
Minkowski decomposition of convex lattice

polygons

Ioannis Z. Emiris and Elias P. Tsigaridas

Department of Informatics and Telecommunications
National University of Athens, HELLAS {emiris,et}@di.uoa.gr

Summary. A relatively recent area of study in geometric modelling concerns toric
Bézier patches. In this line of work, several questions reduce to testing whether a
given convex lattice polygon can be decomposed into a Minkowski sum of two such
polygons and, if so, to finding one or all such decompositions. Other motivations
for this problem include sparse resultant computation, especially for the implicitiza-
tion of parametric surfaces, and factorization of bivariate polynomials. Particularly
relevant for geometric modelling are decompositions where at least one summand
has a small number of edges. We study the complexity of Minkowski decomposi-
tion and propose efficient algorithms for the case of constant-size summands. We
have implemented these algorithms and illustrate them by various experiments with
random lattice polygons and on all convex lattice polygons with zero or one inte-
rior lattice points. We also express the general problem by means of standard and
well-studied problems in combinatorial optimization. This leads to an improvement
in asymptotic complexity and, eventually, to efficient randomized algorithms and
implementations.

1 Introduction

In this paper we study the decomposition of convex polygons with integral
vertices (also called lattice polygons) under the Minkowski sum, which is
defined as follows:

Definition 1. For any two subsets A and B in Z2, their Minkowski sum is
A ⊕ B = {a + b|a ∈ A, b ∈ B}. We call A and B the summands of A ⊕ B.

The definition of the Minkowski sum can be generalized to arbitrary dimen-
sion.

The decomposition problem has a great interest on its own. The recent
work on toric Bézier patches (e.g [7, 12, 13]), in geometric modelling, moti-
vates several questions around this problem, mainly testing whether a given
lattice polygon can be written as a Minkowski sum of two such polygons and,

2 Ioannis Z. Emiris and Elias P. Tsigaridas

if so, finding one or all such decompositions. Another application in implicit-
ization is the construction of matrices for the sparse resultant of 3 bivariate
polynomials, cf. [13, sec.10.3] or [23].

One important application of general Minkowski decomposition is bivariate
(and, eventually, multivariate) polynomial factorization. This is so because,
given a bivariate (multivariate) polynomial, we can associate with it its New-
ton polytope. As first observed by Ostrowski ([15]), if the polynomial factors,
then its Newton polytope decomposes.

First, we focus on Minkowski decompositions where at least one of the
summands is of constant size, namely it is a line segment, a triangle or a
quadrangle. These are particularly relevant when manipulating toric Bézier
patches with depth. In [13], the authors “extend blossoming, degree elevation
and implicitization techniques to arbitrary toric Bézier patches. [...] The key
idea to each of these algorithms is to employ decompositions based on the
Minkowski sum”. They add [13, Sec. 10.1] that “This approach to evaluation,
blossoming, and dual functionals works for any toric Bézier patch whose lat-
tice polygon decomposes into the Minkowski sum of line segments and unit
triangles”. A key step in the algorithm of [23] (cf [13, Sec. 10.3]) for construct-
ing resultant matrices for implicitization is to “decompose [Newton polygon]
A into a Minkowski sum of simpler lattice polygons, typically line segments
and triangles”.

We estimate the hardness, from an asymptotic complexity viewpoint, and
propose efficient algorithms for the case of constant-size summands. We relate
Minkowski decomposition to the k−sum problem, where an algorithm with
time complexity O(n⌈k/2⌉) or O(n⌈k/2⌉ lg n) exists but there are no matching
lower bounds. We have implemented these algorithms and illustrated them
on all lattice polygons with zero and one interior lattice points. Moreover, we
performed experiments on various data sets against the algorithm of Gao and
Lauder ([5]), which solves the general problem of Minkowski decomposition.

The decision problem of whether a lattice polygon admits a Minkowski
decomposition is NP-complete [5]. In the same paper, a pseudo-polynomial
algorithm is given with complexity in O((nDE)3), where n is the number of
edges in the polygon and DE is their maximum integer length. Note that DE
is exponential with respect to the bit size of the input, which is O(n lg (DE)).
We express the general problem by means of standard and well-studied prob-
lems in combinatorial optimization, such as the subset-sum problem. This
leads to an algorithm that improves the above bound by a factor of nD. Our
approach also leads immediately to approximation algorithms, to practical
methods amenable to fast implementations and to a probabilistic algorithm.
The implementation goes beyond the scope of the present paper.

Our paper is organized as follows. The next section defines the problem
and overviews relevant work. Section 3 presents our approach for Minkowski
decomposition of a lattice polygon to two summands, where at least one has
a given constant number of edges. Section 4 presents the implementation of
our algorithms, experiments with various random polygons and the decompo-

Minkowski decomposition of convex lattice polygons 3

sition of all, up to unimodal transformations, lattice polygons with zero and
one interior lattice points. In Section 5 we propose an algorithm for general
decomposition of a lattice polygon, that has better time complexity than the
one known so far. The last section presents our future research aims on the
problem of Minkowski decomposition.

In what follows O(·) (resp. OB(·)) indicates arithmetic (resp. bit) com-
plexity.

2 Definitions and previous work

The general problem that we deal with is:

Problem 2. minkowski-decomposition Given a lattice polygon Q, with
n vertices, decide if it is decomposable, that is if there are lattice polygons A
and B such that A ⊕ B = Q, where ⊕ denotes the Minkowski sum.

We are given a lattice polygon Q, with vertices v0, v1, . . . , vn−1, where
vj ∈ Z2, 0 ≤ j ≤ n− 1. For every edge of the polygon we associate the vector
u1 = (v1− v0), . . . , un = (v0 − vn−1). The polygon is completely characterized
by this sequence of vectors and the initial vertex v0. In what follows edge
means its vector.

Definition 3. Let u = (a, b) be a vector and d = gcd (a, b). The primitive
vector of u is e = (a/d, b/d).

We denote the sequence of all vectors ui as U and we call it the edge sequence.
For every vector ui = (ai, bi) of Q we associate the primitive vector ei, 1 ≤
i ≤ n. We call the sequence of all primitive vectors, primitive edge sequence
and denote it by E . Additionally we call A the set of all possible vectors

A = {kiei|1 ≤ i ≤ n, 1 ≤ ki ≤ di}

where di = gcd (ai, bi). Let

D = max {d1, . . . , dn},

E = max {e1x, e1y, . . . , enx, eny},

where (eix, eiy) are the coordinates of the primitive vector ei. Moreover let g be
the time needed for the computation of the gcd of two numbers of magnitude
DE. Using the Half-gcd algorithm ([22]) the gcd has bit complexity

g := OB(lg (DE) lg2 lg (DE) lg lg lg (DE))

The cost for computing A is OB (ng + nD M(max {D, E})) = OB(nDM(max {D, E})),
where M(τ) is the time needed for the multiplication of two numbers of length
τ . If we use FFT ([22]) the bit complexity of the multiplication is:

4 Ioannis Z. Emiris and Elias P. Tsigaridas

M(τ) = τ lg τ lg lg τ (1)

In terms of arithmetic complexity the cost of computing A is O(nD). However,
when the computation of A is needed, its cost is dominated by other steps in
the algorithms that we derive.

Lemma 4. Consider a lattice polygon Q, such that Q = A⊕B. Every edge of
Q is determined uniquely as the Minkowski sum of an edge of A and a vertex
of B, or as the sum of a vertex of A and an edge of B, or as a sum of two
parallel edges of A and B.

Hence, the set of the normals of Q is the union of the sets of the normals
of A and B.

Using Lemma 4, it is easy to show ([5]):

Lemma 5. A (lattice) polygon is a summand of Q if and only if its edge
sequence is of the form {kjej}j∈J , where J ⊆ {1, . . . n}, 0 ≤ kj ≤ dj , kj ∈ Z

and
∑

j∈J kjej = (0, 0) (the sum of the vectors that correspond to its edges is
zero).

Theorem 6. ([5]) The decision problem of whether a lattice polygon has a
Minkowski decomposition is NP-complete. There is an algorithm that decides
if a polygon is decomposable, which has complexity O(nDT), where T is the
number of interior lattice points of the polygon. However, T = O((nDE)2)
hence the complexity of the algorithm is O(n3D3E2).

Note that, if a polygon is decomposable, there is possibly an exponential
number of decompositions. The algorithm is pseudo-polynomial because its
running time is polynomial in the length of the sides of the polygon rather
than the logarithm of the lengths. In Section 5 we will present an algorithm
that improves the time complexity by a factor of nD.

The bound T = O(n2D2E2) ([6], [8, Chap. 7]) is tight. One way that it
can be achieved is as follows. Consider the lattice polygon of Fig. 1, where its
edge sequence is

s1 = (1, DE), s2 = (2, DE), . . . , sn = (n, DE), (0,−nDE), (−
n(n + 1)

2
, 0)

The area of the polygon is Θ(n3DE). If we assume that n = Θ(DE), then
its area is Θ(n2D2E2). The number of interior lattice points is asymptoti-
cally greater than the number of boundary lattice points. Also notice that
#(Boundary points) = O(n2). Now, using Pick’s formula

Area = #(Interior points) +
#(Boundary points)

2
− 1

we can deduce that the number of interior lattice points is asymptotically
Θ((nDE)2).

Minkowski decomposition of convex lattice polygons 5

n DE

s1

s2

sn

Fig. 1. A polygon with area O((nDE)2).

3 Constant-size summands

In this section we focus on the problem of decomposing a lattice polygon to two
summands, where at least one has a given fixed number of edges. Remember
that the input is a point sequence of cardinality n. We are dealing with two
different problems:

Problem 7. Decision k−summand

Given a lattice polygon, decide whether there is a Minkowski decomposi-
tion to two summands, such that at least one of them has k edges.

Problem 8. Enumeration k−summand

Given a lattice polygon, enumerate all Minkowski decompositions of it, to
two summands, where at least one of them has k edges.

In what follows, we examine in detail the cases where one summand
is a segment (2−summand), a triangle (3−summand) or a quadrilateral
(4−summand). The latter is generalisable to any fixed-size summand. We
deal with both decision and enumeration problems. When we do not mention
whether it is a decision or enumeration problem, it is clear from the context
to which one we refer to.

The decision k−summand problem can be solved using the k−sum prob-
lem. The latter is defined as follows:

Problem 9. k−sum

Given a set of m integers and a goal sum S, decide whether there are k of
them that add up to S.

The best known algorithm for the k−sum problem has time and space
complexity ([20, 21]) O(m⌈k/2⌉ lg m) and O(m⌈k/2⌉), respectively. When k is
odd the time complexity can be improved to O(m⌈k/2⌉). However, the deriva-
tion of a non-trivial lower bound for the k−sum problem in the algebraic
decision tree model or in the algebraic computation tree model is a major
open problem. The only known result is due to Erickson ([3]), who proved an
Ω(m⌈k/2⌉) lower bound in a certain restricted variant of the linear decision
tree model.

Theorem 10. An instance of the k−summand problem can be transformed to
an instance of k−sum, such that the instance of k−summand has a solution
if and only if the corresponding instance of k−sum has a solution.

6 Ioannis Z. Emiris and Elias P. Tsigaridas

Proof. Consider a lattice polygon Q, with n vertices. We compute A, in
O(nD). Every vector in A is of the form kei = k(eix, eiy), where 1 ≤ i ≤ n and
1 ≤ k ≤ di. For every vector in A we associate the number αik = k(eix+Leiy),
where L = (k + 1)DE.

This new set of αik’s has at most nD elements. Let the target be S = 0.
If we find k elements of this set, such that all of them correspond to different
primitive vectors and that sum up to zero, then a k−summand exists.

Notice that the size of the instance of k−sum is O(nD). ⊓⊔

The above transformation allows us to solve the k−summand problem
using the straight-forward algorithms of the k−sum and as a consequence
provides us with upper bounds for both time and space complexity. For k =
2, 3, 4 we have:

Decision 2−summand can be solved in O(nD lg (nD)) time and O(nD)
space.

Decision 3−summand can be solved in O(n2D2) time and O(nD) space.
Decision 4−summand can be solved in O(n2D2 lg (nD)) time and O(nD)

space.
As for the general case, the decision k−summand problem can be solved in

O
(

(nD)⌈k/2⌉ lg (nD)
)

and O
(

(nD)⌈k/2⌉
)

time, for k even and odd respectively

and O
(

(nD)⌈k/2⌉
)

space.
We improve almost all the bounds in the subsequent sections.
Following [4], we give the following definition:

Definition 11. Given two problems PR1 and PR2 we say that PR1 is f(n)−solvable
using PR2 if and only if every instance of PR1 of size n can be solved using
a constant number of instances of PR2 of at most linear size and O(f(n))
additional time. We denote this by

PR1 ≪f(n) PR2

Note that reduction implies, that when f(.) is sufficiently small, lower bounds
for the time complexity of PR1 carry over to PR2 and upper bounds for PR2

hold for PR1.
In order to prove lower bounds for the k−summand problem we use the

following:

Theorem 12. k−sum ≪n lg n k−summand

Proof. Consider the sequence {ai}1≤i≤n, where ai ∈ Z. We assume that the
sequence is sorted; if it is not, then we sort it in O(n lg n) time. Let M =
maxi |ai| and L = (k+1)M . We form the sequence {si = ai +L}1≤i≤n, where
0 ≤ s1 ≤ · · · ≤ sn. Next we consider the edge sequence (see Figure 2):

(s1, 1), (s2, 1), . . . , (sn, 1), (0,−n), (−kL,−1), (−

n
∑

i=1

ai − (n − k)L, 1)

Minkowski decomposition of convex lattice polygons 7

This sequence is an edge sequence of a lattice polygon, since both the sum
of the ordinates and the sum of the abscissae of the vectors equal zero, and
the angles of the edges are sorted, in clockwise order.

This polygon has a k−summand, if and only if there are k numbers in the
sequence {ai} that sum up to zero, since in this case the edge sequence of the
k−summand will be of form

(si1 , 1), (si2 , 1), . . . , (sik
, 1), (0,−(k − 1)), (−kL,−1)

where ij ∈ J and J is a subset of {1, . . . , n} of cardinality k. Proving the
forward direction is easy. The reverse can be proven by considering the cases
of summand edges and checking whether the y−coordinates sum to zero. ⊓⊔

s1

s2

sn

(0,−n)

(−kL,−1)(−
Pn

i=1 ai − (n − k)L, 1)

Fig. 2. Reduction of a k−sum to a k−summand problem.

The previous reduction indicates that the k−summand problem is at least as
hard as the k−sum problem, maybe harder. Actually, this is the case when
D > 1.

We consider as direction of a vector, the rational tangent of the angle
between the positive x−semi-axis and the vector in a counter-clockwise ori-
entation. For the algorithms that we will present direction and angle have the
same meaning. The direction (essentially tangent) is represented by a pair
of integer numbers, and each of them has magnitude at most DE. We can
compare two directions in OB(M(lg (DE))) bit complexity, where M(τ) is the
time needed for the multiplication of two numbers of length τ (see Eq. (1)).

In what follows, we measure the algorithms’ complexity using the arith-
metic model (real RAM [17]). However, we can deduce the bit complexity if
we multiply the derived complexities by either M(lg (DE)), if the comparison
of directions is needed, or lg (DE), if the comparison of coordinates is needed.

Furthermore, we assume that v0 is the bottom-left vertex, this means that
v1 is the vertex with the smallest direction. This is without loss of generality,
since we can find this vertex in time O(n). The key observation is that vectors
in both U and E sequences are sorted in increasing order with respect to direc-
tion, for any lattice polygon. Taking this into account we deduce algorithms
for the {2, 3, 4}−summand problem.

3.1 Line summand

Note that a 2−summand exists if and only if there are at least two parallel
edges. In order to decide if a line summand exists, we compute the vectors

8 Ioannis Z. Emiris and Elias P. Tsigaridas

that correspond to the edges of the lattice polygon, that is the sequence U , in
time O(n).

Since U is sorted with respect to direction, we split it to two sequences,
one that has directions in [0, π), say U1 and one that has directions in [π, 2π),
say U2. We can do this in O(n) time. We consider indices i and j that traverse
U1 and U2, respectively. This means that i starts from the minimum direction
of U1 and goes towards the maximum direction in U1 and the same for j in
U2. If the direction of U1[i] is smaller (resp. greater) than δ− π where δ is the
direction of U2[j], we advance i (resp. j). If the direction of U1[i] is smaller
than the direction of U2[j] by π, then a line summand exists. Both the time
and space complexity are O(n).

If we are interested in the enumeration 2−summand problem then we have
to find all the vectors with directions differing by π and for every such pair,
say with indices i and j, we compute the corresponding primitive vectors,
say ei and ej , and we output d pairs of vectors, (kei, kej), where 1 ≤ k ≤ d
and d = min {di, dj}. Then we advance both indices i and j and continue
the algorithm. This algorithm has time complexity O(n + t), where t is the
number of all possible line summands, which is at most nD

2 .
The previous discussion leads to the following theorem:

Theorem 13. There is an algorithm for the decision 2−summand problem
that has time complexity O(n). There is an algorithm for the enumeration
2−summand problem that has time complexity O(n+t). The space complexity
for both algorithms is O(n).

Both algorithms are optimal.

3.2 Triangle summand

e

p

e p

l
r

e

Fig. 3. Computing the triangle summands

In order to solve the decision problem for the 3−summand, first we com-
pute the primitive edge sequence E and sequence A, in time O(nD). Note that

Minkowski decomposition of convex lattice polygons 9

|A| = O(nD). Since A contains scalar multiples of the vectors in E , we can
assume that it is sorted in increasing order, first with respect to direction and
then with respect to x and y coordinates.

If a triangle summand exists then for some primitive vector e ∈ E there
are two indices r and l, where 1 ≤ r, l ≤ |A|, such that the direction of the
vector w = A[r] + A[l] is opposite to that of e.

Consider the case of the left half of Figure 3. Vector e = (ex, ey) is a prim-
itive vector and the dotted vector e = (ex, ey) = (−ex,−ey) is its opposite.
We consider an axis perpendicular to e, this is line p in the figure, and only
the vectors from A that lie in the same half-plane as e does. We can find these
vectors in time O(nD), since A is sorted with respect to direction. We denote
this sequence of vectors also by A. Note that this sequence is also sorted with
respect to direction.

With a suitable axis rotation, the case of the left half of Figure 3 is equiv-
alent to the one of the right half. From now on we will refer to the right half
since it is more intuitive. All vectors, except e, are elements of A.

In order to find if a triangle summand exists, we start with indices r = 1
and l = |A|, assuming that A is sorted from right to left as in Figure 3 (right).
Then, we examine all vectors of A trying to find values for the indices r and
l such that the direction of w = A[r] + A[l] is equal to the direction e. If this
happens, then we check if −wx

ex
and −

wy

ey
are the same integer between 1 and

d. If this is the case then a triangle summand exists, otherwise we advance
both r and l. If the direction of w is smaller, respectively larger, than the
direction of e, we advance r, respectively reduce l, by 1.

We traverse A in time O(nD) and since we have to do this for every vector
in the primitive edge sequence, the total time for the decision algorithm is
O(n2D) and its space complexity is O(nD).

If we are interested in the enumeration problem we advance both indices
r and l, when we find direction equality, and so we enumerate all the possible
triangle summands. The total time for the algorithm is O(n2D + t), where t
is the number of all possible triangle summands.

The previous discussion leads to the following theorem:

Theorem 14. There is an algorithm for the decision 3−summand problem
that has time complexity O(n2D). There is an algorithm for the enumera-
tion 3−summand problem that has time complexity O(n2D + t). The space
complexity for both algorithms is O(nD).

There is an alternative algorithm for the decision problem that runs in
O(n3) arithmetic complexity or OB(n3g) bit complexity and space complexity
O(n lg (DE)). First we compute the primitive edge sequence E , in time OB(ng)
bit complexity. If a triangle summand exists then at least one of the O(n3)
systems of Diophantine equations and inequalities

10 Ioannis Z. Emiris and Elias P. Tsigaridas

aieix + ajejx + akekx = 0

aieiy + ajejy + akeky = 0

1 ≤ ai ≤ di, 1 ≤ aj ≤ dj , 1 ≤ ak ≤ dk

where 1 ≤ i < j < k ≤ n, must have an integer solution. As for the bit com-
plexity of the solution of the above system, it is dominated by the computation
of gcd (eix, ejx, ekx) and gcd (eiy , ejy, eky) and so it is OB(g).

As for the enumeration problem, we must solve all these systems and
thus the algorithm has O(n3 + t) arithmetic complexity or OB(n3g + t) bit
complexity.

From the previous discussion follows that the decision 3−summand can
be solved in polynomial time arithmetic complexity. Typically, n is large com-
pared to D, so Th. 14 is preferable, hence we do not extend this approach
further.

3.3 Quadrangle summand

In order to deduce an algorithm for the decision 4−summand problem, we
compute the primitive edge sequence E and then the sequence A in time
O(nD). We compute the sequence of all vectors that are sums of two distinct
vector of A in time O(n2D2). We call this sequence A2. We sort A2, first with
respect to the x−coordinate and then with respect to the y−coordinate, in
time bounded by O(n2D2 lg (nD)).

For every vector in A2, we search A2 for a vector with opposite x and y co-
ordinates. We can do the search in O(lg (nD)) time. Thus the total time of this
decision algorithm is O(n2D2 lg (nD)) and its space complexity is O(n2D2).

If we want to enumerate all the possible quadrangle summands we perform
the search for every vector in A2. Thus the complexity for the enumeration
algorithm is O(n2D2 lg (nD) + t), where t is the number of all possible quad-
rangle summands.

In practice we can eliminate the logarithmic factors since we can use a hash
structure in order to keep the elements of A2. If we want to reduce the space
requirements, we can use a special data structure that produces (in increasing
or decreasing order) all possible sums of two vectors (see [20]) which has space
complexity O(nD) and access time O(lg (nD)).

The previous discussion leads to the following theorem:

Theorem 15. There is an algorithm for the decision 4−summand problem
that has time complexity O(n2D2 lg (nD)). There is an algorithm for enumer-
ation 4−summand problem that has time complexity O(n2D2 lg (nD)+t). The
space complexity for both algorithms is O(nD).

Minkowski decomposition of convex lattice polygons 11

3.4 Summand with k edges

For the general k−summand problem we have to distinguish between two
cases, when k is odd or even. As in the previous sections first we discuss the
decision problem.

In both cases, first we compute the sequences E and A and then we com-
pute all the possible sums of ⌊k

2 ⌋ vectors of A. Since the size of A is O(nD),

this computation can be done in O((nD)⌊
k
2
⌋) and the space required is of the

same order. We call this sequence A k
2
.

If k is odd then we sort A k
2
, first with respect to direction, then with

respect to x−coordinate and finally with respect to y−coordinate. This can
be done in O((nD)⌊

k
2 ⌋ lg (nD)). After this we proceed as in the 3−summand

case. For every primitive vector e ∈ E , we traverse A k
2

with two pointers: One

that goes from left to right and another from right to left, in order to find two
vectors of A k

2
such that the direction of their sum is opposite to the direction

of e. The time complexity of this algorithm is O(n⌈ k
2 ⌉D⌊ k

2 ⌋+(nD)⌊
k
2 ⌋ lg (nD))

or O(n⌈ k
2 ⌉D⌊ k

2 ⌋) if we assume that n > lg (nD).
If k is even then we proceed as in the 4−summand case, that is we sort

A k
2
, first with respect to the x−coordinate and then with respect to the

y−coordinate. This can be done in O(n⌈ k
2 ⌉D⌊ k

2 ⌋ lg (nD)). Note that since k is
even ⌈k

2 ⌉ = ⌊k
2⌋. Finally, for every vector of A k

2
, we search A k

2
, for a vector

with opposite x and y coordinates. The search can be performed in O(lg (nD))

time. Thus the total time for the algorithm is O(n⌈ k
2 ⌉D⌊ k

2 ⌋ lg (nD)).
As for the enumeration problem, in both cases, we continue the search

when a k−summand is found.
The previous discussion leads to the following theorem:

Theorem 16. There is an algorithm for the decision k−summand problem
that has time complexity O(n⌈ k

2 ⌉D⌊ k
2 ⌋λ), where λ = 1 if k is odd and λ =

lg (nD) if k is even.
There is an algorithm for the enumeration k−summand problem that has

time complexity O(n⌈ k
2 ⌉D⌊ k

2 ⌋λ + t), where t is the number of all possible de-
compositions to two summands, where at least one of them has k edges.

The space complexity for both algorithms is O((nD)⌊
k
2 ⌋).

4 Implementation and application to polygons with zero

and one lattice interior point

This section sketches our implementations of the above algorithms, their ap-
plication to computing all Minkowski decompositions of all polygons with one
lattice interior point as well as polygons without interior lattice points and
experiments with various datasets.

12 Ioannis Z. Emiris and Elias P. Tsigaridas

We implemented our algorithms in C++ and we used the geometric library
CGAL ([1]). CGAL has classes that refer to points, vectors and polygons
and operations on them. Additionally, there is a class for the direction (in
Q) of a vector and comparisons between them. Our code is freely available at
http://www.di.uoa.gr/˜et.

We performed all experiments on a 2.6GHz Pentium, with 1GB memory,
running Linux, with kernel version 2.6.10. We compiled the programs with
g++, v. 3.3.5, with options -O3 -DNDEBUG.

4.1 Experiments with random lattice polygons

We performed various experiments so as to check the efficiency of our al-
gorithms for the decision {2, 3, 4}−summand problems. We refer to these
algorithms as ET(s), ET(t) and ET(q). We also implemented in CGAL the
algorithm of Gao and Lauder ([5]), which decides the general problem of
Minkowski decomposition. We refer to this algorithm as GL. The running
times of the experiments are presented in Table 1. All the times are in msec.

Columns Ak, Bk, Ck and Dk, where k ∈ {10, 20, 30, 40, 50, 60, 70}, refer
to 500 lattice polygons with k edges, sampled in [0, 3000] × [0, 3000]. The
polygons in Bk, Ck and Dk, were constructed such that they have at least one
segment, one triangle, one quad summand, respectively. Columns Ek, refers
to 500 lattice polygons that are the convex hull of 50 random lattice points
in [0, k] × [0, k].

In all cases our algorithms are considerably faster. This is the case be-
cause the ET algorithms are dedicated for constant-size summands and solve
a polynomial problem, while GL is an algorithm for the general problem which
is NP-complete. Special notice must be paid to the running times of ET(s),
which are more or less the same on all data sets. The reason is that the com-
plexity of ET(s) depends linearly only on the number of edges of the polygon.
Additionally, most of the time of the GL algorithm is spent for the computa-
tion of the integer points of the tested lattice polygon. As a consequence the
running times of GL for the data sets Ak, Bk, Ck, Dk, where the polygons have
a large number of lattice points, are not satisfactory. However in Ek, where
the polygons have a small number of lattice points, the running times of GL
are quite competitive.

Even though current experiments show the superiority of the special pur-
pose algorithms, a more careful implementation and a more detailed experi-
mental analysis is needed.

4.2 Lattice polygons with one lattice interior point

There are only 16 lattice polygons with one lattice interior point, modulo
unimodular transformations, as proven in [18] (see also [19]). We compute all
decompositions into Minkowski summands. The results are in Figure 4 and 5.
These polygons are of particular interest for toric Bézier patches ([7, 12, 13]).

Minkowski decomposition of convex lattice polygons 13

A10 A20 A30 A40 A50 A60 A70

ET(s) 0.007 0.01 0.02 0.03 0.04 0.04 0.05

ET(t) 1.1 5.1 9.6 16.5 30.1 40.3 56.2

ET(q) 1.6 6.2 11.6 19.1 34.4 46.1 65.1

GL 11150 15270 22050 23995 23370 26205 27315

B10 B20 B30 B40 B50 B60 B70

ET(s) 0.004 0.006 0.008 0.01 0.01 0.02 0.02

ET(t) 4.3 7.2 9.7 17.3 25.5 39.3 49.9

ET(q) 3.3 9.2 12.1 19.2 29.7 44.8 57.4

GL 27330 50105 37930 53635 46345 54205 36475

C10 C20 C30 C40 C50 C60 C70

ET(s) 0.003 0.006 0.008 0.01 0.01 0.02 0.02

ET(t) 1.8 3.6 10.4 16.3 27.8 37.5 53.7

ET(q) 2.6 5.3 12.7 18.2 33.0 43.2 62.1

GL 25630 27065 52810 37215 84510 86555 51465

D10 D20 D30 D40 D50 D60 D70

ET(s) 0.003 0.006 0.008 0.01 0.01 0.02 0.02

ET(t) 1.6 5.2 9.4 19.3 28.3 43.2 54.3

ET(q) 1.9 5.5 11.2 22.4 33.5 49.5 63.1

GL 32950 78840 72230 71240 75805 64690 73335

E10 E20 E30 E40 E50 E60 E70

ET(s) 0.002 0.003 0.003 0.003 0.004 0.004 0.004

ET(t) 0.1 0.4 0.3 0.4 0.4 0.5 0.5

ET(q) 0.1 0.3 0.4 0.4 0.5 0.6 0.6

GL 0.1 0.2 0.4 0.7 1.2 1.6 2.2

Table 1. Experimental results

4.3 Lattice polygons without interior lattice points

We have computed all the decompositions of lattice polygons with zero interior
lattice points and area less than or equal to 3. All possible decompositions are
in Figure 6.

Using the enumeration algorithms for {2, 3, 4}−summand of the previous
section we can decompose all the polygons, up to unimodular transforma-
tions, without interior lattice points. All the decompositions are presented in
Figure 7.

First we need to define all such polygons and so we state the following
theorem:

Theorem 17. [19] Any lattice polygon without interior lattice points is uni-
modular equivalent to a polygon Tm,n with vertices {(0, 0), (0, 1), (m+n, 0), (n, 1)},
where m, n ≥ 0, or to the triangle ∆2 with vertices {(0, 0), (2, 0), (0, 2)}.

14 Ioannis Z. Emiris and Elias P. Tsigaridas

b

b

b

b b

b

b

⊕
b

b

b b

b

b

b

b

b

b b

b

b

b

b

b b

b

b

b b

b

b

b

b

b

⊕
b

b

b

b b

b

b

b

b b

b

b

b b

b

b

⊕
b

b

b

b b

bb

b bb ⊕
b

b

b

b

b

b

⊕
b

bb

b

b b

b

b b

b

b

b

⊕
b

b

b

b b

b

bb

b b bb ⊕ b

b

b

b

b

b

⊕
b

bb

b

b

b

⊕
b

bb

b

bb

b

⊕
b

b

b

b b

b

b

b b

b

b

⊕
b

b

b

b

b

b

⊕
b

b

b

Fig. 4. Minkowski decomposition of lattice polygons, with one interior lattice point
(continued in next figure).

The edge sequence of ∆2 is {2(1, 0), 2(−1, 1), 2(0,−1)}. It is easy to see that
∆2 admits a Minkowski decomposition, to two equal triangle summands. If ∆1

is the triangle with vertices {(0, 0), (1, 0), (0, 1)}, then ∆2 = ∆1 ⊕ ∆1 = 2∆1.
Notice that ∆2 and ∆1 are homothetic. The decomposition is illustrated in
the first row of Figure 7.

In order to decompose all lattice polygons Tm,n we distinguish the following
cases:

• m ≥ 1, n = 0
In this case T1,0 is a triangle with vertices {(0, 0), (m, 0), (0, 1)} and its edge
sequence is {(m, 0), (−m, 1), (0, 1)}. It very easy to check that this triangle
is irreducible with respect to Minkowski sum. We can reach the same result
if we use the approach of [5, Th. 8] by checking that gcd (0, 1, m) = 1.

• m = 0, n ≥ 1

Minkowski decomposition of convex lattice polygons 15

b b

b

b b

b

b

⊕
b

b

b

b b

bb

b

b

b

⊕ bb

bb ⊕
b

bb

b

b

b

⊕
b

bb

b

b

bb

b

⊕
b

bb

b

b b

b

b

b

b

b

⊕
b

b

b

b b

b

bb

b bb ⊕
b

b

b

b

b

b

⊕
b

bb

b

b

b

b

⊕
b

bb

b

Fig. 5. Continued: Minkowski decomposition of lattice polygons, with one interior
lattice point.

In this case, T0,n is a rectangular with vertices {(0, 0), (n, 0), (n, 1), (0, 1)}
and its edge sequence is {(n, 0), (0, 1), (−n, 0), (0,−1)}. The Minkowski
decomposition of this polygon is either two line segments (this is the first
equality of the second row of Figure 7) or a line segment and a rectangle
(this is the second equality of the second row of Figure 7, where 1 ≤ k ≤
n). The last equality of the second row of Figure 7 presents the unique
Minkowski decomposition of T0,n to n + 1 irreducible summands.

• m ≥ 1, n ≥ 1
In this case, Tm,n is a trapezoid with vertices {(0, 0), (m+n, 0), (n, 1), (0, 1)}
and its edge sequence is {(m+n, 0), (−m, 1), (−n, 0), (0,−1)}. We can de-
compose Tm,n, either to a Minkowski sum of a line segment and a trapezoid
(this is the first equality of the third row of Figure 7, where 1 ≤ k ≤ n)
or to a Minkowski sum of triangle and a line segment (this is the sec-
ond equality of the third row of Figure 7). The last equality of the third

16 Ioannis Z. Emiris and Elias P. Tsigaridas

row of Figure 7 presents the unique Minkowski decomposition of T0,n to
irreducible summands.

b b

b

b b

bb b

b

⊕ bb

b b

b

b b

b

b b

bb

bb ⊕
b

b

b

b b

b

b

b

b

⊕
b

b

b

b b

bb b

b

⊕ bb

bb ⊕
b

bb

b

b b

b

b b

bb

bb ⊕
b

b

b

b b

b

b b

bb

bb ⊕
b

b

b

b b

bb

bb ⊕
b

b

b

bb ⊕
b

bb

b

b b

bb b

b

⊕ bb

bb ⊕
b

bb

b

bb ⊕
b

bb

b

b b

b

b b

bb

bb ⊕
b

b

b

bb ⊕
b

bb

b

b b

bb

bb ⊕
b

b

b

Fig. 6. Minkowski decomposition of lattice polygons, with zero interior lattice points
and area less than or equal to 3.

5 Improving the general decomposition algorithm

In this section we return to the general problem, minkowski-decomposition,
and propose a different approach than the one by Gao and Lauder ([5]). This
shall improve the asymptotic complexity. More importantly, we expect our
approach to lead to efficient implementations in practice and to permit ran-
domized and approximation algorithms.

The main idea is that it suffices to find combinations of vectors such that
their sum is zero. Note that the sum of a subset of the vectors is zero iff both
the sum of x−coordinates and the sum of y−coordinates is zero.

We need the definition of the subset-sum problem, which is an NP-
complete problem:

Problem 18. subset-sum

Minkowski decomposition of convex lattice polygons 17

∆2

T0,n

Tm,n

n

n

n

n

m

m

mm n − k

n − k

k

k

1

1

1

1

1

1

11

1

1

2

2

n ×

n ×
=

=

=

=

=

=

=

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Fig. 7. Minkowski decompositions of all lattice polygons without interior lattice
points.

Given a set of n positive integers and a goal sum S, decide whether there
exists a subset, such that its elements add up to S.

We use the following transformation:

Lemma 19. An instance of a minkowski-decomposition problem can be
transformed to an instance of a subset-sum problem, such that the instance
of minkowski-decomposition admits a solution if and only if the instance
of subset-sum admits a solution.

18 Ioannis Z. Emiris and Elias P. Tsigaridas

Proof. Let Q be a lattice polygon with n vertices, and also let DE be the
maximum integer length of its coordinates. We compute the primitive edge
sequence E . We consider the coordinates of the primitive vectors ei and we
associate to every vector the positive number ai = eix + Leiy + DE, where
1 ≤ i < n and L sufficiently large, for example L = nDE. We add the quantity
DE to every ai so that ai > 0, 1 ≤ i < n. We consider di copies of each ai,
thus the total number of them is

∑n
i=1 di = O(nD).

Now our transformation is complete since the polygon Q is decomposable
if and only if there is a subset of the ai’s that sums up to zero. The key idea is
that if an ai belongs to a subset that sums up to zero then its corresponding
edge belongs to a summand of the polygon and vice versa.

Notice that the transformation takes O(nD) time, which is also the size
of the instance of the subset-sum problem. ⊓⊔

The time for solving subset-sum via dynamic programming is O(N2W)
(see for example [9], [2]) where N is the cardinality of the set and W is an upper
bound on the absolute value of every element. In our case N = O(nD) and
W = O(nDE2), thus the total complexity of the algorithm is O(n3D3E2). The
complexity of this algorithm is the same as the complexity of the algorithm
in [5].

However, our approach may use the dynamic programming paradigm and
is completely different from the one in [5], since we completely avoid the com-
putation of the interior lattice points of the polygon. Moreover, if we use a
balancing algorithm ([16]) for solving the corresponding subset-sum prob-
lem, which is the best available and has time complexity O(NW), then the
complexity of our algorithm is O(n2D2E2). Thus, we improve the complexity
by a factor nD.

So we have the following theorem

Theorem 20. There is an algorithm for the decision minkowski-decomposition

problem that has O(n2D2E2) arithmetic complexity.

6 Future work

In order to enumerate all possible summands of a polygon, following the ap-
proach of Section 5, we can use the various algorithms for the partition

problem (refer to [9]). However, a detailed experimental analysis is needed in
order to decide the best approach.

Additionally, our approach of section 5 can easily lead to a randomized
algorithm. We pick L = nDE. The quantities are of the form ai = eix + Leiy,
of max-value E(L+1), and there are di ≤ D copies of each ai. So the maximum
sum value is nDE(L + 1) = O((nDE)2).

In order to check if a sum vanishes mod p, where p > 0 is a random
integer, we have to bound the probability Pr[failure], that random sum S ∈
[0, nDE(L + 1)], vanishes mod p, when S 6= 0, where p is a prime uniformly

Minkowski decomposition of convex lattice polygons 19

distributed in [2, . . . , x]. We can do this using the randomized algorithm for
verifying equality of strings from [14].

Lemma 21. [14] Let a, b be two numbers with τ bits each. If a 6= b, then

Pr[failure] = Pr[a = b mod p] <
1

2

where p is a prime uniformly distributed in [2, . . . , 4τ2].

In our case a = 0 and b = S, so we need τ ≃ 2 lg (nDE) bits to encode them.
Thus we can use the previous lemma, if we choose a prime in [2, . . . , 4τ2], to
obtain Pr[failure] < 1

2 .
Last, but not least, the reduction to the subset-sum problem, can lead

to approximate algorithms for the Minkowski decomposition. The first step
towards this direction may be the adoption of the first fully polynomial-time
approximation scheme for the subset-sum problem that Ibbara and Kim
suggested in [10] or the adoption of the best known, so far, approximation
algorithm of Kellerer et al ([11]).

Acknowledgments

Both authors acknowledge partial support by Kapodistrias, project 70/4/6452
of the Research Council of National University of Athens and by PYTHAGO-
RAS, project 70/3/7392 under the EPEAEK program funded by the Greek
Ministry of Educational Affairs and EU.

References

1. CGAL: Computational geometry algorithms library. http://www.cgal.org.
2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.
3. J. Erickson. Lower bounds for satisfiability problems. Chicago J. of Theoretical

Computer Science, 8, 1999. http://cjtcs.cs.uchicago.edu/articles/1999/8/contents.html

4. A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computa-
tional geometry. Computational Geometry, Theory and Applications, 5(3):165–
185, October 1995.

5. S. Gao and A. G. B. Lauder. Decomposition of polytopes and polynomials.
Discrete and Computational Geometry, 26:89–104, 2001.

6. S. Gao and A. G. B. Lauder. Fast absolute irreducibility testing via Newton
polytopes. preprint, 2004.

7. R. Goldman. Pyramid Algorihtms: A dynamic approach to curves and surfaces

for geometric modelling. Morgan Kaufmann, 2002.
8. J. E Goodman and J. O’ Rourke. Handbook of computational geometry. Elsevier

science, Amsterdam, 1995.

20 Ioannis Z. Emiris and Elias P. Tsigaridas

9. E. Horowitz and S. Shani. Computing partitions with applications to the knap-
sack problem. Journal of ACM, 21(2):277–292, April 1974.

10. O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. J. ACM, 22(4):463–468, 1975.

11. H. Kellerer, R. Mansini, U. Pferschy, and M. G. Speranza. An efficient fully
polynomial approximation scheme for the subset-sum problem. J. Comput.

Syst. Sci., 66(2):349–370, 2003.
12. R. Krasauskas. Toric surface patches: Advances in geometrical algorithms and

representations. Adv. Comput. Math., 17(1-2):89–113, 2002.
13. R. Krasauskas and R. Goldman. Toric Bezier Patches with Depth. In R. Gold-

man and R. Krasauskas, editors, Topics in Geometric Modeling and Algebraic

Geometry, volume 334, pages 65–91. AMS Mathematics of Computation, 2003.
14. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
15. A. M. Ostrowski. Über die Bedeutung der Theorie der konvexen Polyeder für

die formale Algebra. Jahresberichte Deutsche Marth. Verein 30 (1921), 98–99.
16. D. Pisinger. Algorithms for the Knapsack problems. PhD thesis, Department of

Computer Science, University of Kopehagen, February 1995.
17. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag, 3rd edition, October 1990.
18. S. Rabinowitz. A census of convex lattice polygons with at most one interior

lattice point. Ars Combinatorica, 28:83–96, 1989.
19. J. Schicho. Simplification of surface parametrizations - a lattice polygon ap-

proach. J of Symbolic Computation, 36:535–554, 2003.
20. G. Woeginger. Open problems around exact algorithms. Manuscript, TU Eind-

hoven, 2004.
21. G. Woeginger. Exact algorithms for NP-hard problems: A survey. In M. Juenger,

G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization - Eureka! You

shrink!, volume 2570, pages 185–207. LNCS, Springer, 2003.
22. C.K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University

Press, New York, 2000.
23. S. Zube. The n-sided toric patches and the A-resultants. Computer Aided

Geometric Design, 17:695–714, 2000.

