Tight bounds for 2-dimensional indexing schemes

Elias Koutsoupias
University of California, Los Angeles

elias@cs.ucla.edu

Abstract

We study the trade-off between storage redundancy and ac-
cess overhead for range queries, using the framework of [6].
We show that the Fibonacci workload of size m, which is
the regular 2-dimensional grid rotated by the golden ratio,
does not admit an indexing scheme with access overhead
less than the block size B (the worst possible access over-
head), even for storage redundancy as high as clogn, for
some constant ¢. We also show that this bound is tight (up
to a constant factor) by providing an indexing scheme with
storage redundancy ©(logn) and constant access overhead,
for any 2-dimensional workload. We extend the lower bound
to random point sets and show that if the maximum stor-
age redundancy is less than cloglogn, the access overhead
is B. Finally, we explore the relation between indexability
and fractal (Hausdorff) dimension of point sets.

1 Introduction

In this paper we continue the work of [6] towards a the-
ory of indexability —that is, towards a better understand-
ing of the storage redundancy/access overhead tradeoff in
the indexing problem for complex workloads, in a secondary
memory device with a fixed block size B. Since data items
are stored and retrieved in blocks of B, a query may re-
trieve many more blocks than the size of the answer set
divided by B —in the worst case, B times more. This is
the access overhead of the indexing scheme. To decrease
the access overhead, we may choose to store data redun-
dantly, increasing storage costs —hence the tradeoff. B-trees
owe their widespread success to the fact that they are the
perfect solution to this problem —unfortunately, only for
1-dimensional workloads. The deterioration in the perfor-
mance of B-trees on multidimensional workloads led to in-
tensive research on secondary memory data structures that
perform well in higher dimensions [5, 12, 16, 19]. In fact,
in [7], a generalized indexing system (GiST) was proposed
and implemented. A conclusion of this work was the need
of a mathematical methodology that would evaluate rigor-
ously the power and limitations of indexing techniques. Such

David Scot Taylor

University of California, Los Angeles

dstaylor@cs.ucla.edu

a framework was proposed in [6] where the notion of an in-
dexing scheme was introduced, as well as a notion of “data
storage complexity,” as opposed to the computational com-
plexity that had been studied so far. The efficiency of an
indexing scheme is captured by two salient parameters: stor-
age redundancy (how many times each item in the data set is
stored), and access overhead (how many times more blocks
than necessary does a query retrieve).

To introduce the notion of an indexing scheme we first
need a few definitions: A workload W = (D, I, Q) consists
of a finite subset I C D (I is called the instance and D the
domain) together with a set @ C 27 of queries. For example,
the workloads that we consider here are the 2-dimensional
range queries, for which I is a finite set of points of the 2-
dimensional Euclidean space (D = R?), and Q consists of
all intersections of I with rectilinear rectangles.

Intuitively, an indexing scheme for a workload W =
(D, 1,Q) is a way to store (possibly in multiple copies) the
elements of the instance I in the secondary memory in blocks
of size B. The objective is to be able to answer (cover) each
query in Q by retrieving few blocks (see [6] for a more ex-
tensive discussion). The storage redundancy r of an index-
ing scheme measures the number of copies of the elements
of I that are stored in the secondary memory (there are
two kinds, the maximum redundancy and the average re-
dundancy). The access overhead a of an indexing scheme
measures how many times more blocks we have to retrieve
to answer a query @ € Q compared with the ideal |Q|/B.
Predictably, there is a tradeoff between the redundancy and
the access overhead of an indexing scheme: the higher the
redundancy, the lower the access overhead should be.

Using this framework, [6] study indexing schemes for
range queries. In particular, they study workloads of 2-
dimensional range queries of the instance I that consists of
the k£ x k grid points. They show that an indexing scheme
that achieves access overhead a must have storage redun-
dancy Q(log B/(a’loga)). They conjecture that other 2-
dimensional workloads that are not restricted to the k x &
grid may have worst tradeoffs. Here, we confirm their con-
jecture, and in fact in the strongest possible way: We show
that if we rotate the points of the above workload —as it
happens, by the golden ratio ¢ = (—1 + v/5)/2— then any
indexing scheme for range queries must have storage redun-
dancy logarithmic in the number of points if it is to achieve
access overhead less than the block size.

Before [6], there was substantial work on the indexing
problem [9, 14, 15, 18, 21]. Most of this work involves upper
bounds, and is therefore mainly concerned with the analysis
of the searching aspect of the problem. There is however a



(@)

Figure 1: The Fibonacci lattice and Fg.

notable result on lower bounds that appears in the last sec-
tion of [18] and resembles our lower bound. It is shown that
there is a 2-dimensional point set such that storage redun-
dancy Q(log n/loglogn) is necessary if additive (as opposed
to multiplicative in [6]) access overhead is to remain poly-
nomial in log n/log B.

Our results

We provide a tight bound for the tradeoff between storage re-
dundancy and access overhead of 2-dimensional workloads.
We show that there are “natural” sets of points on the plane
(the Fibonacci workloads) such that any indexing scheme
must have storage redundancy logarithmic (r > clogn) in
the total number of points m to achieve access overhead
less than the worst possible bound B. Thus, any indexing
scheme with storage redundancy less than clogn has in the
worst case the same performance with an indexing scheme
with storage redundancy 1. Surprisingly, there are index-
ing schemes with slightly higher redundancy r = 4log(n/B)
that achieve constant access overhead! Thus the tradeoff
between redundancy and access overhead for a Fibonacci
workload exhibits a “threshold” behavior.

In Section 2, we formally introduce the Fibonacci work-
loads and prove our lower bound on the redundancy/access
tradeoff. The proof is based on some important proper-
ties of the Fibonacci workload, mainly on its discrepancy
properties: Any rectilinear rectangle with area A contains
approximately A points of the workload, independently of
its shape. This property of the Fibonacci workload has been
used before in many contexts, for example in [4]. Using this
property, we show that a Fibonacci workload of n points
has ©(nlogn) queries of size B. We also show that each
pair of points cannot be in many queries of size B. The
lower bound then follows from these two properties. In Sec-
tion 3, we give the upper bound that shows that the re-
dundancy/access tradeoff of the Fibonacci workload is the
worst possible among all 2-dimensional workloads (up to a
constant factor). We also present a simple extension of the
lower bound to random 2-dimensional workloads (with re-
quired redundancy loglog n).

Mandelbrot [13] provides strong evidence that many nat-
ural phenomena exhibit self-similarity. Adapting this ap-
proach, Faloutsos and Kamel proposed in [3] that many
database workloads have also some self-similarity; thus, for
these workloads their fractal (Hausdorff) dimension exists
and may be an important parameter. In Section 4, we dis-
cuss possible relations between the fractal dimension of a
point set and its indexability. We argue that indexability
is “orthogonal” to fractal dimension in the sense that the
fractal dimension provides absolutely no information about
the indexing properties of a point set (with respect to range
queries). Although our argument seems in conflict with ev-
idence presented in [1], there is no actual incompatibility
because [1] investigates square queries. Finally, in Section 5
we extend the main result of [6] to d > 2 dimensions and we
close the paper with some open problems.

2 Fibonacci workloads

In this paper, we consider only workloads of range queries on
a Euclidean space. These workloads are simply determined
by their set of points and for this reason we will use identical
names for workloads and their sets of points. Consider a
workload C' of a Euclidean space. Notice that the indexing
properties of C' do not change if we stretch it out and, in fact,
the same is true if we stretch out any stripe of the Euclidean
space — a stripe is a set of points whose projection on some
dimension z; belongs to a given interval. We can say that
the resulting workload is equivalent to the original one. This
motivates the following general definition:

Definition 1 Two workloads C and C' are equivalent iff
there is a one-to-one mapping f between points of C and C’
such that for any subset Q of workload C, Q is a query of
workload C iff f(Q) is a query of workload C'.

For simplicity, we will concentrate on 2-dimensional range
queries, since, in most cases, there is an obvious generaliza-
tion to higher dimensions. Fix some 2-dimensional workload
C of size n. Assume for the moment that no two points are
in the same horizontal or vertical line. We can then move



the points of C so that the points have integer coordinates

0,1,...,n—1 and the resulting point set C’ is equivalent to
C. The point set C’ spans the grid-lines with coordinates
0,1,...,7 — 1 and it has one point on each horizontal and

vertical grid-line. We will call such a point set a permutation.
It should be clear that not all finite point sets are equivalent
to a permutation, because there may be more than one point
on a horizontal (or vertical) line. In the other extreme, lies
the point set studied in [6] where every horizontal and ver-
tical line has k = y/n points. It is not difficult to see that,
with respect to indexing, the worst workloads are permuta-
tions. More preciselly, given a 2-dimensional workload W,
we can slightly perturb its points so that no two points are
in a horizontal or vertical line. The resulting workload is
a permutation W' with no better redundancy/access over-
head tradeoff. The reason is that any query of W is also a
query of W'; the inverse is not in general true. Here, we will
only consider workloads that are permutations.

A natural question to ask is what point set and in par-
ticular what permutation has the worst tradeoff between
redundancy and access overhead. We will introduce now a
family of permutations, the Fibonacci workloads, and we will
show that they are indeed the worst workloads (up to a con-
stant factor). The Fibonacci lattice, depicted in Figure 1.a,
is the 2-dimensional lattice with base {(1, ¢), (—¢, 1)}, where
¢ = (=1 +/5)/2 is the golden ratio. This lattice has some
amazing properties and we will employ some of them here. It
plays an important role in the discrepancy theory [8, 11, 4]
and in the theory of Diophantine approximation [8]. Our
workloads must be finite, so they contain some small part of
the Fibonacci lattice. In particular, we will consider work-
loads whose points are the Fibonacci lattice points of some
appropriate rectangles and have sizes n = fi, where f}, is the
k-th Fibonacci number. The Fibonacci workload of n points,
which we will denote by F;,, is the equivalent permutation
(see Figure 1). More precisely, for n = fi, the Fibonacci
workload F), of order n is the following permutation:

F, ={(k,kfs—1modn): k=0,1,...,n—1}.

The properties of Fibonacci lattice that we will employ
in our proofs can be found in [4, 2]. They are summarized
in the following proposition.

Proposition 1 For the Fibonacci workload F, of n points

a. Every rectangle with area cin contains at least one
point of Fp, where c1 = 1.9.

b. Every rectangle with area can contains at most two
points of Fy, where ca = 0.45.

Notice that the proposition implies that a rectangle with
area tn contains between |t/ci| and [t/c2] points of Fj,.
For large t however the number of points of F, within a
rectangle with area tn is very close to ¢ [4, 2]. In fact, any
lattice with base {(1, @), (—a, 1)}, where « is an (irrational)
quadratic number, has similar properties. The constants in
Proposition 1 depend on the continued fraction expansion
of @ = [a1,a2,...] and in particular on the maximum a;.
As a result, any irrational number with bounded a;’s sat-
isfies Proposition 1 with different constants ¢; and c2; the
quadratic numbers have bounded a;’s simply because their
continued fraction expansion is periodic. All our results
about Fibonacci workloads hold also for all these lattices (of
course, with different constants). The connection between
Proposition 1 and the continued fraction expansion is related

to the remarkable three-distance theorem (see [10, 20]). We
will expand on this in the final version of the paper, but we
add now that the Fibonacci lattice has the best constants
c1 and ¢z, because the maximum a; is the smallest possible
(¢=1[0,1,1,1,...]).

Before we present our main theorem, we digress to dis-
cuss the O notation in this paper. To keep expressions sim-
ple, we treat the block size B as a constant, so, for example,
the expression O(n) may conceal some multiplicative factor
that depends on B. Our aim is to show the dependency
of the indexing tradeoff on the workload size, not the block
size. Our main theorem shows that indexing has an inherent
log n tradeoff.

Theorem 1 For each block size B > 4, there exists a pos-
itive constant ¢ such that no indering scheme for the Fi-
bonacci workload F,, that has average redundancy r < clogn
has access overhead a < B.

The proof of the theorem is a direct application of the fol-
lowing two lemmata. The first lemma estimates the total
number of queries, while the second one provides an esti-
mate of queries that contain a pair of points.

Lemma 1 For every B > 4, the total number of range
queries of size B of the Fibonacci workload F, is Q(nlogn).

Lemma 2 For every B, the number of range queries of size
B that contain a given pair of points of the Fibonacci work-
load F,, is constant (independent of n).

‘We postpone the proof of the lemmata to first show how
Theorem 1 can be derived from them.

Proof of Theorem 1. We consider only queries of size
B. The theorem follows from the fact that Lemma 1 asserts
that the number of these queries is large, dinlogn —for
some positive constant d;— while Lemma 2 guarantees that
each pair in a block belongs to few queries, i.e. to at most
d> queries, for some constant ds.

More precisely, a range query of size B that has access
overhead less than B contains at least a pair that belongs to
the same block. The total number of these queries is at most

g (]23 ) d2 (there are r % blocks, each one containing at most

(]23 ) pairs, and each pair belongs to at most d2 queries). On
the other hand, the total number of queries of size B is at
least dinlogn. So, as long as r (?) ds < dinlogn, there
is at least one query that has access overhead exactly B.
Equivalently, if » < clogn, for ¢ = di/(d2B), then some
query has access overhead ¢ = B. O

It is worth mentioning that Theorem 1 cannot be derived
from Lemma 1 based solely on the number of queries. In
fact, it is not hard to come up with 2-dimensional point sets
that have n? queries of size B but constant redundancy and
access overhead (all points are arranged into two slanted
parallel lines). We now proceed with the proofs of Lemmata
1 and 2.

Theorem 1 guarantees that there are queries that have
the worst possible access overhead B. In fact, from the proof
we can extract a much stronger statement. It follows from
the proof that only a fraction of (r3& (]g) d2)/(dinlogn) of
queries of size B can have access overhead less that B. Thus,
if r = o(logn) then the vast majority of queries of size B
has access overhead B. Equivalently:

Corollary 1 For any indering scheme for the Fibonacci
workload F,, with B > 4 and storage redundancy r = o(log n),
the probability that a random query of size B has access over-
head a = B is 1 —o(1).



Qi

Yi °
Qi+1
Yi+1 )
®
®
| ]
p z; Ti41

Figure 2: Successive queries.

P2

I
i
Tmax :
I
I

Figure 3: Queries that contain two points p1 and ps.

Proof of Lemma 1. Fix a point p of F;,. We will consider
the queries of size B for which p is the lowest, leftmost point.
Such a query is defined by its rightmost point and its highest
point that are not necessarily distinct. Let Q1,Q2,..., Q%
be these queries and let z; and y; denote the width and
height of ;. We assume that the queries are ordered by
their width, i.e., £;41 > z;. Our aim is to find a relation
between z; and x;41.

Notice first that Q;+1 results from @); if we remove the
highest point of @; and add a point to its right (see Fig-
ure 2). Notice also that the point set Q;+1 — Q; is a rect-
angle that contains exactly one point of F,. Therefore, by
Proposition 1.a, the area (zi+1 — z;)yi+1 of this rectangle
is at most cin. Because query ();1+1 contains B points, its
area xit1Yi+1 is, by Proposition 1.b, at least coBn. From
these, we get the following relation between z; and x;y1:

Tit1 = Ti o O
Tit1 ca B
Solving this recurrence, we get x; < (C2C§f01 )izi. In partic-
ular,
c2B k—1
T < (——— 1. 1
e ) M

Assume now that the point p is in the lower left quadrant.
We will show that the number k£ of queries that contain p
as the lowest, leftmost query is large. For this, it suffices to
show that z/z; is large. We first find a (constant) upper
bound of z,. By Proposition 1.a, we have z1y1 < ¢1Bn and
since y; is at least n/2, we get ©1 < 2¢i1B. Similarly, we
get that yr < 2¢1B and, by Proposition 1.b, zxyr > c2Bn.
Thus, zx > c2n/(2c1) is linear in n. Putting everything

together, we get that x/z1 is linear in n:

xx/x1 > can/(4c]B). (2)
By (1) and (2), we get that there is a constant ¢ = log( C;B"’f’q
such that & > clogn. In conclusion, every point p in the
lower left quadrant is the lowest, leftmost point of at least
clogn queries of size B. By symmetry every point is an
“extreme” (lowest/highest and leftmost/rightmost) point of
clogn queries. Since a query cannot have more than 2 “ex-
treme” points we conclude that there are at least %cn logn =
Q(nlogn) queries of size B. O
It is worth mentioning that the bound of Lemma 1 is
tight (up to a constant factor). We now prove Lemma 2.

Proof of Lemma 2. Let p1 and p2 be points of F,,. We
will show that there is only a constant number (independent
of n) of queries of size B that contain both p; and p2. The
main idea is that only a constant number of points can be
in a query of size B with both p; and p.

Let « and y be the horizontal and vertical distance of
p1 and p2. Also, let Tmax be the width of the widest query
Q that contains both p; and p» (see Figure 3). Since Q
has height at least y and width Zmax, an application of
Proposition 1l.a gives Tmaxy < c1Bn. Similarly we define
Ymax and we get TyYmax < c1.Bn. Multiplying we get that
TYTmax Ymax < ¢;B>n>. On the other hand, by Proposi-
tion 1.b, we have 2y > can. Thus, Tmax Ymax < c;Bn/cs.

So, every point that is in a query with both p; and p»
lies in a rectangle of dimensions (2Zmax ) X (2Ymax ) that ex-
tends around p: and p>. But, by Proposition 1.b, a rect-
angle of dimensions (2Zmax) X (2Ymax ) contains at most

4% max Ymax /(c2n) < 4c¢iB?/c3 points. Thus, the number

)



By

P e

Pr

By

Bpr

Figure 4: Covering a query with 4 blocks.

of points that can be in a query of size B with both p; and
p2 is constant; therefore, the number of queries that contain
these points is also constant. In fact, the number of queries
is at most (4¢iB”/c3)? since a query of fixed size B is defined
by three points (its leftmost, lowest, and highest point).

Using a proof very similar to the proof of Lemma 1, we
can obtain a tighter result: the number of queries that con-
tain a given pair of points is at most c3 B®log B, for some
constant c3. O

The constant ¢ in Theorem 1 that results from the above
proofs is very small for practical values of B and n. Our
aim was to provide simple proofs for Theorem 1, instead of
trying to squeeze out better constants.

3 Upper Bounds and Random Point Sets

Theorem 1 asserts that we need logarithmic redundancy
(r > clogn) to achieve access overhead less than B for the
Fibonacci workload F3. It is natural to ask whether this
bound can be improved or whether there is a worse work-
load than F;,. The answer is provided by the following theo-
rem where we show that with a little more (r = 4log(n/B))
we can achieve constant access overhead, a = 4, for all 2-
dimensional workloads of range queries. It follows that Fi,
has the worst (up to a constant factor) tradeoff between
redundancy and access overhead.

Theorem 2 For every block size B, any set of n points on
the 2-dimensional plane has an indexing scheme with aver-
age redundancy r = 4log(n/B) and access overhead a = 4.

Proof. We will exhibit an indexing scheme of at most
4log(n/B) rectangular blocks that has redundancy 4. For
each point p of the workload, consider the blocks for which
pis the lowest, leftmost point. The indexing scheme contains

log(n/B) of these blocks of width B, 2B, ...,2*B, ... n (some

of these blocks may not be full if there are not enough
points). In general, the indexing scheme contains 4 log(n/B)
blocks for which p is the lowest/highest, leftmost/rightmost
point and have width B, 2B, ...,2*B, ..., n. In total, the in-
dexing scheme has at most 4nlog(n/B) blocks and average
redundancy r = 4log(n/B).

We will show how to cover a query @ of size B with 4
blocks (larger queries can be broken into rectangles of size
B each and covered in a similar manner). Let p; and p,
be the leftmost and rightmost points of  and let = denote
the width of Q. Let w = 2*B be such that /2 < w <

z. It is not hard to verify that @Q is covered by 4 blocks
By, By, By, B, of width w such that p; is the lowest (resp.
highest), leftmost point of By (resp. Bgi) and p, is the
lowest (resp. highest), rightmost point of Bj, (resp. Bh,)
(see Figure 4). O

Theorems 1 and 2 characterize the tradeoff between re-
dundancy and access overhead in the worst case (Fibonacci
workload). But it is not clear how this applies to point sets
of particular applications. Probably, the workloads of prac-
tical problems may have a better tradeoff, but very little is
known about the properties of “practical” point sets. A first
approach is to determine the tradeoff of random (uniformly
distributed) point sets. The next theorem shows that almost
all 2-dimensional sets of n points require maximum redun-
dancy at least 2(loglog n) in order to achieve constant access
overhead. We do this by showing that a random (uniform)
2-dimensional point set has bad tradeoff.

Theorem 3 For every € > 0, there is a positive constant ¢’
such that a set of n random (uniformly distributed) points on
the plane has no indexing scheme with mazimum redundancy
r < c'loglogn and access overhead a < B, with probability
at least 1 — e.

Proof. The idea is very simple: Every large set of random
points contains a small subset that looks like a Fibonacci
lattice. More precisely, a random permutation of £ points is
the Fibonacci permutation with probability 1/k!. Consider
now a set of n random points. We can partition it into n/k
stripes of k points. The probability that a stripe looks like
a Fibonacci lattice is 1/k! and therefore the probability that
no stripe is like a Fibonacci lattice is at most (1 — 1/k!)™/%.
It follows that if we choose k such that (1 — 1/k!)"/* = ¢
then the probability that no stripe looks like a Fibonacci
lattice of k points is at most €. Therefore, if the maximum
redundancy r is at most clogk, where c is the constant of
Theorem 1, there is a query in some stripe that has access
overhead a = B. The equality (1 — 1/k!)"/* = ¢ is satisfied
by some k = ©(logn/loglog n); for such k, we have logk =
loglogn + O(1). In conclusion, there is a constant ¢’ =~ ¢
such that any indexing scheme with maximum redundancy
r < c'loglogn has access overhead a = B, with probability
e. O

The lower bound of Theorem 3 is very weak. Although
we can slightly strengthen it, it is significantly lower than
the upper bound provided by Theorem 2; it also addresses
only maximum redundancy but not average redundancy. We



(a) (a')

(0)

Figure 5: Self-similar point sets (fractals).

leave it as an important open problem to determine the exact
tradeoff for sets of random points.

4 Indexing of fractals

As it was mentioned above, very little is known about “prac-
tical” point sets. An interesting suggestion in [3] is that
many practical point sets are self-similar and their fractal
dimension seems to be an important parameter. It is nat-
ural to ask whether there is any relation between fractal
dimension and hardness of indexing. For example, it seems
plausible that a point set with low fractal dimension will
require small redundancy. This is suggested by some results
in [1, 3]. Unfortunately, this is not the case. In fact,

there is no relation between the fractal dimension
of a point set and its indezability.

The reason is that for each set C of the d-dimensional Eu-
clidean space of fractal dimension D, there is an equivalent
point set C’ that has fractal dimension D' ~ 0. To see this,
notice that if we thin out (take a whole horizontal stripe and
stretch it) a set of points, we get an equivalent set of points
with respect to range queries. However, the new point set
may have different fractal dimension, because the fractal di-
mension depends on the underlying Euclidean metric. Given
a set of points C, we can thin it out so that the resulting
set of points has dimension as close to 0 as we want. Fig-
ure b illustrates the point by considering fractals that are
produced as follows: Take a square, partition it into k X k
subsquares, throw away some of the subsquares, and repeat
the process on the remaining m subsquares ad infinitum (see
Figure 5.a,a’). In the limit, the remaining points have frac-
tal dimension log m/ log k [13]. Figure 5.a,a’ depicts a frac-
tal of dimension log3/log2 =~ 1.58 and Figure 5.b depicts
a fractal of dimension log 3/log3 = 1. However, it is obvi-
ous that the two point sets are equivalent with respect to
range queries. By the way, the latter fractal also illustrates
the fact that the fractal dimension is unrelated to indexing
since it has dimension 1 but it is not as easy to index it as
a straight line (also of dimension 1).

In fact, we claim that no kind of “dimension” can capture
the indexability properties of a point set. The reason is
that any reasonable definition of dimension must have the
property that the dimension of a point set is invariant under
rotations. However, our main result (Theorem 1) shows that
the indexability of a point set can change dramatically if
we rotate it: The redundancy/access overhead tradeoff can
vary from constant (e.g., the regular grid studied in [6]) to

logarithmic in the size of the point set (e.g., the Fibonacci
workload).

In conclusion, if indeed practical workloads have good in-
dexing properties, it is not because they have a small fractal
dimension. It would be interesting to identify properties —
necessary and sufficient conditions— of practical workloads
that allow good indexing tradeoff. One necessary property
is suggested by Theorem 1: Some pairs or points (and in
general constant-size sets of points) must be contained in
many queries of size B.

5 High-Dimensional Trade-offs

Finally, we state an extension of the main result of [6] to
many dimensions. Independently, [17] came up with more
comprehensive results of this sort. The proof is similar to
that in [6] and is omitted from this abstract.

Theorem 4 For the d-dimensional workload with point set
{1,..., nl/d}d, the access overhead a and the redundancy r

. d—1
must satisfy r > cd%, for some constant cg.

Extending also the upper bound of [6], we can show that
there is an indexing scheme with access overhead a and re-

dundancy r = (Qd%g)d_l.

6 Conclusion and open problems

We provided tight bounds for the worst-case indexability
of 2-dimensional workloads. Our results apply to higher
dimensional workloads, but it is still an open problem to
determine the exact worst-case redundancy/access overhead
tradeoff for d-dimensional range queries. We conjecture that
redundancy ©(log?~'n) is required to achieve access over-
head less than B. Unfortunately, there is no simple gener-
alization of the Fibonacci lattice in higher dimensions. Fur-
thermore, no simple point set is known to have good dis-
crepancy properties in higher dimensions (see however [11]).

We also leave it as a major open problem to determine
the tradeoff of random point sets. We have made some
progress on this problem, but our results are too prelimi-
nary to be included in this abstract. Finally, there is some
room of improvement on the upper bound of Theorem 2 to
show that logarithmic mazimum (as opposed to average) re-
dundancy is sufficient to achieve constant access overhead
for all 2-dimensional workloads.



References

[1]

3]

[4]
[5]

[6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

A. Belussi and C. Faloutsos. Estimating the Selectiv-
ity of Spatial Queries Using the ‘Correlation’ Fractal
Dimension. In Proc. 21st International Conference on
Very Large Data Bases, pp:299-310, Zurich, September
1995.

B. Chor, C. E. Leiserson, R. L. Rivest, and
J. B. Shearer. An Application of Number Theory to
the Organization of Raster-Graphics Memory. Journal
of the ACM 33(1):86-104, January 1986.

C. Faloutsos and I. Kamel. Beyond Uniformity and
Independence: Analysis of R-trees Using the Con-
cept of Fractal Dimension. In Proc. 13th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp:4-13, Minneapolis, May 1994.

A. Fiat and A. Shamir. How to Find a Battleship.
Networks 19:361-371, 1989.

A. Guttman. R-Trees: A Dynamic Index Structure For
Spatial Searching. In Proc. ACM-SIGMOD Interna-
tional Conference on Management of Data, pp:47-57,
Boston, June 1984.

J. M. Hellerstein, E. Koutsoupias, and C. H. Pa-
padimitriou. On the analysis of indexing schemes.
Proceedings of the Sizteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems, Tucson, Arizona, 12-15 May 1997.

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized Search Trees for Database Systems. In
Proc. 21st International Conference on Very Large
Data Bases, Zurich, September 1995.

G. H. Hardy and E. M. Wright. An introduction to
the Theory of Numbers. Third ed., Oxford University
Press, 1956.

P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and
J. S. Vitter. Indexing for Data Models with Constraints
and Classes. In Proc. 12th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems, pp:233-243, Washington, D.C., May 1993. (Re-
cent version available from the www.)

D. E. Knuth. The Art of Computer Programming; Vol-
wme III: Searching and Sorting. Addison Wesley, 1973.

N. Linial, M. Luby, M. Saks, and D. Zuckerman. Ef-
ficient Construction of a Small Hitting Set for Combi-
natorial Rectangles in High Dimension. Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory
of Computing (STOC), pp:258-267, San Diego, Califor-
nia, May 1993.

D. B. Lomet and B. Salzberg. The hB-Tree: A Mul-
tiattribute Indexing Method. ACM Transactions on
Database Systems, 15(4), December 1990.

B. B. Mandelbrot. The Fractal Geometry of Nature.
W. H. Freeman and Co., New York, 1977.

S. Ramaswamy and P. C. Kanellakis. OODB In-
dexing by Class Division. In Proc. 12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp:233-243, 1993.

[15]

[16]

[17]

18]

[19]

(20]

(21]

S. Ramaswamy and S. Subramanian. Path Caching:
A Technique for Optimal External Searching. In
Proc. 18th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, Minneapolis,
1994.

J. T. Robinson. The k-D-B-Tree: A Search Structure
for Large Multidimensional Dynamic Indexes. In Proc.
ACM-SIGMOD International Conference on Manage-
ment of Data, pp:10-18, Ann Arbor, April/May 1981.

V. Samoladas and D. P. Miranker. A Lower Bound
Theorem for Indexing Schemes and its Application to
Multidimensional Range Queries. This conference.

S. Subramanian and S. Ramaswamy. The p-range Tree:
A Data Structure for Range Searching in Secondary
Memory. Proc. 6th SODA, 1995.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-
Tree: A Dynamic Index For Multi-Dimensional Ob-
jects. In Proc. 18th International Conference on Very
Large Data Bases, pp:507-518, Brighton, September
1987.

V. Turén Sés. Acta Math. Acad. Sci. Hung. 8:461-571,
1957.

D. E. Vengroff and J. S. Vitter. Efficient 3-d Searching
in External Memory. Proc. 28th STOC, pp:191-201,
1996.



