ON THE GREEDY ALGORITHM FOR SATISFIABILITY
Elias Koutsoupias and Christos H. Papadimitriou

Department of Computer Science and Engineering, UCSD

ABSTRACT: We show that for the vast majority of satisfiable 3CNF formulae, the
local search heuristic that starts at a random truth assignment, and repeatedly flips the
variable that improves the number of satisfied clauses the most, almost always succeeds in
discovering a satisfying truth assignment.

Keywords: Analysis of Algorithms, Satisfiability

Consider the following simple heuristic for SATISFIABILITY:

start with a random truth assignment, call it 7

while there is a truth assignment 7" which differs from 7T in
one variable, and 7" satisfies more clauses than 7" do

choose the T' that satisfies the most clauses, and set 7' := T";
return 7.

Naturally, when the formula is unsatisfiable, this heuristic will not return a satisfying truth
assignment, and so it will be in some sense “correct.” We therefore ask the question: If the
formula is satisfiable, how often will this heuristic return a satisfying truth assignment?
We show that the answer is almost always!

Naturally, there is nothing surprising or original about an NP-complete problem with
a good average—case algorithm under the most natural probabilistic distribution. What is
perhaps a little surprising is that the problem is so fundamental, the algorithm so simple,
and the proof so easy.

Let F' be a Boolean formula of n variables in conjunctive normal form with three
literals per clause (the familiar NP-complete 3SAT problem, Garey and Johnson 1979).
Suppose that F' is satisfiable, say by a truth assignment T. We shall show that, for almost
all such F', the greedy algorithm will in fact discover T with very high probability. The
reason is, of course, that most satisfiable formulae have just one satisfying truth assignment.
Intuitively then, the greedy algorithm always discovers the satisfying assignment, since
the clauses always “point the way.” The probabilistic calculation that follows makes this
intuition precise.

If the greedy heuristic starts at a truth assignment that agrees with 7' in very few
variables, then it is likely that a local optimum that is not a global optimum will be found.
However, it is straightforward to show that such starting points are very rare. Let us call
a truth assignment bad if it agrees with T in fewer than (% — €)n variables, for some € > 0;
all other assignments are good.

Lemma 1. The probability that the initial truth assignment, chosen at random, is bad is

2
at most e72¢ "™,

Let B(p,n) denote a binomial random variable, i.e. B(p,n) is the number of successes
in n independent trials when the probability of success in each trial is p. Lemma 1 follows
from the following Chernoff bound:

Pr(B(p,n) < (1 - 6)pn] < ™"/
Here p = 1/2 and 6 = 2¢. Let us mention here another Chernoff bound we will need later:
Pr{B(p,n) 2 (1+6)pn] < =m0/

By the above lemma, the greedy algorithm usually starts from a good truth assign-
ment. Consider now a good assignment T, that agrees with T in exactly & variables,
k> (1/2 — €)n, and one variable, call it a, in which 7" and T disagree. Suppose that we
flip a; how many clauses do we gain, and how many do we lose? We denote by A the set of
all clauses on n variables that are satisfied by T (whether they are in F or not) that change
from false to true if a is flipped, and by A_ the set of those clauses that change from true to
false. We need to calculate the size of Ay and A_. Without loss of generality assume that
T is the constant true assingment (flip literals in F' if necessary). Then A, is the set of
clauses that contain the variable a positively and two other variables that occur positively
if and only if they are false in T. So, Ny = |A4| = (";1) Similarly A_ is the set of
clauses that contain the variable a negatively and two other variables that occur positively
if and only if they are false in 7. But, we have to exclude the clauses that contain all three
variables negatively, because they are not satisfied by 7. So, Ny = |A_| = (";1) — (g)

Notice that by flipping a we do not gain anything if and only if F' has at least as
many clauses in A_ as in A;. We are going to find an upper bound of the probability of
this to happen. Assuming that each clause that satisfies T is in F with probability p, the
probability that we do not gain anything is Pr[B(p, No) > B'(p, N1)], where B and B’ are
independent binomial random variables. It is easy to see that this probability is at most
Pr[B(p,Ng) > m] + Pr[B(p, N1) < m], for any m. Using the mentioned Chernoff bounds
we get that this probability is at most:

_ (m-pNg)? _ (m=-pNy)? _ (m=-pNg)? _ (m-pNy)?
e 3pNg _I_ e 2pNq < e 3pNg _I_ e 3pNq

Let m = py/No¢N;. Then the probability that by flipping a we do not gain anything is at
_Cpnz, where ¢ depends only on €, i.e. it is constant for fixed e. So, the probability
that the greedy algorithm starzting from a good assignment will ever be misled by flipping
a variable is at most n2"e”“P"", since there are at most n2" ! such possible flippings—the
number of edges of the n-hypercube. So, we have:

most 2e

Lemma 2. If all clauses satisfied by T are chosen independently at random with probabil-
ity p, then the probability that the greed%f algorithm starting from a good truth assignment

does not discover 7' is at most n2%e~P" o

¢ From this, for p = 1/2, we have:
Theorem. Let 0 < e < % Then there exists ¢, depending only on € such that for all but

a fraction of at most n2"e™ /2 of satisfiable 3CNF Boolean formulae with n variables, the

2

probability that the greedy algorithm succeeds in discovering a truth assignment in each

independent trial from a random start is at least 1 — e~ o

Notice that by Lemma 2, if p > d/n, for some constant d, the probability that the greedy
algorithm will fail is exponentially small. For such p, the formula F' has expected number
of clauses Q(n?). So, the greedy algorithm performs very well for dense formulae, i.e. for
formulae with Q(n?) clauses. But the careful reader will notice that the above result holds
for any local search algorithm. We have chosen to state our result only for the greedy
algorithm, because it is reasonable to expect that the greedy algorithm performs well for
formulae with fewer clauses, even for formulae with O(n) clauses. Recent experimental
results by Kautz and Selman (which actually motivated this work) seem to support this
hope.

REFERENCES
[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the Theory
of NP-completeness, (Freeman, San Fransisco, 1979)
[2] T. Hagerup and C. Riib, A guided tour of the Chernoff bounds, Inf. Proc. Letters 33
(1989/90) 305-308.

