
Competitive analysis of aggregate max in

windowed streaming

Elias Koutsoupias Luca Becchetti
University of Athens University of Rome

July 9, 2009



The streaming model

Streaming

A stream is a sequence of items (numbers) a1, a2, . . .

Much longer than the algorithm’s memory

. . . , 43, 4, 67, 2, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, 92 . . .

Windowed streaming

A stream, but we care only about the values of a sliding

window of length n.

n is much longer than the algorithm’s memory

. . . , 43, 41, 67, 23, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, . . .



The streaming model

Streaming

A stream is a sequence of items (numbers) a1, a2, . . .

Much longer than the algorithm’s memory

. . . , 43, 4, 67, 2, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, 92 . . .

Windowed streaming

A stream, but we care only about the values of a sliding

window of length n.

n is much longer than the algorithm’s memory

. . . , 43, 41, 67, 23, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, . . .



The streaming model

Streaming

A stream is a sequence of items (numbers) a1, a2, . . .

Much longer than the algorithm’s memory

. . . , 43, 4, 67, 2, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, 92 . . .

Windowed streaming

A stream, but we care only about the values of a sliding

window of length n.

n is much longer than the algorithm’s memory

. . . , 43, 41, 67, 23, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, . . .



The streaming model

Streaming

A stream is a sequence of items (numbers) a1, a2, . . .

Much longer than the algorithm’s memory

. . . , 43, 4, 67, 2, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, 92 . . .

Windowed streaming

A stream, but we care only about the values of a sliding

window of length n.

n is much longer than the algorithm’s memory

. . . , 43, 41, 67, 23, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, . . .



The streaming model

Streaming

A stream is a sequence of items (numbers) a1, a2, . . .

Much longer than the algorithm’s memory

. . . , 43, 4, 67, 2, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, 92 . . .

Windowed streaming

A stream, but we care only about the values of a sliding

window of length n.

n is much longer than the algorithm’s memory

. . . , 43, 41, 67, 23, 44, 10, 89, 34, 22, 67, 15, 67, 88, 91, 33, 7, 18, 14, . . .



Statistical questions

Questions about streams

What is the maximum value so far; the average? the number
of distinct values?

Some of them are easy in the streaming model

Impossible in the windowed streaming model



Statistical questions

Questions about streams

What is the maximum value so far; the average? the number
of distinct values?

Some of them are easy in the streaming model

Impossible in the windowed streaming model



Why windowed streaming?

Typical information on a temperature sensor

The maximum temperature in the last hour



Our setting

Assumptions

We care about the maximum value in each window

We use competitive analysis (worst-case input)

The online algorithm has limited memory; of size k (k ≤ n)

Objective

gt the maximum value in online algorithm’s memory at time t

mt the value in the memory of an optimal offline algorithm

Minimize ρ(k) =

∑

t
mt

∑

t
gt



Typical online situation for k = 1



Typical online situation for k = 1



Typical online situation for k = 1



Typical online situation for k = 1



Typical online situation for k = 1



Typical online situation for k = 1



Typical online situation for k = 1



Typical online situation for k = 1

Online gain = area below the red line

Offline gain = area below the green line

Optimal max = area below the brown line

Competitive ratio =
Offline gain

Online gain



Comparison to streaming

Streaming Competitive analysis

Fix approx ratio and optimize
the memory size

Fix memory size and optimize
the approximation ratio

Values within the approx ratio
always

Values within the approx ratio
on average

worst-case input worst-case input

compare to max in the window
compare to max achieved by
an offline algorithm with the
same memory constraints



Streaming results

Datar, Gionis, Indyk, and Motwani introduced window
streaming. They showed that no exact algorithm can do
better than keeping all the items

Feigenbaum, Kannan, Zhang considered the problem of
estimating the diameter of 2-dim points

Chan and Sadjad improved their results. They showed that for
maintaining the diameter of points on a line can be done with
memory

O(
1

ε
log M)

memory slots, where M is the diameter.



Main result

Theorem

For fixed memory k, the competitive ratio is

ρ(k) = 1 + Θ

(

1

k

)

The theorem holds in the strongest possible sense

Upper bound: There exists a deterministic algorithm which
achieves a competitive ratio against the optimal with memory
n.

Lower bound: Randomized against the optimal with
memory k .



Upper bound

The Partition-Greedy algorithm

We partition the sequence into parts of size n/k and we
associate with the memory slot i the parts i (mod k).

For each part, the associated slot accepts the first item.

In every other respect, the slots are updated greedily: the
algorithm updates the slot value whenever a greater value
appears.

Theorem

The Partition-Greedy algorithm has competitive ratio

k/(k − 1), against the absolute maximum.



Sketch of the upper bound

mt : maximum of the last n values at time t

gt : the maximum value in online memory at time t

either gt = mt ,
or gt−w/k ≥ mt and · · · and gt−w(k−1)/k ≥ mt ,

Why? If the value mt appeared in the last k − 1 parts of the
window, it must be still in the online memory.



either gt = mt ,
or gt−w/k ≥ mt and · · · and gt−w(k−1)/k ≥ mt ,

implies
t
∑

i=t−r

gt−i∗w/k ≥
t
∑

i=t−r+1

mt−i∗w/k ,

for every r = 0, . . . , k − 1.
Summing up these inequalities for every t and for r = k − 1 we
(almost) get

k

T
∑

t=0

gt ≥ (k − 1)
T
∑

t=0

mt .

We need to take care of some minor problems near the end.



Lower bound

Main idea

The proof is based on Yao’s Lemma

The input consists of two parts:

the first part of n items has values f (t), t = 0, . . . , n − 1 of
some function f

the second part of the input consists of x items of value 0,
where x is random value uniformly distributed in 1, . . . , n.
the online algorithm knows everything, except of when the
input sequence stops.



The lower bound construction

f (t0)

t0

f (t1)

t1

f (tk)

tk
f (tk+1)

tk+1



Lower bound

There is a function f such that when the sequence stops at a
random point uniformly distributed in the second part

the expected gain of every online algorithm is at most

11

8
−

1

8(k + 1)
.

the offline gain is at least

11

8
−

1

48

5k − 6

(k − 1)2
.

Therefore the competitive ratio at least

1 +
1

66k
+ O(

1

k2
).



Computing the online gain

h(t) =















f (t1) t0 ≤ t ≤ t1
...

f (tk+1) tk ≤ t ≤ tk+1.

The expected online gain is given by

1+

∫ 1

0
h(t)(1−t) dt = 1+

∫ 1

0
h(t)d(1−(1−t)2) = 1+

∫ 1

0
h(1−

√
1 − r)dr .

Define ri = 1 − (1 − ti )
2.

The expected online gain then is

1 +
k
∑

i=0

∫

ri+1

ri

f (tt+1)dr = 1 +
k
∑

i=0

(ri+1 − ri )f (ti+1).



Which f ?

We need to select f so that

We can find the optimal deterministic algorithm
We can upper bound its expected gain
We can lower bound the expected optimal gain

A convenient choice

f (t) =
1

2
+

1

2
(1 − t)2.

With this the expected online gain is

1 +
k
∑

i=0

(ri+1 − ri )(1 −
ri+1

2
) = 1 +

1

2

(

3

4
−

1

4

k
∑

i=0

(ri+1 − ri )
2

)

=
11

8
−

1

8

k
∑

i=0

(ri+1 − ri )
2.



Selecting the optimal online algorithm

We select ti (or ri ) which maximize

11

8
−

1

8

k
∑

i=0

(ri+1 − ri )
2.

ri+1 − ri =
1

k + 1
=⇒ ri =

i

k + 1

The expected online gain is

11

8
−

1

8

k
∑

i=0

1

(k + 1)2
=

11

8
−

1

8(k + 1)



Computing the expected optimal cost

Offline algorithm

The advantage of the offline algorithm: it knows x .

It keeps items only from [0, x ].

The online algorithm keeps values from [0, 1]; values after x

are useless.

We need only an upper bound; we select a convenient
suboptimal algorithm.

It keeps in memory the equidistant values t ′
i
= i

k−1 · x .



For a given x , the gain of this algorithm is

1+
k−1
∑

i=1

(t ′i −t ′i−1)f (t ′i ) = 1+
k−1
∑

i=1

x

k − 1

(

1

2
+

1

2

(

1 −
i

k − 1
· x
)2
)

.

For uniformly distributed x in [0, 1], we get that the expected
offline gain is

1+
k−1
∑

i=1

∫ 1

0

x

k − 1

(

1

2
+

1

2

(

1 −
i

k − 1
· x
)2
)

dx =
11

8
−

1

48

5k − 6

(k − 1)2
.



The lower bound

In summary

Online gain at most

11

8
−

1

8(k + 1)
.

Offline gain at least

11

8
−

1

48

5k − 6

(k − 1)2
.

Competitive ratio at least

1 +
1

66k
+ O(

1

k2
).



Items with expiration times

Generalization of the problem

Each item has its own expiration time. We want to have the
maximum of the non-expired items.

In the window streaming all items expire after n steps.

Theorem

The deterministic competitive ratio is unbounded.



The aggregate min problem

Theorem

The aggregate min problem has unbounded competitive ratio



The anytime max problem

Anytime max

In the anytime max problem we want the online algorithm to have
an almost maximum item in memory at all time steps.

Aggregate → minimize
∑

mt
∑

gt

Anytime → minimize

max
t

mt

gt

Theorem

The aggregate min problem has unbounded competitive ratio.



Comments and open problems

The case of k = 1 is of particular importance.

Similar problem: When we care about the ranks
(rank=position in the ordered list) and not the values.

Interesting connection with the secretary problem: The input
is adversarial random-order (as opposed to worst-order).


	The setting
	Upper Bound
	Lower bound
	Extensions

