Contention resolution for congestion games

Elias Koutsoupias University of Athens / IAS

Jerusalem 2011.05.02

Joint work with Katia Papakonstaninopoulou

Contention and Congestion

Congestion	Contention
When two or more users try to	When two or more users try to
use the same resource, the cost	use a resource, nobody succeeds
is higher	
Example: Congestion games /	Example: Ethernet / wireless
Internet routing	
Strategy: Set of resources.	Strategy of a user: Timing

- In between: The cost depends both on the set of selected resources and the timing.
- Strategy: Set of resources + Timing

Our game-theoretic abstraction

- The users play a congestion game but they also select the time to start.
- Each user decides which path to use and when. When users use the same link at the same time they incur a higher cost.

In this talk

- Congestion game: A set of parallel links with affine latencies.
- Affine latencies: When k users use link e, each one incurs cost $\ell_e(k) = a_e k + b_e$.
- Symmetric strategies

Two models

The boat model

Only the group of players that start together affect the latency of the group.

- At every time step, a boat departs from the source of the link
- The speed of each boat depends only the number of players on it

The conveyor belt model

The latency of a player depends on the number of other players using the link concurrently.

 The speed depends on the number of people on the belt

Details of the models

- ullet Let $\ell_{
 m e}(k)$ be the latency functions of the original congestion game
- If a player decides to play at time t, he pays the original cost plus t
- Each player has to complete a unit of work (or distance). Each time step, the player completes work $1/\ell_e(k)$ where k is the number of players using the same link.
- Example with 2 players: $t_1 t_2$

$$\frac{t_2 - t_1}{\ell_e(1)} + \frac{f_1 - t_2}{\ell_e(2)} = 1$$

$$\frac{f_1 - t_2}{\ell_e(2)} + \frac{f_2 - f_1}{\ell_e(1)} = 1$$

Related work

Contention

- Game theoretic issues of Aloha / Slotted Aloha [MacKenzie-Wicker 2003, Altman-El Azouzi-Jimenez, 2004].
 Time-invariant strategies.
- Time-dependent strategies for contention [Fiat-Mansour-Nadav 2007]. They study protocols with deadlines. They give a protocol which has low price of stability, with high probability.
- Extension to models with re-transmission cost [Christodoulou-Ligett-Pyrga 2010]

Related work

Congestion

- Atomic (finite number of players), non-atomic (infinite number of players / flow)
- Non-atomic congestion games have been studied for decades
- The atomic congestion games were introduced by Rosenthal in 1973
- The Price of Anarchy (PoA) of was introduced in 1999 (K-Papadimitriou), for simple weighted atomic games
- The PoA of non-atomic congestion games was first studied by Roughgarden and Tardos in 2000
- The Price of Stability (PoS) was first studied by Anshelevich et al in 2003 for atomic games with decreasing latency functions.
- The PoA and PoS of atomic games for linear latencies was resolved in 2005 (Christodoulou-K, Awerbuch-Azar-Epstein)

Related work

Game-theoretic analysis of TCP

- [Akella-Seshan-Karp-Shenker-Papadimitriou 2002] studies TCP-like games. The strategies of a player are the parameters of AIMD which are not time-dependent.
- [Kesselman-Leonardi-Bonifaci 2005]. Game-theoretic issues of packet switching. It studies the steady state (strategies are the transmission rates).

Are these congestion games?

- Yes
- Only for 2 players

Why?

- Take copies of the original game G_0, G_1, \ldots Add t to the latency functions of G_t .
- For 2 players 1 link: Take again copies of the original game G_0, G_1, \ldots Change the latencies of G_t as follows:

$$\ell'_{e_{\mathsf{t}}}(1) = 1 + \left\lfloor \frac{t}{\ell_{e}(1)} \right\rfloor, \qquad \ell'_{e_{\mathsf{t}}}(2) = \ell_{e_{\mathsf{t}}}(1) + \frac{\ell_{e}(2) - \ell_{e}(1)}{\ell_{e}(1)}$$

The player has to play $\ell_e(1)$ consecutive games.

- For 2 players and arbitrary network, there is a potential function. Crucial: both players pay the same additive cost when they share a link
- for 3 or more players: There are games that have no pure (asymmetric) equilibria.

Do they have pure equilibria?

- Yes. Because they are congestion games.
- Not in general. Even for the simple case of 1 link, 3 players, affine latencies $(\ell_e(k) = 5k 1)$.

$$\ell_e(k) = 5k - 1$$

- Start times: $0 = t_1 \le t_2 \le t_3$. Finish times: f_1 , f_2 , f_3 .
- Assume that they all overlap, i.e., $t_3 < f_1$. The other case is similar. $t_1 t_2 t_3 f_1 f_2 f_3$

$$\begin{aligned} & \frac{t_2 - t_1}{\ell_e(1)} + \frac{t_3 - t_2}{\ell_e(2)} + \frac{f_1 - t_3}{\ell_e(3)} = 1 \\ & \frac{t_3 - t_2}{\ell_e(2)} + \frac{f_1 - t_3}{\ell_e(3)} + \frac{f_2 - t_3}{\ell_e(2)} = 1 \\ & \frac{f_1 - t_3}{\ell_e(3)} + \frac{f_2 - f_1}{\ell_e(2)} + \frac{f_3 - f_2}{\ell_e(1)} = 1 \end{aligned}$$

• We compute $f_3=14-\frac{5}{36}t_2-\frac{1}{9}t_3$. Best strategy for player 3: select $t_3\geq f_1$ (no overlap).

Does the exact topology of the network matter?

- No (as in congestion games)
- Yes

Example

- Two players.
- On the left they finish at times $f_1 = 7/2$, $f_2 = 9/2$.
- One the right they finish at times $f_1 = 4$, $f_2 = 5$.

What is the nature of the symmetric NE?

- Unique symmetric NE
- The probabilities NE drop linearly on every link
- The probabilities are non-zero only at integral multiples of $\ell_e(1)$. At these times, they drop linearly.

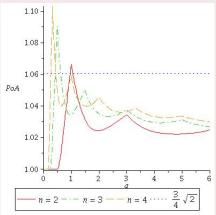
What is the nature of the optimal symmetric solution?

The optimal probabilities are identical to the Nash equilibrium of $\ell_e(k)=a_e^*k+b_e^*$ where

$$a_e^* = 2a_e \qquad b_e^* = b_e - a_e$$

What is the PoA?

- It is small
- \bullet For fixed network, it tends to $3\sqrt{2}/4\approx 1.06$ as the number of players tends to infinity.
- For small number of players n and one link



The structure of the NE — Boat model

ullet The cost of a player who uses edge e at time t is

$$d_{e,t} = t + \sum_{k=0}^{n-1} {n-1 \choose k} p_{e,t}^{k} (1 - p_{e,t})^{n-1-k} \ell_{e}(k+1)$$

= $t + a_{e} + b_{e} + (n-1) a_{e} p_{e,t}$

- NE if and only if: $p_{e,t} > 0$ implies $d_{e,t} = d = \min_{e,t} d_{e,t}$
- ullet At a symmetric NE: $p_{e,t} \geq p_{e,t+1}$
- The support $\{t: d_{e,t} = d\}$ is $\{0, 1, \dots, h_e\}$ for some integer h_e .

• The NE is the solution of the system

$d_{e,t} = d$ for $t \leq h_e$	They show that the probabilities
	drop linearly
$d_{e,h_e+1} > d$	It determines the parameters h_e as
	a function of the cost d
$\sum_{e,t} p_{e,t} = 1$	It determines d which happens to
,	be unique

Optimal cost of symmetric strategies — Boat model

The optimal cost L_{OPT} is the minimum of

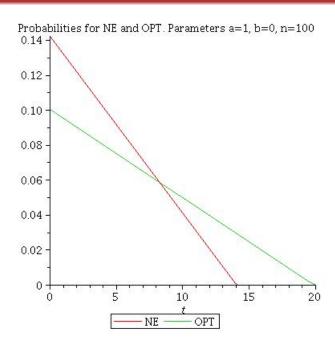
$$\sum_{e,t} p_{e,t}(t+a+b+(n-1)ap_{e,t}),$$

subject to $\sum_{e,t} p_{e,t} = 1$ and $p_{e,t} \geq 0$.

• Optimizing with a Lagrange multiplier we get that the probabilities are identical to the Nash equilibrium of $\ell_e(k) = a_e^* k + b_e^*$ where

$$a_e^* = 2a_e \qquad \qquad b_e^* = b_e - a_e$$

NE and OPT probabilities — Boat model



Price of anarchy — Boat model

The cost d of each player is

$$d \approx \frac{\sum_{e} \frac{a_{e} + b_{e}}{2(n-1)a_{e}} + \sqrt{\left(\sum_{e} \frac{a_{e} + b_{e}}{2(n-1)a_{e}}\right)^{2} - \left(\sum_{e} \frac{1}{2(n-1)a_{e}}\right)\left(\sum_{e} \frac{(a_{e} + b_{e})^{2}}{2(n-1)a_{e}} - 1\right)}}{\sum_{e} \frac{1}{2(n-1)a_{e}}}$$

$$\to \sqrt{\frac{2n}{\sum_{e} a_{e}^{-1}}}$$

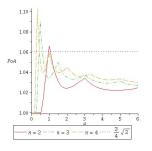
The optimal cost is

$$d^* =$$
 (a similarly complicated expression) $ightarrow rac{4}{3} \sqrt{rac{n}{\sum_e a_e^{-1}}}$

• The PoA tends to $3\sqrt{2}/4 \approx 1.06$, as *n* tends to ∞ .

More on the PoA — Boat model

When the number of players is relatively small, the PoA can be higher. Because of the integrality conditions, we analyze only the case of 1 link.



The POA is maximized when

- $a_e = 1/(n-1), b_e = 0$
- Pure equilibrium $p_0 = 1$
- ullet The optimal symmetric solution is $p_0=3/4$, $p_1=1/4$.
- For these values, we get

$$d = n/(n-1)$$
 $d^* = (7n+1)/(8(n-1))$ $PoA = 8n/(7n+1)$

Remarks — Boat model

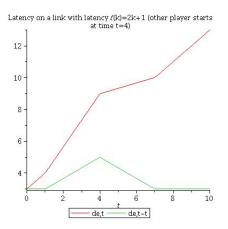
• The optimal solution is the NE of another boat game with latencies $\ell_e(k) = a_e^* k + b_e^*$ where

$$a_e^* = 2a_e \qquad b_e^* = b_e - a_e$$

- For linear latencies ($b_e = 0$), the parallel links act almost as parallel resistors with resistance a_e .
- Strategy can (almost) be partitioned
 - ullet First, select link e with probability proportional to $1/a_e$
 - Then, play the game in link e (with the expected number of players in it)

The structure of the NE — Conveyor belt model

- We consider only 2 players
- $ullet d_{e,t} = t + \ell_e(1) + (\ell_e(2) \ell_e(1)) \max \left(0, 1 rac{|t t'|}{\ell_e(1)}
 ight)$



The conveyor belt model for 2 players

NE on one link

• The cost of one player

$$d_t = t + \ell(1) + (\ell(2) - \ell(1)) \sum_{r=-\ell(1)}^{\ell(1)} \left(1 - \frac{|r|}{\ell(1)}\right) \rho_{t+r}$$

- Crucial step: Show that the support is $\{0, \ldots, h\}$. (But the probabilities are not decreasing!)
- $d_{t+1} 2d_t + d_{t-1} = p_{t-\ell(1)} 2p_t + p_{t+\ell(1)}$
- If t-1 and t+1 are in the support, then t is in the support.
- This argument can be extended to longer intervals
- Putting these together, we find that the probabilities $p_t, p_{t+\ell(1)}, p_{t+2\ell(1)} \dots$ drop linearly.
- ullet The probabilities are non-zero only at multiples of $\ell(1)$
- With this, it becomes very similar to the boat model

The conveyor belt model for 2 players

Optimal solution in one link

- The situation is similar in the optimal solution: It reduces to the boat model
- In both NE and the optimal symmetric solution:
 - Either the two players do not overlap
 - Or they start together
- As in the boat model. It extends to many links.

Questions (no answers yet)

Open problems

- Conveyor belt model for more players and general networks
- Adaptive strategies: monitor the situation for better timing
- Preemption. Players can abort and start over.

Thank you!