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Contention and Congestion

Congestion Contention

When two or more users try to
use the same resource, the cost
is higher

When two or more users try to
use a resource, nobody succeeds

Example: Congestion games /
Internet routing

Example: Ethernet / wireless

Strategy: Set of resources. Strategy of a user: Timing

In between: The cost depends both on the set of selected
resources and the timing.

Strategy: Set of resources + Timing



Our game-theoretic abstraction

The users play a congestion game but they also select the time
to start.

Each user decides which path to use and when. When users
use the same link at the same time they incur a higher cost.

In this talk

Congestion game: A set of parallel links with a�ne latencies.

A�ne latencies: When k users use link e, each one incurs cost
`e(k) = aek + be .

Symmetric strategies



Two models

The boat model

Only the group of players that start together a�ect
the latency of the group.

At every time step, a boat departs from the
source of the link

The speed of each boat depends only the number
of players on it

The conveyor belt model

The latency of a player depends on the number of
other players using the link concurrently.

The speed depends on the number of people on
the belt



Details of the models

Let `e(k) be the latency functions of the original congestion
game

If a player decides to play at time t, he pays the original
cost plus t

Each player has to complete a unit of work (or
distance). Each time step, the player completes work 1/`e(k)
where k is the number of players using the same link.

Example with 2 players: t1 t2 f1 f2

t2 − t1

`e(1)
+

f1 − t2

`e(2)
= 1

f1 − t2

`e(2)
+

f2 − f1

`e(1)
= 1



Related work

Contention

Game theoretic issues of Aloha / Slotted Aloha
[MacKenzie-Wicker 2003, Altman-El Azouzi-Jimenez, 2004].
Time-invariant strategies.

Time-dependent strategies for contention [Fiat-Mansour-Nadav
2007]. They study protocols with deadlines. They give a
protocol which has low price of stability, with high probability.

Extension to models with re-transmission cost
[Christodoulou-Ligett-Pyrga 2010]



Related work

Congestion

Atomic (�nite number of players), non-atomic (in�nite number
of players / �ow)

Non-atomic congestion games have been studied for decades

The atomic congestion games were introduced by Rosenthal in
1973

The Price of Anarchy (PoA) of was introduced in 1999
(K-Papadimitriou), for simple weighted atomic games

The PoA of non-atomic congestion games was �rst studied by
Roughgarden and Tardos in 2000

The Price of Stability (PoS) was �rst studied by Anshelevich et
al in 2003 for atomic games with decreasing latency functions.

The PoA and PoS of atomic games for linear latencies was
resolved in 2005 (Christodoulou-K, Awerbuch-Azar-Epstein)



Related work

Game-theoretic analysis of TCP

[Akella-Seshan-Karp-Shenker-Papadimitriou 2002] studies
TCP-like games. The strategies of a player are the parameters
of AIMD which are not time-dependent.

[Kesselman-Leonardi-Bonifaci 2005]. Game-theoretic issues of
packet switching. It studies the steady state (strategies are the
transmission rates).



Questions (and answers)

Are these congestion games?

Yes

Only for 2 players

Why?

Take copies of the original game G0, G1, . . . . Add t to the
latency functions of Gt .

For 2 players - 1 link: Take again copies of the original game
G0, G1, . . . . Change the latencies of Gt as follows:

`′et (1) = 1+

⌊
t

`e(1)

⌋
, `′et (2) = `et (1) +

`e(2)− `e(1)

`e(1)

The player has to play `e(1) consecutive games.

For 2 players and arbitrary network, there is a potential
function. Crucial: both players pay the same additive cost when they
share a link.

for 3 or more players: There are games that have no pure
(asymmetric) equilibria.



Questions (and answers)

Do they have pure equilibria?

Yes. Because they are congestion games.

Not in general. Even for the simple case of 1 link, 3 players,
a�ne latencies (`e(k) = 5k − 1).

`e(k) = 5k − 1

Start times: 0 = t1 ≤ t2 ≤ t3. Finish times: f1, f2, f3.
Assume that they all overlap, i.e., t3 < f1. The other case is similar.
t1 t2 t3 f1 f2 f3

t2 − t1

`e(1)
+

t3 − t2

`e(2)
+

f1 − t3

`e(3)
= 1

t3 − t2

`e(2)
+

f1 − t3

`e(3)
+

f2 − t3

`e(2)
= 1

f1 − t3

`e(3)
+

f2 − f1

`e(2)
+

f3 − f2

`e(1)
= 1

We compute f3 = 14− 5

36
t2 − 1

9
t3. Best strategy for player 3: select

t3 ≥ f1 (no overlap).



Questions (and answers)

Does the exact topology of the network matter?

No (as in congestion games)

Yes

Example

k

k + 1

k + 1

k + 1

k
k + 1

Two players.

On the left they �nish at times f1 = 7/2, f2 = 9/2.

One the right they �nish at times f1 = 4, f2 = 5.



Questions (and answers)

What is the nature of the symmetric NE?

Unique symmetric NE

The probabilities NE drop linearly on every link

The probabilities are non-zero only at integral multiples
of `e(1). At these times, they drop linearly.

What is the nature of the optimal symmetric solution?

The optimal probabilities are identical to the
Nash equilibrium of `e(k) = a∗ek + b∗e where

a∗e = 2ae b∗e = be − ae



Questions (and answers)

What is the PoA?

It is small

For �xed network, it tends to 3
√
2/4 ≈ 1.06 as the number of

players tends to in�nity.

For small number of players n and one link



The structure of the NE � Boat model

The cost of a player who uses edge e at time t is

de,t = t +
n−1∑
k=0

(
n − 1

k

)
pke,t (1− pe,t)

n−1−k `e(k + 1)

= t + ae + be + (n − 1) ae pe,t

NE if and only if: pe,t > 0 implies de,t = d = mine,t de,t
At a symmetric NE: pe,t ≥ pe,t+1

The support {t : de,t = d} is {0, 1, . . . , he} for some integer he .
The NE is the solution of the system
de,t = d for t ≤ he They show that the probabilities

drop linearly

de,he+1 > d It determines the parameters he as
a function of the cost d∑

e,t pe,t = 1 It determines d which happens to
be unique



Optimal cost of symmetric strategies � Boat model

The optimal cost LOPT is the minimum of∑
e,t

pe,t(t + a + b + (n − 1)ape,t),

subject to
∑

e,t pe,t = 1 and pe,t ≥ 0.

Optimizing with a Lagrange multiplier we get that the
probabilities are identical to the Nash equilibrium of
`e(k) = a∗ek + b∗e where

a∗e = 2ae b∗e = be − ae



NE and OPT probabilities � Boat model



Price of anarchy � Boat model

The cost d of each player is

d ≈

∑
e

ae+be

2(n−1)ae +

√(∑
e

ae+be

2(n−1)ae

)2
−
(∑

e

1

2(n−1)ae

)(∑
e

(ae+be)2

2(n−1)ae − 1
)

∑
e

1

2(n−1)ae

→
√

2n∑
e
a−1e

The optimal cost is

d∗ = (a similarly complicated expression)

→ 4

3

√
n∑
e
a−1e

The PoA tends to 3
√
2/4 ≈ 1.06, as n tends to ∞.



More on the PoA � Boat model

When the number of players is relatively small, the PoA can be higher.
Because of the integrality conditions, we analyze only the case of 1 link.

The POA is maximized when

ae = 1/(n − 1), be = 0
Pure equilibrium p0 = 1
The optimal symmetric solution is p0 = 3/4, p1 = 1/4.
For these values, we get

d = n/(n − 1) d∗ = (7n + 1)/(8(n − 1)) PoA = 8n/(7n + 1)



Remarks � Boat model

The optimal solution is the NE of another boat game with
latencies `e(k) = a∗ek + b∗e where

a∗e = 2ae b∗e = be − ae

For linear latencies (be = 0), the parallel links act almost as
parallel resistors with resistance ae .

Strategy can (almost) be partitioned

First, select link e with probability proportional to 1/ae
Then, play the game in link e (with the expected number of
players in it)



The structure of the NE � Conveyor belt model

We consider only 2 players

de,t = t + `e(1) + (`e(2)− `e(1))max
(
0, 1− |t−t

′|
`e(1)

)



The conveyor belt model for 2 players

NE on one link

The cost of one player

dt = t + `(1) + (`(2)− `(1))

`(1)∑
r=−`(1)

(
1− |r |

`(1)

)
pt+r

Crucial step: Show that the support is {0, . . . , h}. (But the
probabilities are not decreasing!)

dt+1 − 2dt + dt−1 = pt−`(1) − 2pt + pt+`(1)

If t − 1 and t + 1 are in the support, then t is in the support.

This argument can be extended to longer intervals

Putting these together, we �nd that the probabilities
pt , pt+`(1), pt+2`(1) . . . drop linearly.
The probabilities are non-zero only at multiples of `(1)
With this, it becomes very similar to the boat model



The conveyor belt model for 2 players

Optimal solution in one link

The situation is similar in the optimal solution: It reduces to
the boat model

In both NE and the optimal symmetric solution:

Either the two players do not overlap
Or they start together

As in the boat model. It extends to many links.



Questions (no answers yet)

Open problems

Conveyor belt model for more players and general networks

Adaptive strategies: monitor the situation for better timing

Preemption. Players can abort and start over.



Thank you!


