
Worst-case Equilibria

Elias Koutsoupias∗ Christos Papadimitriou†

April 29, 2009

Abstract

In a system where noncooperative agents share a common resource, we propose the price
of anarchy, which is the ratio between the worst possible Nash equilibrium and the social
optimum, as a measure of the effectiveness of the system. Deriving upper and lower bounds
for this ratio in a model where several agents share a very simple network leads to some
interesting mathematics, results, and open problems1.

1 Introduction

Internet users and service providers act selfishly and spontaneously, without an authority that
monitors and regulates network operation in order to achieve some “social optimum” such as
minimum total delay [1]. How much performance is lost because of this? This question appears
to exemplify a novel and timely genre of algorithmic problems, in which we are investigating
the cost of the lack of coordination —as opposed to the lack of information (on-line algorithms)
or the lack of unbounded computational resources (approximation algorithms). As we show in
this paper, this point of view leads to some interesting algorithmic and combinatorial questions
and results.

It is nontrivial to arrive at a compelling mathematical formulation of this question. Indepen-
dent, noncooperative agents obviously evoke game theory [15], and its main concept of rational
behavior, the Nash equilibrium: In an environment where each agent (or player) is aware of the
situation facing all other agents, a Nash equilibrium is a combination of choices (deterministic
or randomized), one for each agent, from which no agent has an incentive to unilaterally move
away. Nash equilibria are known not to always optimize overall performance, with the Pris-
oner’s Dilemma [15, 17] being the best-known example. Conditions under which Nash equilibria
can achieve or approximate the overall optimum have been studied extensively ([17]; see also
[6, 10, 19] for studies on networks). However, this line of previous work compares the overall
optimum with the best Nash equilibrium, not the worst, as befits our line of reasoning. To put
it otherwise, this previous research aims at achieving or approximating the social optimum by
implicit acts of coordination, whereas we are interested in evaluating the loss to the system due
to its deliberate lack of coordination.

Game-theoretic aspects of the Internet have also been considered by researchers associated
with the Internet Society [1, 20], with an eye towards designing variants of the Internet Protocols
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which are more resilient to video-like traffic. Their point of view is also that of the mechanism
design aspect of game theory, in that they try to design games (strategy spaces and reward
tables) that encourage behaviors close to the social optimum. Understanding the worst-case
distance of a Nash equilibrium from the social optimum in simple situations, which is the focus
of the present paper, is a prerequisite for making rigorous progress in that project.

The model

Let us make the general game-theoretic framework more precise. Consider a network in which
each link has a law (curve) whereby traffic determines delay. Each of several agents wants to
send a particular amount of traffic along a path from a fixed source to a fixed destination.
This immediately defines a game-theoretic framework, in which each agent has as many pure
strategies as there are paths from its origin to its destination, and the cost for each agent is
the delay experienced by the agent, as determined by the traffic on the links. There is also a
well-defined optimization problem, in which we wish to minimize the social or overall optimum,
the sum of all delays over all agents, say. The question we want to ask is, how far from
the optimum total delay can the total delay achieved by a Nash equilibrium be? Numerical
experiments reported in [7] imply that there are Nash equilibria which can be more than 20%
off the overall optimum.

In this paper we address a very simple special case of this problem, in which the network is
just a set of m parallel links from an origin to a destination, all with the same capacity (similar
special cases are studied in other works in this field, e.g. [10]; we also briefly examine the case
of two parallel links with unequal capacity). We model the delay of these links in a very simple
way. Since the capacity is unit, we assume that the delay suffered by each agent using a link
equals the total flow through this link. We assume that n agents have each an amount of traffic
wi, i = 1, . . . , n to send from the origin to the destination. Hence the resulting problem is
essentially a task allocation problem with m machines and n independent tasks with lengths
wi, i = 1, . . . , n. The set of pure strategies for agent i is therefore {1, . . . ,m}, and a mixed
strategy is a distribution on this set. Let (j1, . . . , jn) ∈ {1, . . . ,m}n be a combination of pure
strategies, one for each agent; its cost for agent i, denoted ci = ci(j1, . . . , jn), is simply

ci =
∑

k : jk=ji

wk,

the cost of the link chosen by i. This calculation assumes that, if agent i’s traffic ends up
in link j, the agent experiences delay equal to all traffic on link j; this is realistic if traffic is
broken in packets, which are then sent in a round-robin way. Finally, the cost to agent i of a
combination of mixed strategies is the expected cost of the corresponding experiment in which a
pure strategy is chosen independently for each agent, with the probability assigned to it by the
mixed strategy. The overall optimum in this situation, against which we propose to compare
the Nash equilibria of the game just described, would be the optimum solution of the m-way
load balancing (partition into m sets) problem for the n lengths w1, . . . , wn.

The costs in our model are a simplification of the delays incurred in a network link when
agents inject traffic into it. The actual delays are in fact not the sums of the individual delays,
but nonlinear functions, as increased traffic causes increased loss rates and delays.

In this paper we show upper and lower bounds on the price of anarchy, the ratio between
the worst Nash equilibrium and the overall optimum solution. Some results in the original
conference version were improved in the meantime (see for example Chapter 20 in the book
[14]) and we omit them. And a few of the original results are more or less intact, and these are:

• For m parallel links we analyze the structure of Nash equilibria.



• In a network with two identical parallel links, we show that the price of anarchy is 3
2 (both

upper bound and lower bound), independent of the number n of agents (Theorems 1 and
3).

• If the two links have different capacities, then the worst-case ratio increases to the golden
ratio φ ≈ 1.618 (lower bound, Theorem 4).

• In a network of m parallel links, the expected traffic experienced by every individual agent
at a Nash equilibrium is at most (2− 1/m) times the optimum (Theorem 2).

• However, when we consider the expected maximum over all agents which is the cost for
the system, the bound is much higher. More precisely, in a network of m parallel links,
the price of anarchy is Ω( log m

log log m) (Theorem 1). In the conference version of the paper we
had a nonmatching upper bound. It was later shown that this lower bound is essentially
tight [3, 8].

2 All Nash equilibria

We consider the case of n agents sharing m identical links. Before describing all Nash equilibria,
we need a few definitions. We usually use subscripts for agents and superscripts for links. For
example, for a Nash equilibrium, we denote the probability that agent i selects link j with pj

i .
Let M j denote the expected traffic on link j. It is easy to see that

M j =
∑

i

pj
iwi. (1)

From the point of view of agent i, its cost when its own traffic wi is assigned to link j is

cji = wi +
∑
k 6=i

pj
kwk = M j + (1− pj

i )wi. (2)

Th probabilities pj
i define a Nash equilibrium if there is no incentive for agent i to change its

strategy. Thus, agent i will assign nonzero probabilities only to links j that minimize cji . We
will denote this minimum value by ci, i.e.,

ci = min
j
cji ,

and we will call the set of links Si = {j : pj
i > 0} the support of agent i. More generally, let Sj

i

be an indicator variable that takes the value 1 when pj
i > 0.

Conversely, a Nash equilibrium is completely defined by the supports S1, . . . , Sn of all agents.
More precisely, if we fix the Sj

i , the strategies in a Nash equilibrium are given by

pj
i = (M j + wi − ci)/wi (3)

subject to
for all j: M j =

∑
i S

j
i (M j + wi − ci)

for all i:
∑

j S
j
i (M j + wi − ci) = wi.

To see that these constraints indeed define an equilibrium, notice that the first set of equa-
tions is equivalent to (2). The constraints are equivalent to (1), and to the fact that the
probabilities of agent i should sum up to exactly 1. Notice also that the set of constraints
specify, in general, a unique solution for ci and M j (there are n + m constraints and n + m
unknowns). If the resulting probabilities pj

i are in the interval (0, 1], then the above equations



define an equilibrium with support Sj
i . Thus, an equilibrium is completely defined by the sup-

ports of the agents (although not all supports give rise to a feasible equilibrium). As a result,
the number of equilibria is, in general, exponential in n and m.

A natural quantity associated with an equilibrium is the expected maximum traffic over all
links:

cost =
m∑

j1=1

· · ·
m∑

jn=1

n∏
i=1

pji
i max

j=1,...,m

∑
k:jk=j

wk. (4)

We call this the social cost and we wish to compare it with the social optimum opt. More
precisely, we want to estimate the price of anarchy or coordination ratio which is the worst-
case ratio R = max cost/opt (the maximum is over all equilibria). If we view the problem
as scheduling [2], then we want to estimate the worst-case ratio of the makespan at a Nash
equilibrium over the optimal makespan. Computing the social optimum opt is an NP-complete
problem (partition problem), but for the purpose of upper bounding R here, it suffices to use
two simple approximations of it: opt ≥ max{w1,

∑
j M

j/m} = max{w1,
∑

iwi/m} (we shall be
assuming that w1 ≥ w2 ≥ · · · ≥ wn).

3 Worst-case equilibria

Our first theorem is almost trivial:

Theorem 1. The price of anarchy for m links is Ω(log n/ log logn). In particular, for m = 2
links, it is at least 3/2.

Proof. Consider the case where there are n = m agents, each with unit traffic, i.e., wi = 1.
It is easy to see that the set of uniform strategies with pj

i = 1/m for i, j = 1, . . . ,m is a
Nash equilibrium. To compute the social cost of the equilibrium we see this as the problem
of throwing m balls into m bins. The social cost of the equilibrium is equal to the expected
maximum number of balls in a bin which is well known to be Θ(logm/ log logm) [11]. Given
that the optimal solution has cost 1, the lower bound follows.

For m = 2, this gives a lower bound of 3/2.

Our main technical result is a matching upper bound for m = 2. To prove it, we find a way
to upper bound the complicated expression (4) for the social cost. In fact, it is relatively easy to
compute the strategies of a Nash equilibrium. There are 2 types of agent: pure strategy agents
with support of size 1 and stochastic agents with support of size 2. Let dj be the traffic of pure
strategy agents assigned to link j. Also, let k > 1 denote the number of stochastic agents. It
is not difficult to verify that the system of equations (3) gives the following probabilities of a
stochastic agent i:

pj
i =

1
2
− d1 + d2 − 2dj

2(k − 1)wi
. (5)

When there is only one stochastic agent, k = 1, the probabilities are 1/2.
We do not see how to use this expression to upper bound (4). Instead, we use an indirect

way. But first, we give an important bound, which holds for any number of agents and links,
and it is interesting in its own right:

Theorem 2. In a network of m identical parallel links, at every Nash equilibrium the expected
cost ci for each agent i is at most (2− 1/m) times the optimum, and more precisely,

ci ≤
∑

k wk

m
+
m− 1
m

wi. (6)



Proof. This follows from

ci = min
j
cji

≤ 1
m

∑
j

cji

=
1
m

∑
j

(M j + (1− pj
i )wi)

=

∑
j Mj

m
+
m− 1
m

wi

=
∑

k wk

m
+
m− 1
m

wi.

We can now show a tight bound for the price of anarchy of m = 2 links.

Theorem 3. The price of anarchy for any number of agents and m = 2 links is at most 3/2.

Proof. Central to the proof of the upper bound is the notion of contribution probability: The
contribution probability qi of agent i is equal to the probability that its traffic goes to the link of
maximum load (if there is more than one maximum load link, we consider the lexicographically
first such link, say). Clearly, the social cost is given by cost =

∑
i qiwi. The key idea in the

proof is to consider the pairwise contribution to social cost. In particular, let tik be the collision
probability of agents i and k; that is, the probability that the traffic of both agents goes to the
same link: tik =

∑
j p

j
ip

j
k. Observe then that both agents i and k can contribute to the social

cost only if they collide; that is,
qi + ql ≤ 1 + tik. (7)

We also observe that the expected cost ci experienced by agent i is

ci = wi +
∑
k 6=i

tikwk,

since the expected contribution of agent k to the link of agent i is tikwk.
We now have all the bounds needed to prove the theorem. Fix now some agent i. We

estimate ∑
k 6=i

(qi + qk)wk ≤
∑
k 6=i

(1 + tik)wk

=
∑
k 6=i

wk +
∑
k 6=i

tikwk

=
∑
k 6=i

wk + ci − wi

≤
∑
k 6=i

wk +
∑

k wk

2
+
wi

2
− wi

≤ 3
2

∑
k 6=i

wk,

where we used the bound (6) for m = 2, in the second to last inequality. By rearranging the
above terms we get ∑

k 6=i

qkwk ≤
(

3
2
− qi

)∑
k 6=i

wk.



We can now bound the cost which is equal to
∑

k qkwk.

cost ≤
(

3
2
− qi

)∑
k 6=i

wk + qiwi

=
(

3
2
− qi

)∑
k

wk +
(

2qi −
3
2

)
wi.

Recall that opt ≥ max{1
2

∑
k wk, wi}. If for some agent i, qi ≥ 3

4 , then both coefficients in the
last expression are nonnegative and we can bound both terms

cost ≤
(

3
2
− qi

)
2opt +

(
2qi −

3
2

)
opt =

3
2

opt.

If there is no qi ≥ 3
4 , the second coefficient is negative and this approach does not work. But in

this case it is trivial to bound the cost: when all contribution probabilities are at most 3
4 ,

cost =
∑

k

qkwk ≤
3
4

∑
k

wk ≤
3
2

opt.

Links with different capacities

So far, we have assumed that all links have the same capacity. We now consider the general
problem where links may have different capacities or speeds. Let sj be the speed of link j.
Without loss of generality, we shall assume s1 ≤ · · · ≤ sm. We can estimate all Nash equilibria
again. Equation (2) now becomes

cji = (M j + (1− pj
i )wi)/sj . (8)

and the equilibria are given by

pj
i = (M j + wi − sjci)/wi (9)

subject to
for all j: M j =

∑
i S

j
i (M j + wi − sjci)

for all i:
∑

j S
j
i (M j + wi − sjci) = wi.

We can extend the lower bound Theorem 1 to this case for m = 2:

Theorem 4. The price of anarchy for two links with speeds s1 ≤ s2 is at least R = 1+s2/(s1+s2)
when s2 ≤ φ s1, where φ = (1 +

√
5)/2. The expression R achieves its maximum value φ when

s2/s1 = φ.

Proof. We first describe the equilibria for m = 2 and any number of agents, generalizing (5).
Again let dj be the sum of all traffic assigned to link j by pure agents and let k > 1 be the
number of stochastic agents. We give the probabilities p1

i of the stochastic agents (p2
i = 1− p1

i ).

p1
i =

s2
s1 + s2

−
(s2 − s1)

∑
k wk + (s2d1 − s1d2)

(k − 1)(s1 + s2)wi
.

When there is only one stochastic agent, k = 1, the probability is p1
i = s2

s1+s2
. It is not hard

to verify that these probabilities indeed satisfy (9). To prove the theorem, we consider the
case of no initial loads and two agents with jobs w1 = s2 and w2 = s1. The probabilities are
p1
1 = s2

1
s2(s1+s2) and p1

2 = 1 − s2
2

s1(s1+s2) . We can then compute cost = (p1
1p

1
2/s1 + p2

1p
2
2/s2)(w1 +

w2) + (p1
1p

2
2/s1 + p2

1p
1
2/s2)w1 = (s1 + 2s2)/(s1 + s2) and opt = 1. The lower bound follows.

It is worth mentioning that when s2/s1 > φ the probabilities given above are outside the
interval [0, 1]. Therefore, both agents have pure strategies and the price of anarchy is 1.



4 Discussion

We believe that the approach introduced in this paper, namely evaluating the worst-case ratio
of Nash equilibria to the social optimum, may prove a useful calculation in many contexts.
Although the Nash equilibrium is not trivial to reach without coordination, it does serve as an
important indicator of the kinds of behaviors exhibited by noncooperative agents.

The questions left open by the conference version of this work have been answered conclu-
sively. The immediate important problem that was left open was to bound the price of anarchy
for m ≥ 3 links. The answer was given in [3] and [8]: the lower bound of Theorem 1 is tight.
Czumaj and Vöcking [3] also gave tight bounds for links with different capacities: the price of
anarchy in this case is O(logm/ log log logm).

A large body of work has been produced around the concept of the price of anarchy. It is
infeasible to list it here, but we refer the reader to the book [14] which devotes a significant
fraction to these issues. The popularity of the concept of the price of anarchy owes much to the
follow-up work of Roughgarden and Tardos [18] which opened the way to studying the price of
anarchy in atomic and nonatomic congestion games.

The conference version of this work together with the work of Nisan and Ronen [13, 12] on
algorithmic mechanism design, which appeared at around the same time, perhaps provided the
fuse for the explosive growth of algorithmic game theory in the last decade.
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