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Abstract

We investigate the tradeoff between storage redundancy and access overhead for indexing
random d-dimensional point sets. We show that with high probability a range-query workload
of n random points has polylogarithmic trade-off; more precisely, there is a constant cg,q such
that every indexing scheme with storage redundancy cp 4 log? ! n has the worst possible access
overhead (equal to the block size B). We also show that this result is almost tight and that
the trade-off even exhibits a threshold behavior: on a random set of points, expected storage
redundancy O(log? ! n) achieves access overhead 2d — 1.

1 Introduction

Indexing schemes introduced in [3] attempt to capture the intrinsic difficulty of storing large
database workloads for efficient retrieval of requested data from secondary memory. Informally,
an indexing scheme is a way to organize the data into a collection of disk blocks that facilitates
efficient retrieval of data. In an ideal indexing scheme, when answering a query, all items of each re-
trieved block are useful; in the other extreme, each retrieved block contains only one relevant item.
The question we address in this paper is whether a random Euclidean workload admits indexing
schemes that come close to the ideal.

Indexing schemes are defined with respect to database workloads: a workload W = (D, I, Q)
consists of a domain D, a finite subset I C D (the instance), and a set @ C 2! of queries. The
workloads considered here are the d-dimensional range-queries, for which I is a finite set of points of
the d-dimensional Euclidean space (D = R%), and Q consists of all intersections of I with rectilinear
d-dimensional rectangles. Intuitively, a range-query is defined by a minimum and maximum value
in each dimension, and the points that fall within the given range in every dimension make up the
query.

For a workload W, an indexing scheme is simply a collection of blocks of data; each block
consists of at most B elements of 1. Copies of elements are allowed to be stored in multiple blocks.
An important proposal of [3] was that an indexing scheme can be evaluated in terms of two simple
parameters: The first parameter is the storage redundancy which measures how many times an
element is stored in disk blocks (there are two kinds, the maximum redundancy and the average
redundancy). The blocks are chosen so that we can answer (cover) queries by only using a few
blocks. The second parameter is the access overhead which captures the quality of an indexing
scheme: the access overhead of a query ) measures the ratio of how many blocks are needed to



cover ), compared with the ideal [|Q|/B]. The access overhead of the indexing scheme is the
worst access overhead of all queries @ € Q (see [3] for an extensive discussion of indexing schemes).
Predictably, there is a trade-off between the two parameters of an indexing scheme: the higher the
storage redundancy, the lower the access overhead should be.

The problem of whether a workload admits an indexing scheme with low storage redundancy
and access overhead is easy for 1-dimensional range-queries. For example, B-trees give an ideal
indexing scheme where both storage redundancy and access overhead are almost 1. However, no
such simple solution is possible in higher dimensions. Extensive research on secondary memory
data structures that perform well in higher dimensions [1, 2, 4, 7, 12, 14, 15] led [4] to note the
need for a more structured definition of the power of indexing techniques. In response, [3] proposed
that the difficulty of indexing complex workloads lies in the complexity of the data itself. It was
argued that in many cases it is worth focusing solely on the trade-off between storage redundancy
and access overhead of indexing schemes. This approach concentrates on the “data complexity”
of workloads and ignores the computational complexity of organizing the data into the secondary
memory (selecting an indexing scheme for a given workload), as well as the search complexity of
finding which blocks are needed to best answer a given query. A concrete example is given in [3]
on workloads of 2-dimensional range-queries where the instance I consists of the regular grid (the
k x k grid points). It was shown that these workloads have non-trivial trade-off; an indexing scheme
that achieves access overhead a must have storage redundancy r = Q(log B/(a?loga)). This result
was improved in [13], which gave the exact trade-off for these workloads: r = ©(log B/ loga). For
the d-dimensional range-queries where the instance I consists of the regular grid: the trade-off is
given by r = O((log B/ loga)?~1).

In another direction, [6] studied workloads of range-queries on arbitrary Euclidean points (as
opposed to regular grid points). In particular, the Fibonacci workload of n points —the regular
2-dimensional grid rotated by the golden ratio— was analyzed. It was shown that there exists a
constant ¢, such that any indexing scheme with storage redundancy clogn has access overhead
a = B. There is also a matching upper bound for the trade-off: any 2-dimensional workload has an
indexing scheme with storage redundancy » = ©(logn) and access overhead a = 4. These results
provided the first concrete example of a trade-off that grows with the workload size, and also
showed that simple workloads, such as the Fibonacci workload, are hard with respect to indexing.
Furthermore, the trade-off exhibits a threshold behavior: increasing the storage redundancy by a
constant factor can dramatically improve the access overhead from the worst possible a = B to
almost optimal a = 4.

Our model

We consider only workloads of range-queries on a FEuclidean space. These workloads are simply
determined by their set of points. Consider some d-dimensional workload C of size |I| = n. With
respect to range-queries it is homeomorphic to some workload whose points have integer coordinates
1,...,n. Therefore, without loss of generality we consider only workloads with points in {1,...,n}%.
In this paper we study random workloads. There are two natural uniform probability distributions
of random workloads: the first probability distribution results from choosing uniformly a set of
exactly n points from {1,...,n}%. The second one results from selecting independently each point
from {1,...,n}? with probability 1/n%! so that the resulting workload has expected size n. The
two distributions are very similar, but it is usually more convenient to work with the second one.
This is the distribution we use in this paper. With minimal work, our results could be adapted to
apply to the first distribution as well.



To keep expressions simple, we treat the block size B as a constant, so, for example, the
expression O(n) may conceal some multiplicative factor that depends on B and d. Our aim is to
show the dependency of the indexing trade-off on the workload size, not the block size.

Our results

We continue the work of [6] by extending it in two directions. We prove that logarithmic trade-
off is not a property of only structured workloads such as the Fibonacci workload, but it is a
property of the vast majority of 2-dimensional workloads: with high probability, a random 2-
dimensional workload will require logarithmic redundancy to achieve anything better than the
worst possible access overhead. We also extend the result to higher dimensions for which we know
of no simple workload with the properties of the Fibonacci workload. We show that a random d-
dimensional workload needs polylogarithmic redundancy, with high probability. More precisely, for
d-dimensional workload with range-queries, there is a constant cp 4 such that with high probability,
every indexing scheme with storage redundancy cp 4 log?~! n has the worst possible access overhead
(equal to the block size B). In the process, we provide a general lower bound theorem for indexing
schemes (Theorem 1).

We also show that random workloads exhibit the threshold behavior of the Fibonacci workload.
In particular, we show that for a random d-dimensional workload the expected number of queries of
size B or less is O(log?™! n) which implies that there exists an indexing scheme that has expected
storage redundancy ©(log? ! n) and access overhead a = 2d — 1.

2 A general lower-bound

We will make use of the following general theorem, which provides a lower bound of the trade-off
between storage redundancy and access overhead. This theorem is valid for any workload, and the
constants involved can be strengthened when given specific workload structure (e.g. range-queries).

Theorem 1 Let W = (D, I, Q) be a workload such that Q contains a collection of m queries each
with size a multiple of B with the property that no k > 1 elements of I belong to more than c of
these queries. If m > r% (f) c then any indezxing scheme with redundancy r has access overhead
at least B/(k — 1).

Proof. Consider a query @) that has size a multiple of B and access overhead strictly less than
B/(k —1). It is covered by less than [|Q|/B|B/(k — 1) = |Q|/(k — 1) blocks. It follows that at
least one of these blocks shares k or more points with the query. Hence, to each query that has
access overhead less than B/(k — 1), we can associate a block that shares with it & or more points.

We can now give an upper-bound of the number of queries that have access overhead less than
B/(k — 1). There are r|I|/B blocks in total, each block contains (f ) subsets of k elements, and
each such set can be associated with at most ¢ queries. Therefore, the number of queries with

access overhead less than B/(k — 1) is at most r'—g (f ) c. If the number of queries m is larger that

this, it follows that at least one query has access overhead at least B/(k —1). O

The restriction of considering only queries of size a multiple of B is a technical one. A slightly
weaker statement is true for queries that do not have size a multiple of B. Here, we will use only
the special case of the theorem, when k = 2; it was first used (implicitly) in [6].



Corollary 1 Let W = (D,1,Q) be a workload such that Q contains a collection of m queries
of size B with the property that no two elements of I belong to more than ¢ of these queries. If
m > r% (]g) ¢ then any indexing scheme with redundancy r has access overhead at least B.

We remark that Corollary 1 guarantees only that some query has access overhead B. However,

it follows from the proof of Theorem 1 that if m >> r% (g ) ¢, almost all m queries have access

overhead B.

3 Lower bound for random workloads

Our main theorem shows that indexing a random range-query workload has an inherent log? ' n
trade-off. To simplify our proofs, we assume that both n and B are integer powers of 2, although
the results hold even without this assumption.

Theorem 2 With probability 1—o(1), every indexing scheme for a random d-dimensional workload
requires Q(logd_1 n) average redundancy to achieve access overhead a < B.

We remark that the term o(1) in the theorem is exponentially small in n. The proof of the
theorem is a direct application of Corollary 1 and the following lemma.

Lemma 1 With probability 1 — o(1), the following holds for a random d-dimensional workload:
there is a collection of Q(n log? ! n) queries of B points each, such that no pair of points belongs
to more than cpq queries in the set, where the constant cp 4 is independent of n.

Before we proceed with the proof of Lemma 1, we need to develop some terminology. We define
the volume of a query to be the number of grid points within (and including) the ranges given. The
size of a query is the number of data points (rather than grid points) in it. For our purposes, it
suffices to consider only queries of B points.

In Lemma, 1, we need to show that there are Q(nlog?~! n) range-queries of size B. Estimating
the expected number of such queries is a much easier task than what Lemma 1 requires. The
difficulty arises when we want to estimate the number of queries with high probability (1 — o(1)).
In order to decrease dependency among queries, we consider multiple partitions of the space into
rectangles. Any statement (event) about the points of a rectangle in a partition is independent of
the other rectangles from the same partition; here our choice of the probability distribution comes
handy. The limited dependency between intersecting rectangles from different partitions will not
cause any problems.

Each partition divides the workload into n/B identical rectangles of volume Bn¢~!. Further-
more, the dimensions of these rectangles will all be powers of 2. More precisely, we consider all
possible partitions with rectangles of dimensions z1,...,zq with z; = 2% and [[zi = Bn% 1. The
number of partitions is equal to the number of tuples ki,..., ks of non-negative integers k; such
that Y% | k; = log(Bn®!). Tt is easy to see that there are (d*HI‘(’jg_(f"d_l)) partitions. This is at
least ((dfl)((iljlog ")) > log?~ ! n.

There are n/B rectangles within each partition. Each of these rectangles is a candidate query
for Lemma 1. We identify 3 sufficient conditions for a rectangle to be a query for Lemma 1:

e First, a rectangle must contain exactly B points.



e Second, to ensure that we do not encounter the same query in a different partition, we will
require that the rectangle has at least one point in each half of its volume, in all d dimensions.
We will call such a rectangle balanced. A balanced rectangle is guaranteed to be considered at
most once, since rectangles in 2 different partitions always have at least one dimension where
one rectangle overlaps only with half of the other rectangle.

e Finally, we need to guarantee that no pair of points belongs to more than a constant number
of these queries. To enforce this condition, we require that the queries are well-spaced. A
query is said to be well-spaced if no two of its points are “close” in the following sense: the
smallest rectilinear rectangle that contains both points has volume at least v B,dnd*1 for some
fixed constant vp 4 to be specified later (in the proof of Lemma 4).

We first verify that the third property does indeed achieve its purpose, that is, well-spaced
queries have the property that no pair of points is contained in more than a constant number of
them.

Lemma 2 Any given pair of points of a well-spaced query can be contained in at most cg 4 partition
rectangles, where cp 4 is independent of n.

Proof. Fix some pair of points of a well-spaced query of size B. Let y1,...,yq be the dimensions
of the minimum rectilinear rectangle that contains both points. Since the query is well-spaced, the
volume []; y; of this minimum rectangle is at least v B,dndfl. Consider a partition into rectangles
of dimensions z1,..., x4, where each z; is a power of 2, and the volume [[; z; of each rectangle is
Bn%1. Clearly, at most one rectangle from the partition can contain the given pair. Furthermore,
such a rectangle cannot exist unless z; > vy;, for ¢ = 1,...,d. This in turn implies that x; =
Bnd_l/(]—[#i zj) < Bnd_l/(]—[#i yj). Thus, z; can take values, which are powers of 2, in the
interval [y;, Bnd_l/(H#i y;)]. Clearly, there are at most 1 +10g(Bnd_1/(H]- yj)) = 1+1og(B/vp.q)
possible values for z;. Consequently, there are at most cg g = (1 + log(B/v B,d))d_1 partitions that
have a rectangle that contains both points. O

To finish the proof of Lemma 1, it suffices to show that a lot of partition rectangles satisfy
all three conditions (size B, balanced, and well-spaced), with high probability. For this, we first
compute the probability that a rectangle satisfies each condition. The first two conditions are easy:

Lemma 3 The probability that any given rectangle of volume Bn®~1 contains exactly B points is
at least e B. Furthermore, given that a rectangle has ezactly B points, the probability that it is
balanced is at least (1 — 27 B+1)d,

Proof. There are Bn?~! grid points in the rectangle, and each has probability 1/n¢"! of being a
data point. The probability of having exactly B data points is

Bndil ( 1 )B(]_ _ ]. )Bnd_lfB
B nd—1 nd—1 :

Using (B";_l) > nBld=1) this probability is at least ("i;l_fl)("d_l_l)B > e B,

Given that the rectangle has exactly B points, the probability distribution of these points results
by uniformly choosing a set of B points of the rectangle. However, we get a lower bound on the
probability that the rectangle is balanced by assuming that the B points are chosen uniformly and
independently with repetitions. The reason is that the probability that these B or fewer points




are balanced is no bigger than the probability that ezactly B points of the rectangle are balanced.
Now, the probability that all the points B would fall in one half of a particular dimension is 27 5+1
and therefore the probability that there is a point in each half of the rectangle in this dimension
is 1 — 27B+1_ All dimensions are independent, so the probability that the rectangle has a point in
each half, along every dimension, is (1 —278+1)4, o

Predictably, the probabilities in the above lemma do not depend on n. We now turn our
attention to the third condition. We will show that a rectangle of a partition that has B data
points is well-spaced also with constant probability. If two grid points violate the well-spaced
requirement —the minimum rectangle that contains both points has volume less than v B,dndfl—
we will say that one point covers the other. We will need the following lemma.

Lemma 4 In a rectangle of volume Bn®"', a grid point can cover at most 1/(B(B — 1)) of the
volume of the rectangle.

Proof. Fix some grid point p. To get an upper bound on the volume covered by it, we will suppose
that the point p is in one of the corners of the query, consider the number of grid points covered
by it, and multiply this answer by 2¢. This last multiplication is needed because a point in the
center of the query can cover grid points in any of the 2¢ orthants for which it acts as a corner. The
number of grid points covered by p is exactly equal to the number of grid points (z1,z2 .. .z4) below
the surface H;izl x; < vB,dnd_l. We can upper bound this by the volume below the surface. It is
easy to see that the volume under the surface is proportional to the volume of the rectangle, and it
is independent of its shape. It works out that the grid point p covers (vp 4 Z?:_OI In(B/vpq))ntt
of the grid points in the rectangle.

Therefore, a grid point covers at most 24(vp g >4 In(B/vp q4))/B of the volume of the rectan-
gle. By choosing an appropriate constant vp 4, we can guarantee that a grid point covers at most
1/(B(B — 1)) of the volume of the query. O

We can now estimate the probability that a balanced rectangle that has B data points is a
well-spaced query.

Lemma 5 A balanced rectangle that contains B data points is well-spaced with probability at least
1/2.

Proof. The only information we have about the distribution of points inside the rectangle is that
there is at least one point in every half of the rectangle, in every dimension. We want to find the
probability that two points p; and ps cover each other. Fix the point pi. It certainly accounts for
one point in its half of the rectangle (in all d dimensions), so the only information that we have
about the distribution of the remaining B — 1 points is that there is at least one in every other half
of the rectangle (in all d dimensions). These points are no closer to p; than random points, so the
probability of p, being covered by p; is no worse than it would be if p, were uniformly distributed
in the rectangle. By Lemma 4, the probability that p; covers py is at most 1/(B(B — 1)). Since

there are ( B pairs of points, the probability that there exists a pair whose points cover each other
2 y

is at most (123) ﬁ =1/2. O

In summary, Lemmata 3 and 5 show that a rectangle within a partition is a balanced well-spaced
query of size B with probability at least (1 — 27 5+1)4e=B /2. Since they are balanced, any two of
these queries are guaranteed to be distinct. We can now give a lower bound of the number of these
queries.



Lemma 6 With probability 1 — o(1), the partitions contain Q(nlog?'n) balanced, well-spaced
rectangles with exactly B points.

Proof. The crucial property is that within a partition one rectangle is completely independent
of another. The probability that a rectangle is a balanced well-spaced query of size B is at least
p = (1 —27Bt1)de=B /2. Tt is safe to assume that the probability is exactly p. We can use the
Chernoff bounds [9] to limit the probability of having few such rectangles within a partition. In
particular, let X; be a random variable that denotes the number of rectangles of partition 7 that
are balanced well-spaced queries of size B. We have that its expectation is y = pn/B = O(n) and
the Chernoff bound gives P[X; < (1 — §)u] < e=9’1/2_ For a constant 4, the probability that one
partition fails to have enough balanced well-spaced queries is exponentially small. Fix some log?~ ! n
partitions (there are at least so many). The probability that there exists one partition among them
that fails to have (1—6)u balanced well-spaced queries is at most e #/2log? 1 n = o(1). Therefore,
with probability 1 — o(1) there are (1 — 6)plog? ' n = Q(nlog? ! n) balanced well-spaced queries
of size B. O
This concludes the proof of Lemma 1 and of Theorem 2.

4 Upper bound for random workloads

In this section, we will give a matching upper bound of Theorem 2. For 2 dimensions, it was shown
in [6] that any 2-dimensional range-query workload admits an indexing scheme with redundancy
©(logn) and constant access overhead (a = 4). This trade-off matches (up to a constant factor)
the trade-off of Theorem 2. Hence, for 2 dimensions, a random workload has (up to a constant
factor) the worst possible trade-off between storage redundancy and access overhead.

Does this result hold for higher dimensions? More precisely, is it true that for any d-dimensional
range-query workload there exists an indexing scheme with storage redundancy r = G)(logd_1 n) and
constant access overhead a (or a = 2¢)? We do not know the answer to this question, although we
conjecture that it is positive. However, we can show that the statement holds for random workloads
in the following sense: for a random d-dimensional workload, there is an indexing scheme that is
expected to have storage redundancy O(log? ! n) and access overhead a = 2d — 1.

To this end, we will show that the expected number of range-queries of size at most B in a
random workload is O(nlog? ! n). This means that we can store all queries of size B or less in
separate blocks. We then show how to inductively break any query @ into 1+ (2d — 1)|(|Q] —
1)/B] subqueries of size B or less, so that the resulting indexing scheme has expected redundancy
O(log? ' n) and access overhead a = 2d — 1.

Theorem 3 In a random d-dimensional range-query workload, the expected number of queries of
size B or less is O(nlog? 1 n).

Proof. The proof is a straightforward calculation. We first compute an appropriate upper bound
of the probability that a given rectilinear rectangle is a query of size X and use it to compute the
expected number of queries of size X.

Let x1,...,z4 be the dimensions of a rectilinear rectangle R. We want to find the probability
that the rectangle is a query of size X. To avoid counting the same query twice, we require that
the rectangle has a point on every side, that is, we identify a query with the minimum rectangle
that contains all its points. The probability that the rectangle has exactly X points is simply
("15"4) (=1 )X (1 — =7=r)® % X Using the inequalities (§) < (§)’ and 1 —z < e “, we get that

X
X _Zyeyg
this probability is at most ;—’;%e =1




Given now that the rectangle has X points, we want to estimate the probability that every
side has at least one point. Let us denote the events that there is at least one point on the
two sides of the rectangle R perpendicular to z; axis by F;; and FE;. It is easy to see that
P[Es]=1-— (““"'(”f,{l)"'xd) / ("5%) < X. Also, P[Ej3 | Ey] < P|Ey) = P[Ey], since knowing
at least one of the points is on the opposite side can only decrease the probability that there is a
point on this side. Since events E;; and Ej, are independent for ¢ # j, the probability that there
are points on all 2d sides of the rectangle R is at most X2¢/(zy ---z4)2.

Putting everythlnwg together, we get that the probability that the rectangle R is a query of size
X is O(%e_%). Fix now a grid point ¢q. The expected number of queries of size X for
which ¢ is the corner closest to the origin is bounded, within a constant factor tx g4, by

JX=2 a1
Zd) —— e w1 dzg---dx
X(d 1) d 1

Using the fact that [ rke9%dx = k!/a*t1, it is not hard to verify that the integral is bounded
by (f 2t pd=1 . Accounting for the n? possible choices for g, we get that the number of queries
of size X < B is O(nlog?~'n). O

Lemma 6 shows that Theorem 3 is tight: the expected number of range-queries of size B is
O(nlog?'n).

Now, if we could guarantee that every hyperplane of the space had only one point on it, then
every query could be covered using [|Q|/B] queries of size B, and we could use those queries
to achieve access overhead a = 1. However, since multiple points per hyperplane are allowed, it
becomes harder to break a query into small subqueries, and we will need to use more blocks.

Lemma 7 A range-query in a d-dimensional workload can be covered using at most 1 + (2d —
D(|Q| — 1)/B] queries, each of size B or less.

Proof. By induction on the dimension and the size of the query. The base cases |Q| < Bandd =1
are both obvious. Consider now a query @ of dimension d > 2 and size |Q| > B. We partition
the query along the d-th dimension into three subqueries. If z; is the size of the query along the
d-th dimension, the new queries have sides y — 1,1, 4 — y such that the first subquery (side y — 1),
which may be empty, contains at most B points, while the first two subqueries (sides d — 1 and 1)
contain Y > B points in total. By the induction hypothesis, the second query can be covered with
at most 1+ (2(d —1) — 1)[(Y — 1)/B] small (size B or less) queries. Similarly, the third query
can inductively be covered with at most 1+ (2d — 1)[(|Q| — Y — 1)/B| small queries. Taking into
account that the first query is by itself small, it is straightforward to show that the sum of small
queries used to cover () is bounded by the formula of the lemma. O

Corollary 2 A random d-dimensional workload admits an indexing scheme with expected storage
redundancy v = ©(log? ' n) and access overhead a = 2d — 1.

Proof. By Theorem 3, we know that using expected storage redundancy r = (a(log”l_1 n) we can
store every range-query of size B or less in a block. By Lemma 7 we can cover any query () using
at most 1+ (2d — 1)[(|Q| — 1)/B] of those blocks. Thus, for a query that is optimally answered
using opt = [|Q|/B] blocks, we use at most 1 + (2d — 1)(opt — 1). This gives an access overhead
of at most a =2d —1. O



5 Open problems

The constants in Theorem 2 that result from our proofs are small for practical values of B and
d. Similarly, the constants of Corollary 2 are extremely large. We have chosen to provide simple
proofs, instead of obtaining better constants. However, we don’t see how to tighten our proofs so
that the constants are relevant for practical values of B and d. It will be interesting to improve
these constants.

The lower bound of Theorem 2 holds with high probability, i.e., the probability that a random
workload has less than ©(log?~!n) trade-off between storage redundancy and access overhead is
exponentially small. On the other hand, the upper bound in Corollary 2 is about expectations. Of
course, using the Markov Inequality, we can translate expectations to probability. This however
shows only that the upper bound of the trade-off holds with probability 1 — €, for any constant e.
Is it true that the upper bound also holds with high probability? For 2 dimensions, the answer
is certainly positive since any 2-dimensional workload admits an indexing scheme of redundancy
r = O(logn) and constant access overhead a = 4 [6]. We were unable to extend this result to
higher dimensions, although we believe that it is true. More precisely, we conjecture that any
d-dimensional range-query workload admits an indexing scheme with redundancy r = G)(logd_1 n)
and access overhead a = 2¢.
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