZ) + Wn—1 (rnrﬁ_l) +d(rn,Tn) =

Wn-1 (FZ) + wn (Ffz)

vV

Thefirst equality resultsfrom expressingw,, (7?) in terms
of w,_1. Similarly thelastequalityresultsfrom expressing



wp(F ) in termsof w,,_1.
from quasicomexity.

Therefore,the theoremholds: w, (7
wn(FE) —w,_1(FF). O

An immediateconsequencés that the Work Function
Algorithm hasa nice monotonicityproperty: If more on-
line senersareavailable,theon-linecostcanonly decrease
andthis holdsfor ary requessequence. More precisely
for every p, the extendedcost of the Work Function Al-
gorithmwra, doesnot exceedthe extendedcostof WFA,
whenh < k. By Corollary 1, the latter is boundedby
2hoPT}, (p) which provesthefollowing theorem.

Finally, the inequality follows

Z) - wn—l(FZ) >

Theorem 2 For h < k andanyrequessequence,
WFAg (p) < 2hOPT,(p) — OPTx(p) + const

whele constdoesnot dependon p. For the specialcaseof
h = 2, theboundis better:

WFA(p) < 30PTy(p) — OPTk(p) + const

The specialcaseof the theorem(h = 2) follows from
the fact that the k-sener conjectureholdsfor £ = 2 (for
example,Corollary3).

4. The 2-server problem

Therearea lot of differentproofsthatthe k-sener con-
jectureholdsfor £ = 2; thefirst oneappearedn [9]. In
fact,mostof themshaw directly or indirectly thatthe Work
Functionalgorithmis 2-competitve and [5] goesfurther
andshowsthatit sufficesto considerthe extendedcost.

We offer hereone moreproof of this theorem.Its main
characteristigs thatit doesnot useary potentialfunction.
Of coursea carefulreadercanalwaysrecover a hiddenpo-
tential and turn the proof into an inductive one. We be-
lieve howeverthatthe k-sener conjecturecanbe settledby
generalizingappropriatelythis proof —althoughwe don't
know in which direction.

We discussthe ideasbehindthe proof for the general
caseof k seners. Only the lastlemmain this sectionis
specificfor k = 2. Theideaof theproofis very similarwith
theonein Theoreml. We wantto find away to transform
thesetof k-pathsw;_; (7*) into thesetof k-pathsw; (7) in
anapproprlategraphmetnc In the proof of Theoreml we
formedthe k-pathw; (7¥) by extendinga k-pathw,_; (7 ’“)
with k copiesof a backedge for someappropriatej > .
This approaclseemdo “waste”the last part of the k-path
wj_l(F;?). Canwe be more prudent? We will shov that
the answeris positive andthat it leadsto a 2-competitve
algorithmwhenk = 2.

Oncethe k-senersof w;_y (7 ) servicerequestr;, we
could|mmed|atelyred|rectthemto 7; usingbackedgegsee

Figure 3. Redirecting w;_1 (7%) to w;(7}).

Figure 3). This is exactly what we do: We form the k-
pathw;(7*) from somek-pathw;_ 1(7} k) wherej > i. Let
{us, .. uk} be the multisetof & pomts visited by the &
senersin w;_1 (7} k) immediatelyafterr; hasbeenvisited.
Apparently eachul isin {rit1,...,7j-1,7;}. We want
to usebackedges(u;, 7;) to form the k-pathw; (7F). But
wheredo the backedges(u;, ;) comefrom? Th@/ areun-
usededgesf someotherk-paths.In the samemanneythe
lastunusedpartof the k-pathw;_+ (7 j) —from eachuy, to
r;— canbe usedasbackedgesor otherk-paths.This, in
fact, is the crucial part: we usethe last unusedpart of the
k-pathsasbackedgedor otherpaths.To be moreaccurate,
if (z,y) isanunusededge we usetheantipodeedge(z, 3)
as back edge What are the conditionsthat allow the k-
pathsw; (7¥) to beformedin this mannerat worksoutthat
theabove requwementareequvalentto asurprisinglysim-
ple (necessanand sufficient) condition that mysteriously
relatesk-pathsand(k + 1)-paths.

Theconditionis thatthereexistsa (k + 1)-path P which
partially agreeswith the lastpart of the k-pathsw;_1 (7;).
To bemorespecificlet usdenoteby Q[i, j] thesetof edges
of multipath@ that have both nodesin {r;41,...,7j_1}.
Thentheconditionis:

for eachedge(r;, r;) of P: P[i, j] = wj—1(7;)[i, j]. (5)

Fix an edge(r;,r;) of P andconsideran edgee =
(re,mp) Or e = (rq,7;) Of the k-pathw;_1 (7;). If @ < i
thene shouldbe a forward edgewhich will be partof the
k-pathw;(7¥); otherwise the antipodeedgee shouldbe a
backedgewhlch will be part of the k-pathw, (7¥). It is
straightforvardto checkthatthis simple conditionguaran-
teesthateachedgeof the k-pathsw;_; (7;) is usedat most
once eitherasabackor forward (non-back)edge.

We canshaw thatif thereis a paththatsatisfieg5) then
theextendedcostis boundedby (k + 1)0oPT(p) + const.



Lemma3 Fix a requestsequencep = ry...r,. If
ther is a k-path P that servicesp sud that P[i,j] =
wj—1(7;)[i, ], for each ede (r;,7;) € P, thenwra(p) <
kopPT(p) + const

Proof. For every i suchthatthereis a j with (r;,r;) €
P, we can form the path w;(7¥) from wj— 1(rf) and k
back edges. There are exactly k + 1 i's that have no
next j. For thesei's we needa new k-path. Let F' =
{i : thereis noj suchthat(r;,r;) € P}; F hascardinal-
ity £ + 1. We have

Zw, <Zw] 1

Thelemmafollows sinceopPT(p) is within a constanfrom
W; (Ff) |

Theabove lemmaholdsfor ary k. We don’t know how
to useit (or extendit) to prove the k-sener conjecture We
canhowever shav thatit givesa proof of the 2-sener con-
jecturethatinvolvesno potentialfunction. More precisely
condition(5) is alwayssatisfiedvhenk = 2:

+Zw,

i€l

Lemma4 Fix a requesBequencep =r1...T,. FOrany
setof 2-pathsw;_1 (T ) j=1,...,n,theris a3-path P
that servicesp such thatP[z _]] = wj,l(Fj)[z',j], for each
edge (T,’,Tj) € P.

Proof. We build the 3-path P backwards.Suppose¢hatwe
have P[i n] which agreeswith the appropriatdast partsof
w;_1(73) forall j > i. Wewantto find P[i — 1,n]. Thatis,
Wewantto extendP[i, n] by anedge(r;, ;) for somej >
i. Therearethreecandidatej’s (becauseP is a 3-path)of
whichoneis i + 1. Let j; andj, betheothertwo candidate
j's. If theedge(r;, i41) belongsto bothw;, 1(73,) and
wj,1(75,) thenwe extend PJi, j] by the edge(rz,rzﬂ)
thatis: P[i — 1,n] = P[i,n] U {(n,rzﬂ)} The edge
(ri,ri+1) belongsto P, w;j, — 1( ) andw;, _ 1( ), and
therefore(5) is satisfied. Other\lee by symmetrywe can
assumehat(r;, ;1) doesnotbelongto w;, 1(75,). Then
welet P[i — 1,n] = P[i,n] U {(r;,7;,)}. Itis not hardto
seethat(5) is satisfiedn this casetoo.

We left for lastthe problemon how to startbuilding P
(the basiscaseof the backwardsinduction). The inductive
stepusesw;, — 1( ) andw;, _ 1(T§2)' But whatarethese
initially, smcetherels noj > n? We cansimply assume
thatthereare suchpaths(any paths). Hereis a morecon-
cretesuggestionExtendtherequessequencéy two more
requests,, 1 = r, andr,» = 7,. The3-pathP startsat
thelastthreerequest$r,,, 7,11 andr,2). Now, j; = 41
andjz = Tpt2.0

The two lemmataimply that the Work FunctionAlgo-
rithm is 2-competitve whenk = 2.

Corollary 3 (Manasse, McGeogh, and Sleator, 1988)
For anyrequessequence,

WFA2(p) < 20PT3(p) + const

5. Open problems

Thereare numerousopenproblemsleft. The mostim-
portantone,of course,is whetherthe techniqueof this pa-
per canresole the k-sener conjecture.We don'’t know if
thereis ananalogueof Lemma4 for k£ > 2. If not, whatis
theappropriatairectionof generalizind_emma3?

Improving the upperboundsagainstwealer adwersaries
(h < k) is anotheiimportantresearchdirection. Also, there
areessentiallyno known lower boundsfor & > 2. As men-
tionedin theintroductionfor A = 2 thecompetitveratiois
2forary k > 2.
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