BEYOND COMPETITIVE ANALYSIS

ELIAS KOUTSOUPIAS* AND CHRISTOS PAPADIMITRIOUt

Abstract. The competitive analysis of on-line algorithms has been criticized as being too crude
and unrealistic. We propose refinements of competitive analysis in two directions: The first restricts
the power of the adversary by allowing only certain input distributions, while the other allows for
comparisons between information regimes for on-line decision-making. We illustrate the first with
an application to the paging problem; as a byproduct we characterize completely the work functions
of this important special case of the k-server problem. We use the second refinement to explore the
power of lookahead in server and task systems.

Key words. On-line algorithms, competitive analysis, paging problem, metrical task systems

AMS subject classifications. 68Q05, 68Q25

1. Introduction. The area of On-Line Algorithms [14, 10] shares with Com-
plexity Theory the following characteristic: Although its importance cannot be rea-
sonably denied (an algorithmic theory of decision-making under uncertainty is of
obvious foundational significance and practical relevance), certain aspects of its basic
premises, modeling assumptions, and results have been widely criticized with respect
to their realism and relation to computational practice. In this work we revisit some of
the most often-voiced criticisms of competitive analysis (the basic framework within
which on-line algorithms have been heretofore studied and analyzed), and propose
and explore some better-motivated alternatives.

In competitive analysis, the performance of an on-line algorithm is compared
against an all-powerful adversary on a worst-case input. The competitive ratio of a
problem—the analog of worst-case asymptotic complexity for this area—is defined as

R = minmax Alz)
Az opt(z)

(1.1)

Here A ranges over all on-line algorithms, x over all “inputs”, opt denotes the opti-
mum off-line algorithm, while A(z) is the cost of algorithm A when presented with
input z. This clever definition is both the weakness and strength of competitive anal-
ysis. It is a strength because the setting is clear, the problems are crisp and sometimes
deep, and the results often elegant and striking. But it is a weakness for several rea-
sons. First, in the face of the devastating comparison against an all-powerful off-line
algorithm, a wide range of on-line algorithms (good, bad, and mediocre) fare equally
badly; the competitive ratio is thus not very informative, fails to discriminate and
to suggest good approaches. Another aspect of the same problem is that, since a
worst-case input decides the performance of the algorithm, the optimal algorithms
are often unnatural and impractical, and the bounds too pessimistic to be informa-
tive in practice. Even enhancing the capabilities of the on-line algorithm in obviously
desirable ways (such as a limited lookahead capability) brings no improvement to the
ratio (this is discussed more extensively later). The main argument for competitive
analysis over the classical approach (minimize the expectation) is that the distribution

*

Computer Science Department, University of California, Los Angeles, CA 90095
(elias@cs.ucla.edu). Research supported in part by NSF grant CCR-9521606.

f Computer Science Division, University of California, Berkeley, CA 94720
(christos@cs.berkeley.edu). Research supported in part by the National Science Founda-
tion.

2 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

is usually not known. However, competitive analysis takes this argument way too far:
It assumes that absolutely nothing is known about the distribution, that any distri-
bution of the inputs is in principle possible; the worst-case “distribution” prevailing
in competitive analysis is, of course, a worst-case input with probability one. Such
complete powerlessness seems unrealistic to both the practitioner (we always know,
or can learn, something about the distribution of the inputs) and the theoretician of
another persuasion (the absence of a prior distribution, or some information about it,
seems very unrealistic to a probabilist or mathematical economist).

The paging problem, perhaps the most simple, fundamental, and practically im-
portant on-line problem, is a good illustration of all these points. An unreasonably
wide range of deterministic algorithms (both the good in practice LRU and the em-
pirically mediocre FIFO) have the same competitive ratio—k, the amount of available
memory. Even algorithms within more powerful information regimes—for example,
any algorithm with lookahead ¢ > 0 pages—provably can fare no better. Admittedly,
there have been several interesting variants of the framework that were at least par-
tially successful in addressing some of these concerns. Randomized paging algorithms
have more realistic performance [5, 11, 13]. Some alternative approaches to evaluating
on-line algorithms were proposed in [1, 12] for the general case and in [2, 6, 7, 15]
specifically for the paging problem.

In this paper we propose and study two refinements of competitive analysis which
seem to go a long way towards addressing the concerns expressed above. Perhaps
more importantly, we show that these ideas give rise to interesting algorithmic and
analytical problems (which we have only begun to solve in this paper).

Our first refinement, the diffuse adversary model, removes the assumption that
we know nothing about the distribution—without resorting to the equally unrealistic
classical assumption that we know all about it. We assume that the actual distribution
D of the inputs is a member of a known class A of possible distributions. That is, we
seek to determine, for a given class of distributions A, the performance ratio

R(A) = min max Ep(A(2))

A DeA Ep(opt(x)) (12)

That is, the adversary picks a distribution D among those in A, so that the expected,
under D, performance of the algorithm and the off-line optimum algorithm are as far
apart as possible. Notice that, if A is the class of all possible distributions, (1.1) and
(1.2) coincide since the worst possible distribution is the one that assigns probability
one to the worst-case input and probability zero everywhere else. Hence the diffuse
adversary model is indeed a refinement of competitive analysis.

In the paging problem, for example, the input distribution specifies, for each page
a and sequence of page requests p, Prob(a|p)—the probability that the next page fault
is a, given that the sequence so far is p. It is unlikely that an operating system knows
this distribution precisely. On the other hand, it seems unrealistic to assume that
any distribution at all is possible. For example, suppose that the next page request
is not predictable with absolute certainty: Prob(a|p) < e, for all a and p, where €
is a real number between 0 and 1 capturing the inherent uncertainty of the request
sequence. This is a simple, natural, and quite well-motivated assumption; call the
class of distributions obeying this inequality A.. An immediate question is, what
on-line algorithm achieves the optimal competitive ratio R(A¢)?

As it turns out, the answer is quite interesting. The optimum on-line algorithm is
robust—that is, the same for all €’s—and turns out to be a familiar algorithm that is

BEYOND COMPETITIVE ANALYSIS 3

also very good in practice: LRU. It is noteworthy that LRU emerges from the analysis
as the unique “natural” optimal algorithm, although there are other algorithms that
may also be optimal. An important byproduct of our analysis is that, extending the
work in [9], we completely characterize the work functions of the paging special case
of the k-server problem.

In a preliminary version of this work that appeared in [8], we incorrectly stated
that the competitive ratio R(A,) is given by a simple Markov chain of (k + 1)k=!
states. In fact, the answer is more complicated. The competitive ratio is given by
the “optimal” Markov chain from a family of k(*+&)"™" Markov chains of (k + 1)k~
states each.

The second refinement of competitive analysis that we are proposing deals with
the following line of criticism: In traditional competitive analysis, the all-powerful
adversary frustrates not only interesting algorithms, but also powerful information
regimes. The classical example is again from paging: In paging the best competitive
ratio of any on-line algorithm is k. But what if we have an on-line algorithm with
a lookahead of U steps, that is, an algorithm that knows the immediate future? It is
easy to see that any such algorithm must fare equally badly as algorithms without
lookahead. In proof, consider a worst case request sequence abdc--- and take its
(€ +1)-stuttered version, aT1pH1dH 1t ... Tt is easy to see that an algorithm with
lookahead £ is as powerless in the face of such a sequence as one without a lookahead.
Once more, the absolute power of the adversary blurs practically important distinc-
tions. Still, lookahead is obviously a valuable feature of paging algorithms. How can
we use competitive analysis to evaluate its power? Notice that this is not a question
about the effectiveness of a single algorithm, but about classes of algorithms, about
the power of information regimes—ultimately, about the value of information.

To formulate and answer this and similar questions we introduce our second re-
finement of competitive analysis, which we call comparative analysis. Suppose that
A and B are classes of algorithms—typically but not necessarily A C B; that is, B
is usually a broader class of algorithms, a more powerful information regime. The
comparative ratio R(A, B) is defined as follows:

R(A, B) = max min max Alz)

BeEB AcA z B(x) (1.3)

This definition is best understood in terms of a game-theoretic interpretation: B
wants to demonstrate to A that it is a more powerful class of algorithms. To this end,
B proposes an algorithm B among its own. In response, A comes up with an algorithm
A. Then B chooses an input z. Finally, A pays B the ratio A(z)/B(z). The larger
this ratio, the more powerful B is in comparison to .A. Notice that, if we let A be the
class of on-line algorithms and B the class of all algorithms—on-line or off-line—then
equations (1.1) and (1.3) coincide, and R(A,B) = R. Hence comparative analysis is
indeed a refinement of competitive analysis.

We illustrate the use of comparative analysis by attacking the question of the
power of lookahead in on-line problems of the “server” type: If L, is the class of all
algorithms with lookahead ¢, and Ly is the class of on-line algorithms, then we show
that, in the very general context of metrical task systems [3] we have

R(Lo, Lo) = 20+ 1,

(that is, the ratio is at most 2¢ + 1 for all metrical task systems, and it is exactly

4 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

2¢ + 1 for some), while in the more restricted context of paging
R(Lo, L) = min{f + 1, k}.

2. Diffuse Adversaries. The competitive ratio for a diffuse adversary! is given
in equation (1.2). In order to make the analysis independent of the initial conditions,
we shall allow an additive constant in the numerator. More precisely, a deterministic
on-line algorithm A is c-competitive against a class A of input distributions if there
exists a constant d such that for all distributions D € A:

Ep(A(z)) < ¢+ Ep(opt(z)) +d (2.1)

The competitive ratio of the algorithm A is the infimum of all such ¢’s. Finally, the
competitive ratio R(A) of the class of distributions is the minimum competitive ratio
achievable by an on-line algorithm. It is important to observe that A is a class of
acceptable conditional probability distributions; each D € A is the distribution of the
relevant part of the world conditioned on the currently available information. One
can easily extend the definition to randomized on-line algorithms. However, in this
work, we deal only with deterministic on-line algorithms.

In the case of the paging problem with a set of pages M, A is a set of probability
distributions on page sequences M™*. An equivalent and perhaps more natural way
to describe A is by a set of conditional probablity distributions, that is, functions of
the form D : M* x M + [0,1], where for all p € M* 3 _,, D(a|p) < 1; the sum
may be less than 1 because the advesrary may choose to end the sequence. In the
game-theoretic interpretation, as the sequence of requests p develops, the adversary
chooses the values of D(a|p) from those available in A to maximize the ratio. Since we
deal with deterministic algorithms, the adversary knows precisely the past decisions
of A, but the adversary’s choices may be severely constrained by A. It is indicative
of the power of the diffuse adversary model that most of the proposals for a more
realistic competitive analysis are simply special cases of it. For example, the locality
of reference in the paging problem [2, 6] is captured by the diffuse adversary model
where A consists of the following conditional probability distributions: D(a|pb) = 0
if there is no edge from b to a in the access graph and D(a|pb) = 0 or 1 otherwise.
Similarly, the Markov paging model [7] and the statistical adversary model [12] are
also special cases of the diffuse adversary model. In the first case, the class A of
distributions contains only one conditional distribution D with D(-|pb) = D(:|b), and
in the latter case D € A assigns probability 1 to some request sequence that satisfies
the statistical adversary restriction.

In this section we apply the diffuse adversary model to the paging problem. We
shall focus on the class of distributions A, which contains all functions D : M*x M
[0, e]—that is to say, all conditional distributions with no value exceeding e. But first,
we diverge in order to give a useful characterization of work functions for the paging
problem.

2.1. The structure of paging work functions. Since the paging problem is
the k-server problem on uniform metric spaces, certain key concepts from the k-server
theory will be very useful (see [9, 4] for a more detailed exposition).

DEFINITION 2.1. Let k denote the number of page slots in fast memory, and
let M be the set of pages. A configuration is a k-subset of M; we denote the set

1Diffuse adversaries are not related to the diffusion processes in probability theory which are
continuous path Markov processes.

BEYOND COMPETITIVE ANALYSIS 5

of all configurations by C. The work function associated with a sequence p € M*,
w, (or simply w when p is not important or understood from context) is a function
w, : C — R, defined as follows: w,(X) is the optimum number of page replacements
when the sequence of requests is p and the final memory configuration is X.

Notice that in some cases, for example when a configuration X does not contain
the last request, some page replacements may occur not because of page faults but
because we insist that the final configuration is X.

Henceforth we use the symbols + and — to denote set union and set difference
respectively. Also, we represent unary sets with their element, e.g. we write a instead
of {a}. Finally, we denote the cardinality of a set S by |S|.

DEFINITION 2.2. If w is a work function, define the support of w to be all
configurations X € C such that there is no Y € C, different from X, with w(X) =
w¥)+|X =Y.

Intuitively, the values of w on its support completely determine w: if S is the
support then w(X) = minycg{w(Y) + |X —Y|}. Furthermore, we can safely assume
that the optimal off-line algorithm (or adversary) is in a configuration of the support.
To see this consider two configurations X and Y with w,(X) = w,(Y) + [X - Y.
Then the optimal off-line algorithm has no advantage being in configuration X after
servicing p instead of configuration Y'; it can move from Y to X without exceeding
the cost of being at X. In other words, an optimal off-line algorithm which replaces
a page only when it is necessary is always in a configuration of the support.

The following lemmata, specific to the paging problem and not true in general
for the k-server problem, characterize all possible work functions by determining the
structure of their support. A similar, but more complicated, characterization is im-
plicit in the work of [11]. The first lemma states that all configurations in the support
have the same value, and hence what matters is the support itself, not the values of
w on it.

LEMMA 2.3. The support of a work function w contains only configurations on
which w achieves its minimum value.

Proof. Towards a contradiction assume that there is a configuration A in the
support of w such that w(A) > minx w(X). Choose now a configuration B with
w(A) > w(B) that minimizes |[B — A|. By the quasiconvexity condition in [9], there
isa€ A— B and b € B — A such that

w(A) +w(B) >w(A—a+b)+w(B-b+a).

Since w(A4) > w(B), this holds only if either w(4) > w(A —a + b) or w(4) >
w(B — b+ a). In the first case, we get that w(A) = w(A —a + b) + 1 and this
contradicts the assumption that A is in the support of w. The second case also leads
to a contradiction since it violates the choice of B with minimum |B — A|, because
[(B—b+a)— Al=|B—-A|—-1. O

Since the configuration of the optimal off-line algorithm is always in the support,
Lemma 2.3 shows that the off-line cost to service a request is simply the increase (0
or 1) of the minimum value of a work function. As a result, it can be determined
on-line when the adversary has a page fault.

The next lemma determines the structure of the support.

LEMMA 2.4. For each work function w there is an increasing sequence of sets
S1C S C ... TSk, with S1 = {r} the most recent request, such that the support of
w s precisely

{X :]XNS;| >jfor all j}.

6 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

We postpone the proof of the lemma to introduce some new definitions. We will
call a k-tuple S = (51, 5s,...,Sk) of the lemma a signature of w. A signature of w
completely determines its support. But it doesn’t have to be unique. For example,
a work function whose support consists of only one configuration {ay,... ,ax} has k!
signatures (for each permutation o let S; = {a,,,... ,a,,}). We define the type of w
to be the k-tuple P = (|S1| = 1,|S2|, ..., |Sk|). Although a work function may have
many signatures, its type is unique; it is easy to see that a work function has more
than one signatures only when there is a j > 1 such that |S;| =i for 1 <i <j.

We now prove Lemma, 2.4.

Proof of Lemma 2.4. The proof is by induction on the length of the request
sequence. The basis case is obvious: Let S; = {a1,...,a;}, where {a1,... ,ax} is
the initial configuration. For the induction step assume that we have a signature
(S1, 52, .. ,Sk) of w, and let w' be the resulting work function after request r.

Consider first the case that r belongs to S; and not to S;_; for some ¢ €
{2,3,...,k}. Since there is at least one configuration in the support of w that con-
tains the request r, the minimum value of w' is the same with the minimum value of
w. Therefore, the support of w' is a subset of the support of w. It consists of the
configurations that belong to the support of w and contain the most recent request
r. It is easy now to verify that w’ has the followng signature:

S1={rk
Si=Si_1+m, 2<i<t
Sz{: is t<i<k.

If, on the other hand, the request r does not belong to S, the minimum value of w’ is
one more than the minimum value of w. In this case, the support of w' consists of all
configurations in the support of w where one point has been replaced by the request
r, i.e. a server has been moved to service r. Consequently, a signature of w' is given
by:

Sy =1{r}
S;ZS,'+T, 1<i<k.

The induction step now follows. O

Note that the converse of the lemma, not needed in the sequel, also holds: Any
such tower of S;’s defines a reachable work function, that is, there exists w, for some
p with signature S.

We define the canonical ordering to be a permutation of all pages such that page a
precedes page b when a has been requested more recently than b. Furthermore, pages
that have not been requested are ordered according to a fixed ordering (for exam-
ple, the lexicographic ordering). For example, if the canonical ordering after request
sequence p is aj - - ap, then p has the form - --a4(as|az|a1)*as(az|a1)*az(a1)*a;. An
obvious property of the canonical ordering is that a new request a; doesn’t change
the ordering except from the movement of a; to the front.

It follows from the proof of Lemma 2.4 that if we know the canonical ordering

aias - -- and the type (p1,... ,pr) of a work function w, we can determine a signature
(S1,-..,Sk) of the work function: S; consists of the first p; pages of the canonical
ordering, i.e., S; = {a1,... ,ap, }. We will call this signature the canonical signature

of w.

BEYOND COMPETITIVE ANALYSIS 7

For a type P = (p1 = 1,p2,...,pr) that corresponds to a canonical signature
S = (51,52,...,Sk), we will denote by P, the type that results from a request in
Sj+1 — Sj. From the proof of Lemma 2.4, we get

P = P,
]Pl = (1ap1 +]-ap37p4a" . 5pk)a
]P2 = (1,]71 +]-ap2 + 17p45 “e. 7pk)7

]Pk—l = (17p1 + 15p2 + 17p3 +]-a cee s Pk—-1 + 1)7 and
]Pk = (1;172 + 17p3 +]-5 S 1)

The first type Py corresponds to a request in S; and the last on to a request not
in S;. We will also use the following notation: For types P = (p1,pa,-.- ,pr) and
Q= (q1,92,---,qr) we write P < Q (or Q > P) if for all j = 1,2,...,k: p; < g;.
We also write P < Q (or Q > P) if for all j = 1,2,...,k —1: p; < gj4+1. The
motivation for this notation is the relation between Pp_; and Pj: Pr_; > Pp. In
addition, Pg > Py > Py > --- > Pp_1 D Pyg.

We can now state the following crucial property of work functions.

LEMMA 2.5. Let p and p' be two request sequences that result in the same canoni-
cal ordering. Let P and Q be the types of the two work functions w = w, and w' = wy,
respectively. If P < Q then any configuration in the support of w is also in the support
of w'. Furthermore, if P < Q then for any configuration in the support of w there is
configuration in the support of w' that differs in at most one position.

Proof. Let S = (S1,S52,...,Sk) and S’ = (51, 5),...,S},) be the canonical signa-
tures of w and w'. The first case of the lemma, when P < Q, is trivial since S; C Sj,
j=1,2,... k. For the second case, when P < Q, it suffices to handle the “largest”
possible IP, so we may assume that S;_; = S;., for j =3,...,k—1. Consider now a
configuration X in the support of w. We will show that there is a configuration Y in
the support of w' such that |Y — X| < 1. Let zy, be the last page of X in the canonical
ordering. Also, let b be the first page of the canonical ordering not in X — z;. We
claim that Y = X — x3 4+ b, which differs in at most one position from X, is in the
support of w’. Notice first that Y contains the page in S;. It also contains the second
page of the canonical ordering because either this page is in X — zy or it is equal
to b. It remains to show that [Y' N S| > j, for j = 3,...,k. There are two cases
to consider: The first case, when |X N S;_1| > j, follows from the fact that zj is in
S} (= Sj—1) only if b is in S}. For the second case, when |X N S;_1| = j —1, it suffices
to note that b € S;- but z & S;-. O

2.2. Optimality of LRU. We now turn to the A, diffuse adversary. Our
goal in this section is to show that LRU has optimal competitive ratio against a
diffuse adversary. The usual approach to show that an on-line algorithm has optimal
competitive ratio is to compute its ratio and then show that every other algorithm
has no smaller competitive ratio. The difficulty here is that we cannot compute the
competitive ratio of LRU. Thus we have to compare directly LRU with any other on-
line algorithm. More preciselly, we have to show that for any on-line algorithm A and
any adversary (conditional probability distribution) D € A, there is an adversary
D' € A, such that the competitive ratio of A against D' is at least the competitive
ratio of LRU against D. We have to face the problem that D may be very complicated
and A may be erratic.

We attack the problem in two steps. First, we “standardize” the class of adver-
saries, by showing that it suffices to consider only a class of adversaries which we

8 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

call conservative (to be defined shortly). In particular, we will show that for any
D € A, there is a better conservative adversary D € A, against LRU, i.e., LRU
has a competitive ratio against D which is no less than that against D. Second, we
show that for any conservative D € A, against LRU, there is a conservative adversary
D' € A, against A, such that the competitive ratio of LRU against D is at most the
competitive ratio of A against D’.

To understand why LRU is optimal against diffuse adversaries and to motivate
the notion of conservatives adversaries, we start by asking what property an optimal
on-line algorithm must have. Intuitively, if (S1,...,Sk) is a signature of the current
work function w, an optimal on-line algorithm should prefer to have in its fast memory
pages from S; instead of pages not in S;. The intuition is that pages in S; are more
valuable to the off-line algorithm than pages not in S;, because a configuration from
the support of w remains in the support when we replace any page not in S; with a
page in S;; the converse does not hold in general. LRU does exactly this. In fact, LRU
keeps in its fast memory the first & pages of the canonical ordering (with appropriate
initialization).

The same intuition suggests that the adversary should prefer as next request a
page a € S; to a page b € S;; the only exception being when a is in the on-line
cache and b is not. In this case, it is unclear which page (a or b) the adversary
should choose because of the following tradeoff: On the one hand, b is more favorable
because it increases the on-line cost, whereas a does not. On the other hand, a is more
favorable since either the resulting support is larger or b increases the off-line cost.
The above intuition suggests the notion of conservative adversary. A conservative
adversary assigns probability that favors pages with smaller rank in the canonical
ordering among the pages in the on-line cache and similarly for the pages not in the
on-line cache. To be more precise, fix a request sequence p that results in canonical
ordering ajas ... and configuration C' of an on-line algorithm A. A conservative
adversary against A assigns probabilities with the property that for every a;,a; € C
with i < j, a; receives positive probability, D(a;|p) > 0, only if a; receives maximum
probability, D(a;|p) = e. Similarly for pages a;,a; ¢ C. Thus the probabilities D(-|p)
are completely determined by the total probability z assigned to pages in C'. We add
an additional constraint, although the proofs do not call for it: At most one page
receives probability that is not 0 or e (equivalently either z or 1 — z is an integral
multiple of €). For example, if e = 1/5, the on-line cache C consists of pages 1,3,4,5
of the canonical ordering, and z = 2/5, then pages 1,2,3,6, 7 receive probability e.

It seems reasonable that an optimal adversary against LRU is conservative and
indeed we are going shortly to prove that this is the case. For other on-line algorithms
however, conservative adversaries may not be optimal, especially for “unreasonable”
and highly suboptimal on-line algorithms. A central idea of our proof is to disregard
this problem. Even if conservative adversaries are not optimal against an on-line
algorithm A, it suffices to show that there is a conservative adversary that forces
a competitive ratio no less than the ratio of LRU. We now show that an optimal
adversary against LRU is conservative.

LEMMA 2.6. For any D € A, there is a conservative adversary D € A, such
that the competitive ratio of LRU against D is at least the competitive ratio of LRU
against D.

Proof. The proof is by induction on the number of requests. To facilitate induc-
tion, we use a strong inductive hypothesis. First, we allow any initial work function
(instead of the work function whose support contains only one configuration). Let

BEYOND COMPETITIVE ANALYSIS 9

opt(p, P, C) be the optimal cost to service p when the initial work function has type P
and canonical ordering C. For simplicity, in our notation we use only the type of work
functions and we write opt(p,P) instead of opt(p,P, C). Notice also that the initial
type does not affect the behaviour of LRU at all, so we can simply write LRU(p) to
denote the cost of LRU for the sequence request p.

Second, since we don’t know the competitive ratio of LRU, we simply use the fact
that the competitive ratio is positive (although we could safely assumed a competitive
ratio at least 1). More preciselly, the inductive hypothesis is that for any D € A, any
n, and any ¢ > 0 there is a conservative D such that £p(LRU (z,) — ¢ - opt(z,, P)) <
Ep(LRU (xy) — ¢ - opt(xn,P)), where P is the type of the initial work function, z,
denotes a sequence of length n drawn from the conditional probability distribution D
or D. Equivalently, we will show that there is a conservative D that maximizes

We use induction on the number of requests n. For n = 0, there is nothing to prove.
Assume now that the induction hypothesis holds for n — 1 and let D be a distribution
that maximizes Ep(LRU (z,,) — ¢ - opt(z,,P)). If D is not conservative, we will show
how to alter it to get a conservative adversary D that also maximizes ¢(D n,P).

The proof proceeds as follows: Although D may not be conservative, by induction
it becomes conservative after the first request. So, we want to show that the first
request is also “conservative”. Denote by D; the resulting conditional distribution
when the first request is the j-th request a; of the canonical ordering, i.e., D;(:|p) =
D(:|a;p). Let also P() denote the type of the work function that results after request
aj. If (S1,...,Sk) is the initial canonical signature, then

¥(D,n,P) = 3" D(a;)- [Dj,n—l,]P’(j))+I(j>k)—c-I(aj¢Sk)], (2.3)
Jj21

where D(a;) = D(ajle) is the probability assigned to page a; conditioned on the
empty sequence €, and (@) is the indicator function that takes value 1 when ¢ is true
and 0 otherwise. The last two terms inside the sum of the right-hand side correspond
to the on-line and the off-line cost for the first request. By induction, we can replace
D; with a conservative D; without decreasing the right-hand side of (2.3). So, without
loss of generality, we assume that the distributions D; are conservative.

If we fix the conditional distributions D;, the optimal probabilities for the first
request can be computed as follows: order the pages in decreasing 1)(D;,n—1,]I’(j)) +
I(j > k) —c-I(a; & Sk) value, assign probability e to the first |1/€| pages and assign
the remaining probability (which of course is less than €) to the next page.

We simply want to guarantee that the probabilities are assigned in a conservative
manner. Equivalently, if i < j < k (both a; and a; are in LRU’s cache) or when
k < i < j (neither a; nor a; are in LRU’s cache), it suffices to show that

Y(Di,n—1L,PDY+I(i > k) —c-I(a; & Sk) > (2.4)
W(Dj,n—1,PD)+1(j > k) —c-I(a; & Sk).

We first consider the case of i < j < k. The crucial point for establishing (2.4) is
that we can assume:

Y(Diyn —1,PD) > (D, n — 1,PH), (2.5)

10 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

To see this, let us consider the adversary D that is identical to D but when the
first request is a;, it continues like D; instead of D; (taking into account the dif-
ference in the canonical orderings). Formally, if bjbs --- is the canonical ordering
that results when the first request is a; and b}b,--- when the first request is a;,
then f)(b“a,-b;1 --+by) = D(bi|ajby, - -~ by,,). We then have (D, n,P) = (D, n,P) +

But since P4 > P we can apply Lemma 2.5 and get opt(z,, 1, P?) < opt(z,_1,PY)
which in turn implies that ¢)(D;,n — 1,P®) > (D;,n — 1,P®). Thus ¢(D,n,P) >
(D, n,P)+ D(a;)(¥(Dj,n—1,PD) —4p(D;,n—1,PH)). If (2.5) does not hold, then
w(f), n,P) > (D, n, P); hence, D maximizes v and of course has the desired property
(2.5).

Combining (2.5) and the fact that I(¢ > k) = I(j > k) = I(a; & Sk) = I(a; &
Si) = 0, we get that (2.4) holds for i < j < k.

Inequality (2.4) holds for k¥ < i < j. An identical argument as above establishes
it for the case of a;,a; € Sy, or a;,a; € S. The remaining case, when a; € S; and
a; & Sk, is treated similarly. In this case, we have that P()) > P(), which implies
opt(zn_1,P?) < opt(zn_1,PY)) + 1. The last inequality implies ¥)(D;,n — 1,P?) >
¢Y(Dj,n — 1,PW) — ¢, and together with the fact that I(i > k) = I(j > k) = 1,
I(a; ¢ Sk) =0, and I(a; & Sk) = 1, we get (2.4). O

The above lemma, establishes that the best adversary against LRU is conserva-
tive. We can now proceed to the second part of the proof that LRU has optimal
competitive ratio. We will show that for any on-line algorithm A and any conserva-
tive adversary D € A, against LRU, there is an adversary D' € A, against A, such
that the competitive ratio of LRU against D is at most the competitive ratio of A
against D’. The main idea for constructing a D' is by enforcing the on-line cost of
LRU against D to be equal to the on-line cost of A against D'. This allows us to com-
pare the competitive ratios of LRU and A, by simply comparing the corresponding
off-line costs.

Given D, how can we design D’ so that cost of LRU against D is equal to the
cost of A against D'? For the first request it is obvious: the probability that D’
assigns to pages in the cache of A should be equal to the probability that D assigns
to pages in LRU’s cache. But for the second and subsequent requests, the situation
depends on previous requests (the outcome of random experiments). In general, a
conservative adversary against an algorithm B corresponds to an (infinite) rooted
tree T' with outdegree [1/€] such that each node v has weight z(v) in [0, min{ke, 1}];
furthermore, either z(v) or 1 — z(v) is an integral multiple of e. Paths on this tree
correspond to request sequences and the values z(v) are the total probability assigned
by the adversary to pages in the on-line cache. More precisely, a request sequence
is produced by starting at the root and descending down the tree. At a node v the
adversary assigns probabilities in a conservative manner so that the total probability
assigned to pages of the current cache of B is z(v). Since the adversary is conservative,
at most [= [1/€] pages receive non-zero probability. Let r1,...,r; be these pages
(first the pages in the current cache of B and then the pages outside the cache in
the canonical order). If the next request (the outcome of the random experiment)
is r;, the adversary moves to the j-th child of v and repeats the process to produce
the next request. We will call this conservative adversary the adversary based on T
against B and we will denote it by Dp(py. Notice that the conditional probability
distribution Dy (py depends on the on-line algorithm B (for another algorithm B’ it
may be different). It also depends on the initial configuration of B, although for

BEYOND COMPETITIVE ANALYSIS 11

simplicity we omit this dependance in our notation.

It is now simple to design D’ so that the expected cost of A against D' is equal
to the expected cost of LRU against D: if T' is the tree such that D = Dpru) then
D' = Dr4). It suffices to show that the expected optimum cost against D is no less
than the expected optimum cost against D'. More precisely, we will show that the
expected off-line cost to service a request sequence of length n produced by Dy ru)
is no less than the off-line cost to service a request sequence of length n produced by
DT(A) .

We will use induction on the length n of the request sequence. In order to facilitate
induction, we generalize the problem by assuming any initial work function. As in
the proof of Lemma 2.6, our notation will include only the type of the work function.
More precisely, let hz(a)(n,P) denote the expected off-line cost to service a request
sequence of length n produced by the conditional distribution D74y when the initial
work function has type P. We will show that for every P: hpru)(n, P) > hyay(n,P).
But first, we need the following simple lemma.

LEMMA 2.7. For all conservative adversaries T, if P < Q then hr(pry)(n,P) >
hrervy(n, Q), and if P A Q then hyLru)(n, P) + 1 > hypruy(n, Q).

Proof. The crucial observation is that LRU does not depend on the initial type
of the work function, but only on the initial canonical ordering. An immediate con-
sequence is that the conditional probability distribution T'(LRU) is independent of
the initial work function. Consider first the case of P < Q. By Lemma 2.5, the
off-line cost to service a request sequence starting with a work function w of type P
cannot be less that the off-line cost to service the same request sequence starting with
a work function w’ of type Q and the same canonical ordering with w. Therefore,
hT(LRU) (’I’L,P) Z hT(LRU) (TL, Q) The other case, P ﬂ Q, is handled 51mllarly |

We are now ready to show that the expected off-line cost of a request sequence
produced by a tree T' is maximized when the on-line algorithm is the LRU algorithm.

LEMMA 2.8. For every tree T and every on-line algorithms A, hr(Lry)(n,P) >
hr(a)(n, P).

Proof. By induction on n. For n = 0, the lemma is trivially true. Assume that the
lemma holds for n — 1. Denote by T} the subtree rooted at the j-th child of the root
of T. Let r4 and rpry be the request that produced when the adversary descends to
T; for algorithms A and LRU, respectively. Let also P;,, P;; ., denote the resulting
type after requests r4 and rpry- It is important to notice that ¢4 < irgu; this is the
only property of algorithm A used in the proof.

Child j is chosen with probability that depends on the value z(v), where v is the
root of T'. This probability is € for all values of j except of one child when 1/e is not
an integer. Obviously, hr(a)(n,P) is equal to the expected value of hr,(4y(n —1,P;,)
plus the off-line cost for the first request; the off-line cost is 0 when i4 < k and it is
1 when iA = k. In other words hT(A)(n,]P’) = E[th(A)(n - 1,P5A) + I(iA = k‘)] A
similar expression holds also for hr(ruy(n,P). It suffices therefore to show that for
all ji hryay(n — 1,P;,) + I(ia = k) < hrywruy(n — 1, Pipgy) + I(iLru = k).

We consider three cases according to the values of ¢4 and ipry. In the first case,
14 <ipru < k, we get

hryay(n —1,P;,) + I(ia = k) = hryay(n —1,P;,)
< hryaruy(n — 1,Pi,)
< by wruy(n = 1, Pippg)
= hryru)(n = 1,Pisgy) + I(iLru =),

12 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

where the first inequality follows from the induction hypothesis and the second one
from Lemma 2.7, because P;, > P; ... In the second case, i4 < iLruy = k, we
get hryay(n — L,Py,) + I(ia = k) = hryay(n — 1,Pi,) < hyyruy(n — 1,P;,) <
th (LRU) (’I’L — IJ]FZ'LRU) +1= th (LRU) (’I’L — IJ]FZ'LRU) + I(/L'LRU = k) Again, the first
inequality follows from the induction hypothesis and the second one from Lemma 2.7,
because P;, > P; ... Finally, the third case, i4 = iLru = k, is handled similarly:
hayay(n—1,Pi,) +1(ia = k) = hr;a)(n—1,Pi,) +1 < hryru)(n — 1, Pipy) +1 =
haywru) (0 — 1, Piggy) + I(iLru = k). 0

The above lemmata establish the main result of this section.

THEOREM 2.9. For any €, LRU has optimal competitive ratio R(A.) for the
paging diffuse adversary model.

The above lemmata however do not provide any efficient way to estimate the
competitive ratio R(A.). The approach suggested by the lemmata is to nondetermin-
istically guess the optimal conservative adversary and then compute the competitive
ratio of LRU against this adversary. A conservative adversary is determined by the
values z(v) that are multiples of € when 1/e is an integer; it is slightly more compli-
cated when 1/e€ is not an integer. For a given conservative adversary, the competitive
ratio of LRU is given by a finite Markov chain; the states of the Markov chain are all
reachable types and there are at most (k+1/¢)*~! such types. This approach provides
a doubly exponential algorithm (approximately k(*+1/ 6)k_l) to compute R(A,). It is
an interesting open problem to determine R(A.), as a function of €. For the extreme
values of €, we know that R(A;) = k and lim._,q R(A,) = 1. In the first case, the
adversary has complete power and in the second case, it suffers a page fault in almost
every step. Recently, Young [16] estimated R(A.) within (almost) a factor of two;
R(A.) is between ® (e, k) —1 and 2®(e, k) where (e, k) =1 +Ef:_11 1/ max{1/e—i,1}
(this is approximately In 1_(,:7_1)6 for € > 1/k, and k + 1 — 1/e otherwise).

Even for the simplest case of £ = 2, determining the competitive ratio is not
trivial. We give here a lower bound which we believe is exact. This is the competitive
ratio against the conservative adversary that always assigns non-zero probability to
exactly one page from the pages in the on-line fast memory.

PROPOSITION 2.10. For k=2, ifn=1/e—1 is an integer then

n '3 o
RA) > Z=0 T e 1y e, 14208,
2imo /!

Proof. Consider the conservative adversary that always assigns probability € to
pages of the current canonical ordering with rank 1,3,4,...,1/e+1. Notice that page
2 is assigned zero probability. The request on the page of rank 1 is identical to the
previous request and does not change anything. Thus, this adversary is equivalent
to the adversary that assigns probability § = €/(1 —€) = 1/n to pages with rank
3,4,...,1/e+1.

Let (1,p2) be the type of the current work function. The following table summa-
rizes the possibilities of the next request, together with the probability, the resulting
type, and the associated on-line and off-line cost for servicing the request.

| Request | Probability | Type | On-line cost | Off-line cost |
3.0 (02 — 2)0 @,2) 1 0
ppot+1...1/6+2|1—(p2—2)8 | (1,p2+1) 1 1

In summary, the competitive ratio is given by a Markov chain M; with states the
types (1,p2) for po =2,3,...,1/d + 2. The transition probabilities from state (1, p2)

BEYOND COMPETITIVE ANALYSIS 13

are given in the above table. It is not difficult to see that the Markov process is
identical to the following random process: In each phase repeatedly choose uniformly
a number from {1,2,...,n}, where n = 1/§; a phase ends when a number is chosen
twice. The state (1,p2) of Mj corresponds to the case that p» — 2 numbers have been
drawn. This random process is a generalization of the well-known birthday problem
in probability theory. A phase corresponds to a cycle in the Markov chain that starts
(and ends) at state with type (1,2). The expected off-line cost per phase is equal
to the length of a phase minus one (all transitions in the cycle have off-line cost one
except the last one). Similarly, the expected on-line cost per phase is equal to the
length of a phase (all transitions have on-line cost one). It is not hard now to verify
the expression for R(A.).

For the purpose of bounding the expected length of a phase, notice that each of
the first v/n numbers has probability at most 1/4/n to end the phase. In contrast, each
of the next y/n numbers has probability at least 1/4/n to end the phase. Elaborating
on this observation we get that R, is in the interval [1 + /€/2,1 + 24/€].

Numerical evaluations suggest that the value of R, is approximately 1 + 0.84/e,
when € — 0. O

A preliminary version of this work [8] had an incorrect proof of optimality of LRU.
The proof was based on the unjustified assumption that a conservative adversary that
achieves optimal competitive ratio against LRU assigns probability € to exactly one
page in the on-line fast memory. As was pointed out to us by Neal Young (see also
[16]), this assumption does not hold in general.

An important open problem is to determine the competitive ratio of known paging
algorithms against a diffuse adversary. The most important direction is to estimate the
competitive ratio of FIFO. The recent work of Young [16] estimates the competitive
ratio of marking algorithms —both LRU and FIFO are marking algorithms— almost
within a factor of 2. He gives similar bounds for randomized algorithms. Our proof of
the optimality of LRU seems to suggest that for certain values of €, the competitive
ratio of FIFO is not optimal. In particular, FIFO does not always keep in its fast
memory the first k pages of the canonical ordering or an equivalent set of pages. This
then is an indication that a conservative adversary may force FIFO to have larger cost
than LRU. We conjecture that FIFO is suboptimal for some values of €. If indeed this
is the case, it will add some extra validity to the paging diffuse adversary model, in
the sense that the model can actually distinguish between LRU and FIFO.

3. Comparative Analysis. On-line algorithms deal with the relations between
information regimes. Formally but briefly, an information regime is the class of all
functions from a domain D to a range R which are constant within a fixed partition of
D. Refining this partition results in a richer regime. Traditionally, the literature on
on-line algorithms has been preoccupied with comparisons between two basic informa-
tion regimes: The on-line and the off-line regime (the off-line regime corresponds to
the fully refined partition). As we argued in the introduction, this has left unexplored
several intricate comparisons between other important information regimes.

Comparative analysis is a generalization of competitive analysis allowing com-
parisons between arbitrary information regimes, via the comparative ratio defined in
equation (1.3). Naturally, such comparisons make sense only if the corresponding
regimes are rich in algorithms—single algorithms do not lend themselves to useful
comparisons. As in the case of the competitive ratio for the diffuse adversary model,
we usually allow an additive constant in the numerator of equation (1.3).

We apply comparative analysis in order to evaluate the power of lookahead in task

14 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

systems. An on-line algorithm for a metrical task system has lookahead £ if it can
base its decision not only on the past, but also on the next £ requests. All on-line
algorithms with lookahead ¢ comprise the information regime £,. Thus, Lo is the
class of all traditional on-line algorithms.

Metrical task systems [3] are defined on some metric space M; a server resides
on some point of the metric space and can move from point to point. Its goal is to
process on-line a sequence of tasks 77,75, ... The server is free to move to any position
before processimg a task, although it has to pay the distance. The cost ¢(T},a;) for
processing a task T} is determined by the task T} and the position a; of the server
while processing the task. The total cost for processing the sequence is the sum of
the distance moved by the server plus the cost of servicing each task T}, j =1,2,...

THEOREM 3.1. For any metrical task system, R(Lo, L) < 2+ 1. Furthermore,
there are metrical task systems for which R(Lo, Lg) = 2+ 1.

Proof. Trivially the theorem holds for £ = 0. Assume that £ > 0 and fix an
algorithm B in £,. We shall define an on-line algorithm A without lookahead whose
cost on any sequence of tasks is at most 2£ + 1 times the cost of B. Algorithm A is
a typical on-line algorithm in comparative analysis: It tries to efficiently “simulate”
the more powerful algorithm B. In particular, A knows the position of B £ steps ago.
In order to process the next task, A moves first to B’s last known position, and then
processes the task greedily, that is, with the minimum possible cost.

Let T1,T5,... be a sequence of tasks and let by, bs,... be the points where algo-
rithm B processes each task and aj,as, ... the corresponding points for algorithm A.
For simplicity, we define also points b; = a; = ag for negative j’s.

Then the cost of algorithm B is

D (d(bj-1,b5) + e(Tj, b))

j21

and the cost of algorithm A is

> (d(aj-1,bj—¢) + d(bj_¢, a5) + (T, a5)) - (3.1)

j1

Recall that in order to process the j-th task, algorithm A moves to B’s last known
position b;_; and then processes the task greedily, that is, d(bj_¢,a;) + ¢(Tj, a;) is
the smallest possible. In particular,

d(bj—¢,a5) + c(Tj, a5) < d(bj—¢,b5) + (T}, bs)-
From this, the fact that costs are nonnegative, and the triangle inequality we get

d(aj-1,bj—¢) < d(aj1,bj¢-1) +d(bj¢-1,bj)
< d(bj-1,bj—¢-1) + c(Tj-1,bj-1) + d(bj—t—1,bj—¢)

We can now bound the cost of algorithm A in (3.1) by

D (dbj1,b5¢1) +e(Tj1,b1) +d(bj 1,0 ¢) + d(bj_¢,b;) + (T, b;)) (3:2)
Jj21

Using the triangle inequalities of the form

d(bi,biv2) < d(bs,bip1) + d(bit1,biy2)

BEYOND COMPETITIVE ANALYSIS 15

we can expand d(bj—¢—1,bj—1) < d(bj_¢—1,bj—¢) +---+d(bj_2,b;j_1) and similarly we
can expand d(b;j_¢, b;). Observe now that each term d(b;—1,b;) appears in (3.2) 2/+1
times and each term ¢(T;, b;) appears twice. We can therefore conclude that the cost
of algorithm A is at most

D (0 +1)d(b; 1,b;) + 2¢(Ty,b;)) < (204 1) > (d(bj1,b;) + e(Tj, b;))

jz1 jz1

The last expression is (2¢ + 1) times the cost of algorithm B.

To show the converse, we consider a task system with metric space M a (rooted)
binary tree, where the distance between adjacent vertices is 1. Let B be the “greedy”
algorithm with lookahead ¢. In other words, B services the next task in such a way
that minimizes the total cost to service the next ¢ tasks. Consider now an algorithm
A with no lookahead. We will describe a sequence of tasks 77,75, ... that force a
comparative ratio 2¢ + 1 for A against B. For this, let a;_1 be the position where A
services the task T;_;. With appropriate initialization, assume that a;_; is at depth
j +£. The next task T} has infinite cost on all vertices except for the 2¢ vertices that
are on depth j + £+ 1 and on distance 2¢ + 1 from the current position a;_; (to move
to one of these vertices A must move up to level j and then down to level j + £ + 1).
The cost of T; on these vertices is 0. Thus, the cost for A to service each such task is
20+ 1, while the cost for B is 1 (using its lookahead power, it simply walks down the
tree).

We remark here that although the above lower bound uses an infinite metric
space, a finite metric space that looks locally like a binary tree can also be used. In
particular, consider a butterfly (the FFT graph) of 2£ + 2 levels and identify the first
and last level. Then we can embed the infinite binary tree into this graph in such
a way that every subtree of £ + 1 levels is embedded isometrically (in a distance-
preserving manner). We conclude that there are task systems with metric spaces of
200 points and comparative ratio 2¢ + 1. We leave it as an interesting open problem
to determine the comparative ratio for smaller metric spaces. O

Of course, for certain task systems the comparative ratio may be less that 2/ + 1.
For the paging problem, it is min{¢ + 1, k}.

THEOREM 3.2. For the paging problem

R(Lo, £¢) = min{€ + 1, k}.

Proof. Let n = min{¢,k — 1} and let B be an algorithm for the paging problem
in the class Ly, that is, with lookahead ¢. Without loss of generality we assume that
B moves pages only to service requests. Consider the following on-line algorithm A
which is a generalization of LRU:

To service a request r not in its fast memory, A evicts a page
that is not one of the n most recent distinct requests (including 7).
Among the remaining pages, A chooses to evict a page such that
the resulting configuration is as close as possible to the last known
configuration of B. A does nothing for requests in its fast memory.
To show that the comparative ratio of A is n+1, it suffices to show that for every n+1
consecutive page faults of A, B suffers at least one page fault. This can be achieved by
showing that after each subsequence of requests that causes n page faults to A and no
page fault to B, both algorithms are in the same configuration. To do this, we show
by induction on the number of requests the stronger claim that after a subsequence

16 E. KOUTSOUPIAS AND C. PAPADIMITRIOU

of requests that cause ¢ page faults to A and no fault to B, the configurations of A
and B differ by at most n — ¢ pages.

Fix a request sequence p = rirs... and let Ag, Ay,... and By = Ay, By,... be
the configurations of A and B that service p. The base of the induction is trivial.
Assume that the induction hypothesis holds for t—1. We have to deal with a few cases.
First of all, when r; € A;_1, A suffers no page fault, and the inductive step follows
from the fact that |A; — By| < |A¢—1 — B¢—1|- Similarly, when the request r; ¢ B;_1, B
suffers a page fault and |A; — B| < |A¢—1 — B;_1| which is at most n by the induction
hypothesis. Assume now that r, € By_1 — A; 1. Let x; be the page evicted by A to
service r¢. It is easy to see that if 2, & B;_q then |A; — B| = |A;—1 — B;—1| — 1. The
final and more complicated case is when x; € B;_1. By the definition of algorithm
A, z; is not one of the n most recent requests and consequently z; is also in By_,,.
It follows that A;—1 C Bi_p + {rt—nt1,-.-,7—1} (otherwise A would not choose
x¢ € B;_,, to evict) and

At g Btfn + {T‘tfn_g_l, . ,T't,l,rt}.
We also have the obvious relation
By C By +{rt—nt1s- - s Te—1,7¢}

(recall that we assumed that B moves pages only to service requests). If B suffered
no page fault during the last ¢ requests, i.e., By = By_1 = --- By_., the set By_, +
{rt—n+1,--. ,7t—1,7+} has cardinality at most k+mn — c. We conclude that |4, U B;| <
k + n — ¢, which implies the desired |A; — By| < n —c.

To show that min{f + 1,k} is a lower bound of the comparative ratio, let B be
a variant of the optimal off-line algorithm adapted to lookahead £. More precisely,
B never evicts one of the next n requests. Fix a set of k + 1 pages. Clearly, for
every request sequence p, B suffers at most one page fault for every n + 1 consecutive
requests. The lower bound follows because for any algorithm A, there is a request
sequence p such that A suffers a page fault for every request. d

4. Open problems. We introduced two refinements of competitive analysis,
the diffuse adversary model and comparative analysis. Both restrict the power of the
adversary: the first by allowing only certain input distributions and the second by
restricting the refinement of the adversary’s information regime. In general, we believe
that the only natural way to deal with uncertainty is by designing algorithms that
perform well in the worst world which is compatible with the algorithm’s knowledge.

There are a lot of interesting open problems suggested by this approach. The
most important open problem is to determine the competitive ratio of FIFO for the
paging diffuse adversary model. As mentioned above, we conjecture that FIFO is in
general suboptimal. There are numerous other applications of these two frameworks
for evaluating on-line algorithms. We simply mention here two challenging open
problems.

The Markov diffuse adversary. Consider again the paging problem. Suppose that
the request sequence is the output sequence of an unknown Markov chain (intuitively,
the program generating the page requests) with at most s states, which we can only
partially observe via its output. That is, the output f(q) of a state q of the unknown
Markov process is a page in M. The allowed distributions A are now all output
distributions of s-state Markov processes with output. We may want to restrict our
on-line algorithms to ones that do not attempt to exhaustively learn the Markov

BEYOND COMPETITIVE ANALYSIS 17

process. One way to do this would be to bound the length of the request sequence
to O(s). A better way, however, is to require the additive constant d in (2.1) to be
independent of s. We believe that this is a useful model of paging, whose study and
solution may enhance our understanding of the performance of actual paging systems.

The power of vision. Consider two robots, one with vision « (its visual sensors can
detect objects in distance a) and the other with vision 8, 8 > a. We want to measure
the disadvantage of the first robot in navigating or exploring a terrain against the
second robot. Naturally, comparative analysis seems the most appropriate framework
for this type of problems. Different restrictions on the terrain and the objective of the
robot result in different problems but we find the following simple problem particularly
challenging: On the plane, there are n objects (points). The objective of the robot
is to construct a map of the plane, i.e., to find the position of all n objects. We ask
what the comparative ratio R(V,, Vg) for this problem is, where V, and Vg denote
the information regimes of vision a and 3, respectively.

REFERENCES

[1] S. BEN-DAvID AND A. BORODIN, A new measure for the study of on-line algorithms., Algorith-
mica, 11 (1994), pp. 73-91.

[2] A. BORODIN, S. IRANI, P. RAGHAVAN, AND B. SCHIEBER, Competitive paging with locality of
reference., Proceedings 23rd Annual ACM Symposium on Theory of Computing, (1991),
pPpP. 249-59.

[3] A. BoroDIN, N. LINIAL, AND M. E. SAKS, An optimal online algorithm for metrical task
systems., Proceedings 19th Annual ACM Symposium on Theory of Computing, (1987),
pp. 373-82.

[4] M. CHROBAK AND L. L. LARMORE, The server problem and on-line games., On-line algorithms:
proceedings of a DIMACS workshop. DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, 7 (1992), pp. 11-64.

[5] A. FiaT, R. M. Karp, M. LuBy, L. A. McGEOCH, D. D. SLEATOR, AND N. E. YOUNG,
Competitive paging algorithms., Journal of Algorithms, 12 (1991), pp. 685-99.

[6] S. IraNI, A. R. KARLIN, AND S. PHILLIPS, Strongly competitive algorithms for paging with
locality of reference., Proceedings of the Third Annual ACM-SIAM Symposium on Discrete
Algorithms, (1992), pp. 228-36.

[7] A. R. KARLIN, S. J. PHILLIPS, AND P. RAGHAVAN, Markov paging., Proceedings 33rd Annual
Symposium on Foundations of Computer Science, (1992), pp. 208-17.

[8] E. KoutrsoupriAas AND C. H. PAPADIMITRIOU, Beyond competitive analysis, in Proceedings 35th
Annual Symposium on Foundations of Computer Science, 1994, pp. 394—400.

, On the k-server conjecture., Proceedings 26th Annual ACM Symposium on Theory of

Computing, (1994), pp. 507-11.

[10] M. S. MANASSE, L. A. MCGEOCH, AND D. D. SLEATOR, Competitive algorithms for on-line
problems., Proceedings 20th Annual ACM Symposium on Theory of Computing, (1988),
pp. 322-33.

[11] L. A. McGEOCH AND D. D. SLEATOR, A strongly competitive randomized paging algorithm.,
Algorithmica, 6 (1991), pp. 816-25.

[12] P. RAGHAVAN, A statistical adversary for on-line algorithms., On-line algorithms: proceed-
ings of a DIMACS workshop. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 7 (1992), pp. 79-83.

[13] P. RAGHAVAN AND M. SNIR, Memory versus randomization in on-line algorithms., Proceed-
ings 16th International Colloquium on Automata, Languages and Programming, (1989),
pp. 687-703.

. D. SLEATOR AND R. E. TARJAN, Amortized efficiency of list update and paging rules., Comm.
ACM, 28 (1985), pp. 202-208.

. YouNG, The k-server dual and loose competitiveness for paging, Algorithmica, 11 (1994),
pp- 525-41.

. YOUNG, Bounding the diffuse adversary, in Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, 1998, pp. 420-425.

(14]

jw)

(15]

z

Z

[16]

