
In Proceedings of the 4th ISCA Tutorial and Workshop on Speech Synthesis (SSW4), Perthshire, Scotland, September
2001, pp. 167-172

 167

The DEMOSTHeNES Speech Composer

Gerasimos Xydas and Georgios Kouroupetroglou

University of Athens, Department of Informatics and Telecommunications
Division of Communication and Signal Processing
Panepistimiopolis, Ilisia, GR-15784 Athens, Greece

{gxydas, koupe}@di.uoa.gr

Abstract
In this paper we present the design and development of a
modular and scalable speech composer named
DEMOSTHeNES. It has been designed for converting plain
or formatted text (e.g. HMTL) to a combination of speech and
audio signals. DEMOSTHeNES' architecture constitutes an
extension to current Text-to-Speech systems� structure that
enables an open set of module-defined functions to interact
with the under processing text at any stage of the text-to-
speech conversion. Details on its implementation are given
here. Furthermore, we present some techniques for text
handling and prosody generation using DEMOSTHeNES.

1. Introduction
A number of modular Text-to-Speech (TtS) systems have
been developed during the last years, like CHATR [1],
FESTIVAL [2] and EULER [3]. The two major issues for
such architectures are how to accommodate the plethora of
different linguistic representations and how to make an
efficient usage of the information that these representations
carry. Both issues have been well dealt by the FESTIVAL
system via the introduction of the Heterogeneous Relation
Graph (HRG) [4].

DEMOSTHeNES Speech Composer [5] has been
carefully designed in order to be a scalable system, flexible to
modifications. The core of DEMOSTHeNES is based on the
HRG, which was first implemented in FESTIVAL as its basic
UTTERANCE structure. However, the architecture of
DEMOSTHeNES differs, in order to enable the
implementation of the e-TSA Composer presented in [6] and
[7], but also to allow a more functional communication
between the various modules of the system.

An example of the importance of that issue is this: Some
TtS applications support the insertion of a small set of �tags�
within a document, in order to change their auditory behavior.
For example, the tag <slow> in the text

His name is <slow>John</slow>.

allows in some applications the user to slow down the
speaking rate. However, these �tags� are very specific and
usually the systems that use them have a monolithic
architecture and thus they are easy to be interpreted. On the
other hand, modular architectures need a more flexible
mechanism for embedding such �tags� in a text. Moreover,
these �tags� cannot be pre-defined, but should be defined
according to the available functionality of the system. Our
approach does not target to the provision of an open set of
such �tags� to the user, like mark-up languages like the
VoiceXML[8] do. According to DEMOSTHeNES

specifications, the system has to generate them by the source
text. Thus, we call these �tags� embedded instructions.

Another issue that raised the need for an extension to
current architectures came from the fact that modern TtS
systems ([2] and [3]) manipulate the information not in a raw
but in more complex and linked structures (e.g. metrical trees,
MLDS etc). Thus, there should be a mechanism for
synchronizing the ordinary information that is being analyzed
with any embedded instruction.

The rest of this paper is organized as follows: in
paragraph 2 we present the architecture of DEMOSTHeNES.
In paragraph 3 and 4 we present specific implementation of
text handling and prosody generation.

2. Architecture
DEMOSTHeNES is a modular and open system. Its
functionality is defined by customized plug-ins, the modules.
Each module can implement an arbitrary number of linguistic,
phonological, acoustical etc functions. However, they need a
mean for communicate with each other and exchange
functionality. This is being done by the kernel and its
components that store the shared data that modules exchange.

Thus, there are three basic elements (classes) in the
architecture of DEMOSTHeNES (prefix �V� in the following
terms stands for �Vocal�):

• VSERVER, which is a communication channel for

the rest elements,
• VCOM (component), which provides essential

structures and services concerning linguistic,
phonological, acoustical etc procedures and

• VMOD (module), which inherits from VCOM and
manipulates the structures of VCOMs, implements
extra functionality and defines the behavior of the
system, as a linked element (plug-ins).

We will present them in the next paragraphs in detail. The

basic diagram of this architecture is given in Figure 1. This
scheme is very scalable in terms of functionality and
performance, as it can be downscaled to meet specific
hardware specifications and also allows modules to be
inserted and removed, modifying the capabilities of the
system.

2.1. Vocal Server (VSERVER)

VSERVER actual implements a Directory Service where all
the available functionality offered by VCOMs and VMODs is
stored. The Directory Service reserves a namespace for each
VCOM (and VMOD), where it keeps information (signatures)
about the name and the address of the services they offer as

In Proceedings of the 4th ISCA Tutorial and Workshop on Speech Synthesis (SSW4), Perthshire, Scotland, September
2001, pp. 167-172

 168

well as their attributes. For example, a VMOD can look up
for the VCOM that implements the Heterogeneous Relation
Graph (HRG). Upon getting its signature from the Directory
Service, it can ask for the service that sequentially parses the
nodes of a particular linguistic level (e.g. the �syllable� level)
in order to process them. VSERVER is the linchpin of all the
elements in this architecture. This is a difference between the
architecture of DEMOSTHeNES and FESTIVAL: in the
latter, modules normally communicate by passing references
to an UTTERANCE object. In DEMOSTHeNES, modules
ask for specific services.

2.2. Vocal Component (VCOM)

Specific care has been set for enhancing the flexibility of the
system. Thus, it is possible to implement all the functionality
of a TtS system using only VMODs. However, there are
essential data structures and services in the procedure of
converting text to speech that are useful or shared across
different VMODs. This global and shared character of
particular data and methods has been wrapped in the VCOM
elements of DEMOSTHeNES. A sample list of implemented
components follows: HRG, Decision Trees, Pitch, Time,
CART, User Profile, Audio, Security and Interface. VCOMs
are currently hard coded elements and if modifications are
needed, major compilation should taken place.

2.3. Vocal Module (VMOD)

Further manipulation of the data stored in VCOMs is being
done by the modules (VMODs). The VMOD class inherits
from VCOM. There are two differences: (a) VCOMs have a
global scope, while VMODs have not and (b) VMOD offer a
very light interface (described bellow) while VCOM�s is
more detailed.

VMODs are placed in a logical sequence (chain), which
defines the actual process of the text-to-speech conversion.
They do not communicate with each other, apart from the
option of using the Exported Methods of other VMODs (see
§2.4.1). This is a simple chain:

vserver->addModule(vmod_infeeder);
vserver->addModule(vmod_text2sound);
vserver->addModule(vmod_infilter);
vserver->addModule(vmod_syllablation);
vserver->addModule(vmod_wordation);
vserver->addModule(vmod_phrasation);

vserver->addModule(vmod_dur_cart);
vserver->addModule(vmod_pitch_syllable);
vserver->addModule(vmod_pros_breath);
vserver->addModule(vmod_mbrola);

where vserver is a pointer to the unique instance of the
VSERVER class, and any vmod_xxxxxx is an istance of a
corresponding VMOD class. The names of the latter roughly
present the functionality of each module (�dur� stands for
duration, �pros� for prosody). This list also indicates the
sequence of execution of each VMOD.

2.3.1. Interface

The interface of VMODs is very simple and consists of only
three methods:

1. initialize(): all the significant initialization is
taking place here. Called automatically after a
successful registration.

2. apply(): the core of the module. When the chain is
executed, the apply() method of each registered
VMOD is called.

3. finalize(): called when the chain class is
destroyed.

In contrast with the above, VCOMs offer more complicated
and detailed interfaces to the system, in order for VMODs to
take full advantage of them.

2.3.2. Text annotation and reports

Producing annotated text from a TtS system is very useful for
corpus creation, as well as for creating training data. Trained
models are widely used in TtS systems, especially for prosody
generation and POS tagging. In DEMOSTHeNES, a source
text can be exported as annotated, enriched by features and
functions supported by the system. For example, giving a text
we can create a document containing the syllables of the text,
the next and the previous one for each syllable, their distance
from the phrase boundaries, stress indication etc. These
descriptions can be used for the creation of CART trees, for
example for duration prediction when they are accompanied
with the corresponding recordings and labels. CART trees are
supported in DEMOSTHeNES, using a port for the WAGON
tool (provided by Edinburgh Speech Tools [9]) output.

VSERVER BIPORT

VMOD

VMOD

VMOD

DEMOSTHeNES kernel

dynamic
link

VCOM

VCOM VCOM

VGATE

session

session

session

modules

VCOM

VSERVER BIPORT

VMODVMOD

VMODVMOD

VMODVMOD

DEMOSTHeNES kernel

dynamic
link

VCOMVCOM

VCOMVCOM VCOMVCOM

VGATE

session

session

session

modules

VCOMVCOM

Fig. 1: The architecture of DEMOSTHeNES Speech Composer.

In Proceedings of the 4th ISCA Tutorial and Workshop on Speech Synthesis (SSW4), Perthshire, Scotland, September
2001, pp. 167-172

 169

Furthermore, any VCOM (and thus any VMOD) is
capable of creating a report of its state (for example in XML
format). This is quite useful for debugging the system. Also,
as HRG are supported, another interesting option is the export
of UTTERANCE structures for exchanging information with
the FESTIVAL system (e.g. to further use of the FRINGE
tool [9] for data representation). Still, this is an ongoing
procedure.

2.3.3. Self benchmarking

Text-to-speech conversion usually has soft and sometimes
hard real-time requirements. This is more tangible in dialogue
systems: the conversion should be feaster than the speech
playback in order to avoid annoying pauses. Furthermore,
devices with limited hardware (e.g. embedded devices)
usually can not accommodate the requirements set by TtS
systems.

In order to estimate the requirements of a TtS
configuration using DEMOSTHeNES, the VMOD class
offers a self-benchmarking procedure. Special variables
indicate its CPU usage and the memory footprint during run-
time. This is particularly useful for performance
enhancements but also supports the scalability of the system:
when the text-to-speech conversion fails to meet the real-time
requirements (e.g. when process time is bigger than playback
time => long pauses), highly consuming CPU modules can be
automatically dropped.

2.4. Instruction Channel

The basic feature of this architecture is the introduction of an
instruction channel that is synchronized to the ordinary flow
of text information. Thus, in DEMOSTHeNES, the
processing procedure flows in two synchronized channels: the
first one (called �data-channel�) carries all the linguistic,
prosodic, phonological, acoustical, etc data in an HRG
hierarchy, while the second one (called �instruction-channel�)
carries specific instructions for the VMODs. These
instructions are linked to the leaves of a graph that represents
the basic linguistic levels (called level-graph), as can be seen
in the example of Figure 2. This way, when particular patterns
are identified in the source text, we are able to program the
behavior of the system using rules or scripts.

2.4.1. Exported methods

VMODs can optionally define a library of methods that are
recorded to the Directory Service of VSERVER and can be
called during run-time as embedded instructions to the source
text. When a VMOD is added to the chain (as shown in §2.3),
a registration phase is taking place, where it passes to the
Directory Service a list of these exported methods. A VMOD
can embed instructions to the source and interpret instructions
that refer to it.

Embedded instructions are being interpreted by the
corresponding VMODs, when their time for execution
arrives. VSERVER notifies VMODs that instructions have
been set, which in turn locate and execute the instructions
while parsing the level-graph.

2.4.2. Example

We will present in detail the example of reading out a left
bracket in a text, by decreasing the pitch and inserting a
pause. In order to achieve this we use a service from the
Finite State Transducer VCOM (presented in §3), which
converts the source string

“(”

to the:

“<WORDATION:INS
value=”short_pause”></WORDATION:INS>
<PITCH_SYLLABLE:MUL value=”0.9”>open
bracket</PITCH_SYLLABLE:MUL>”

The above format is very similar to the format of XSLT
templates [10]

• WORDATION is the namespace of the VMOD that

creates the word level in the level-graph and set the
features of each word,

• INS is an exported method of the WORDATION VMOD
that inserts nodes to the particular level and

• value=”short_pause” is the attribute of the above
method

a n i j i p r n T e s ia e

word

syllable

phrase

phoneme

<WORDATION:INS value=“short_pause”>
<PITCH_SYLLABLE:MUL value=“0.9”>

</WORDATION:INS>
</PITCH_SYLLABLE:MUL>

Fig. 2 A sample HRG and the instruction-channel. �aniji parenTesi� stands for �open
bracket� in Greek.

In Proceedings of the 4th ISCA Tutorial and Workshop on Speech Synthesis (SSW4), Perthshire, Scotland, September
2001, pp. 167-172

 170

In a similar way, MUL is a method of the VMOD
PITCH_SYLLABLE that multiplies the pitch values linked to
the nodes of the syllable level by the value 0.9. This will be
the behavior of the system everytime a left bracket is offered
in the source text. The result string is much like an XML
document and this is the base of the architecture of the e-TSA
Composer ([6] and [7]).

Figure 2 presents the interaction of the level-graph with
the instruction-channel. When the WORDATION module is
executed, the Directory Service will call the INS method,
when the corresponding phrase is being processed.

2.5. CART VCOM

In order to support trained models and take advantage of
available tools, we have developed a bridge between
DEMOSTHeNES and the WAGON, as already shown in
§2.3.2. From the one side DEMOSTHeNES annotates
recorded text, passes this data to WAGON and the produced
CART tree is being translated to native code for
DEMOSTHeNES. This procedure is being supported from the
CART VCOM. CART trees are used for prosody generation,
letter-to-sound rules, POS tagging etc. For example, the
Greek configuration of DEMOSTHeNES supports the
English language, using a letter-to-sound CART tree created
from the CMU lexicon.

3. Text Handling
The text handling stage targets to an efficient representation of
the source text to the rest stages of the Composer and finally
to the speech output. The issues that are important here are to
correctly identify particular string patterns in the given text
and to successfully vocalize them. String patters comprise:

1. Numerics (numbers, dates, hours, telephone
numbers, special formats like IP addresses)

2. Acronyms and other abbreviations
3. Marks (e.g. brackets, quotations etc)
4. Special characters (e.g. currencies, percentages, etc)
5. Language detection (e.g. English words, Italian

words etc)

Text Handling in DEMOSTHeNES consists of a set of
methods implemented in several VCOMs and VMODs that
can identify, translate and embed instructions for further
augmented auditory representation of the above patterns. In
order to support this procedure, DEMOSTHeNES offers a
Finite State Transducer engine implemented in a VCOM, for
translating a source pattern to a target one under specific
conditions using regular expressions. The general form of
rules is:

[X1][c][X2]->[str]:N

which states that when character [c] is found in the context of
expression [X1] and [X2], then it is converted to string [str]. N
states the number of characters that are affected by this rule
(including [c]). The format of [Xn] is as follows:

Xn:=”CHARACTER_SET”{REPETITION}, Xn

3.1. Example 1: Billions

[][“2”][“0123456789”{6}] -> [“two
billions”]:1

The above rule states that when we have the character �2�
followed by any number (i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9, 0) for 6
times (i.e. followed by 6 digits), then �2� is converted to �two
billions� and this conversion affects 1 character (i.e. the
character �2�).

3.2. Example 2: Acronyms

[“ ”{1}][“H”][“.”{1}, “R”{1}, “.”{1},
“G”{1}, “.”{1}, “\0\n.,!;”{1}] ->
[“Heterogeneous Relation Graph”]:6

The above rule states that when character �H� is after one
space and is followed be one full stop, one �R�, another full
stop, one �G�, one more full stop and any one of the marks
�\0\n.,!;�, then it is translated to �Heterogeneous Relation
Graph� and this rule affects 6 characters (i.e. �H.R.G.�).

4. Prosody
Prosody is probably the most important issue when generating
speech from text. Even humans, with perfect pronunciation of
foreign words, fail to sound like foreigners because they do
not reproduce correctly the prosody of the foreign language,
but they usually try to wrap foreign words in the prosody of
their mother tongue. There are two major approaches to
prosody generation: (a) rule based models and (b) stochastic
models. In DEMOSTHeNES both models can be
implemented among with any other model as VMODs. We
will present an example of a rule-based implementation in
§4.2, as we already showed how we deal with the training
approach in §2.5.

DEMOSTHeNES provides a generic support for defining
and handling prosody in terms of TIME, PITCH and
AMPLITUDE (but any other prosodic feature can be
implemented). These are offered as VCOMs among with
mechanisms to be linked to the HRG.

4.1. Time and Pitch VCOMs

Time and Pitch is of particular interest in prosody generation,
thus they are supported in VCOM level. Time is a linked
coefficient to the leaves of HRG and several methods are
offered by its VCOM regarding compression, expansion etc.
Pitch is also a coefficient linked to the leaves of the HRG,
however, Pitch offers a series of real values for each link. The
number of the value frames depends on the Time (duration)
associated with the specific leaf.

In DEMOSTHeNES Time and Pitch have a more close
relation, as a linked mode has been designed. According to
this mode, the duration of a syllable, for example, and its
pitch curve can have an initial relation. If during processing,
the pitch produces a big raise, then the duration for this
segment will be expanded accordingly following a
exponential relation. This way, we drive the duration of
segments from the pitch movements.

4.2. Rule-based approach

We will show a rule-based approach for prosody generation
that can have multilingual application. This has been
implemented as a collection of VMODs. It is based on
grouping words of sentences into smaller, more closely
related groups, called phrases. The key for a successfully
rendered prosody here can be summarized to the next
sentence: �the wider the range of phrasal categories, the richer
the produced prosody�. Which means, that we can achieve

In Proceedings of the 4th ISCA Tutorial and Workshop on Speech Synthesis (SSW4), Perthshire, Scotland, September
2001, pp. 167-172

 171

better prosody if we manage to smash a sentence to small
meaningful phrases. Thus, the first step to this approach is to
identify as much phrases as possible in a sentence. One or
more VMODs can contribute to this purpose. Here is a list of
candidate phrasal categories:

• Level A: Phrases seperated by marks (full stops,
commas, exclamations, brackets, quotations etc).
These are very easy to be identified and classified.

• Level B: Grammatical phrases, i.e. parts of the text
starting from conjunctive words, pronouns etc and
ending to another point of Level A or B. This words
indicates secondary sentences and a POS tagger or a
lexicon (as they can be quite few) is needed to
identify them.

• Level C: Relative words. Usually some words have
a very strong relation, like an article and a noun, an
adjective and a noun, a verb and an adverb etc.
These can form extra groups and require a POS
tagger, in order to be identified.

Of course, someone can define an arbitrary number of
levels, while the definitions are not mandatory. The next step
is to assign intonation events to these categories according to
the ToBI, the Tilt or any other intonation models and then
interpret these marks in order to render the intonation curve.
We add one more approach here, by assigning a Prosodic
Template to each phrasal category. A Prosodic Template
represents pitch and time (and amplitude if applicable)
relations for the specific category. It can represent actual
values, relative values, ToBI, Tilt labels, or any other
annotation, as long as the annotation is capable of producing a
sequence of time and pitch pairs under specific conditions.

We will present an example of a Prosodic Template for
phrases that ends in a comma. Figure 3 shows an abstract
pitch curve for the specific template:

where nx are nodes in the �syllable� level and stars (*)
indicate stress. It assumes that pitch transition happens per
syllabic node. This abstract curve states that:

1. The curve starts from an arbitrary point, in the first
node of the �syllable� level, n1.

2. Pitch is raised until the first stressed syllable in the
phrase, n2.

3. In the last stressed syllable of the phrase, n4, the
pitch is falling instead of raising, just before the
comma,

4. and it is raised until reaching the comma, after n5.

This scenario has been made by observing intonation curves
for the Greek and English language. Now, we will constract

the template according to this abstract curve. We first locate
the five nodes of interest:

NODE n1=head(level(“syllable”));
NODE n2=n1.forward.until(“stressed”);
NODE n5=tail(level(“syllable”));
NODE n4=n5.backward.until(“stressed”);
NODE n3=n4.prev();

We assume no special cases here (like n5==n4 etc). Next,
we define a reference pair (pitch, time) of values for the
above nodes. Pitch element represents a pitch reference, while
time element a time reference throughout the whole node of
the level of interest (�syllable�).

n1.pt_reference(1.0, 1.0);
n2.pt_reference(1.2, 1.1);
n3.pt_reference(1.0, 1.0);
n4.pt_reference(0.8, 1.0);
n5.pt_reference(1.0, 1.2);

The above script roughly says that the first stressed

syllable in the phrase (n2) should take a 20% increment in the
pitch, while the last stressed syllable in the phrase (n4) should
take a 20% decrement in the pitch (instead an increment).
Furthermore, the last syllable should be extended by 20%.
Finally, we must define the transition from node to node:

render(n1, n2, “log”);
render(n2, n5, “fujisaki”);
render(n3, n4, “log”);
render(n4, n5, “log”);
render(n2, n3, “breath”);

The above script says that nodes n1 and n2 should be
connected by an exponential function in the �syllable� level.
Then, nodes n2 and n5 should be connected using the
Fujisaki�s intonation model (declination). After that, we apply
the inverted pitch to node n4 and finally, we apply a breathing
algorithm between n2 and n3.

5. Discussion
The major offer of DEMOSTHeNES Speech Composer, is
the option to mix text and instructions in an open
environment. This scheme allows a more functional
communication among modules in the system, so that
processing is distributed to the corresponding modules. For
example, in the Greek language numbers usually refer to
nouns and thus they should acquire the grammatical state of
the corresponding nouns. Using the approach presented here,
the Finite State Transducer can identify and convert the
number to the corresponding string (masculine, singular,
nominative) and further wrap the string with an instruction
that indicates its numerical nature. A converter VMOD can
then examine the following and the previous word (simple
case) using POS information and convert the endings of the
numerical string to the appropriate declension.

DEMOSTHeNES Speech Composer has been
implemented in MS-Win32 platform, however, the kernel and
most of the VCOM are portable to other platforms as well. It
has been wrapped to an ActiveX control that allows it to be
embedded to other applications. This control can have either a
very simple interface to be easily used from other applications
that require basic TtS functionality (speak, stop), or a full

*

*
n1

n2

n3

n4

n5

Fig. 3: An abstract pitch curve for
�comma� phrases.

In Proceedings of the 4th ISCA Tutorial and Workshop on Speech Synthesis (SSW4), Perthshire, Scotland, September
2001, pp. 167-172

 172

MS-SAPI support for more complex manipulation of the
provided functionality.

There is currently a configuration (i.e. a set of VMODs in
a specific chain) for supporting the Greek language and
partially the English one. This configuration forms a general
purpose TtS system, that is quite powerful in handling text
patterns (more than 800 acronyms and abbreviations, in any
declension, several date, hours and numeric patterns are
supported using the FST VCOM), offers an enriched prosody
compared with other commercial systems and is bundled with
an new MBROLA voice (gr2). CART trees has been used in
predicting duration values in phoneme level, while the rule-
based approach presented in §4.2 is being used for intonation
rendering. Prosodic Templates currently covers all the major
marks (Level A), conjunctive phrases (Level B) and some
categories of Level C. The English language is supported by
using a CART version of the CMU dictionary that is
distributed with the FESTIVAL system.

The configuration of DEMOSTHeNES for supporting the
Greek and the English language in polyglot environments
showed the flexibility of the system and its ability to reuse
existing resources. Also, the modular architecture constituted
a very flexible experimental environment that allowed the
comparison of different approaches in several issues (like
rule-based duration vs. trained duration).

6. Conclusion
In this paper, we presented in detail the architecture of
DEMOSTHeNES Speech Composer and examples of text
handling and prosody generation. This architecture takes
advantage from existing tools and furthermore extends the
ordinary architecture of TtS systems to accommodate a
scheme for describing in detail the functionality of the system
under specific circumstances. DEMOSTHeNES currently
fully supports the Greek language and partially the English
and can be downloaded from [5].

7. Acknowledgments
The work described in this paper has been partially supported
by the M-PIRO project of the IST Programme of the
European Union under contract no IST-1999-10982.

References
1  Black, A. and Taylor, P.: CHATR: a generic speech

synthesis system, COLING94, II pp 983-986, Kyoto,
Japan, 1994

2  Taylor, P., Black, A. and Caley, R., The architecture of
the Festival Speech Synthesis System, 3rd ESCA
Workshop on Speech Synthesis, Jenolan Caves, Australia
pp. 147-151, 1998

3  Dutoit, T., Bagein, M., Malfrere, F., Pagel, V., Ruelle,
A., Tounsi, N. and Wynsberghe, D., EULER : an Open,
Generic, Multi-lingual and Multi-Platform Text-To-
Speech System, In Proceedings of LREC'00, Athens,
Greece, pp. 563-566, 2000

4  Taylor, P., Black, A. and Caley, R, Heterogeneous
relation graphs as a formalism for representing linguistic
information, Speech Communication, Volume 33, Nos.
1-2, pp 153-174, January 2001

5  DEMOSTHeNES Speech Composer homepage
http://www.di.uoa.gr/speech/synthesis/demosthenes

6  Xydas, G. and Kouroupetroglou, G.: Augmented Auditory
Representation of e-Texts for Text-to-Speech Systems, in
Proceedings of the 4th International Conference on Text,
Speech and Dialogue, TSD 2001, Plzen (Pilsen), Czech
Republic, pp 134-141, September 2001

7  Xydas, G. and Kouroupetroglou, G.: Text-to-Speech
Scripting Interface for Appropriate Vocalisation of e-
Texts, in Proceedings of the 7th European Conference on
Speech Communication and Technology,
EUROSPEECH 2001, Aalborg, Denmark, pp 2247-2250,
September 2001

8  Voice eXtensible Markup Language (VoiceXML™)
version 1.0, W3C Note 05 May 2000,
http://www.w3.org/TR/voicexml/

9  The FESTIVAL Speech Synthesis System homepage
http://www.cstr.ed.ac.uk/projects/festival/

10 XSL Transformations (XSLT) Version 1.0, W3C
Recommendation 16 November 1999,
http://www.w3.org/TR/xslt

	Introduction
	Architecture
	Vocal Server (VSERVER)
	Vocal Component (VCOM)
	Vocal Module (VMOD)
	Interface
	Text annotation and reports
	Self benchmarking

	Instruction Channel
	Exported methods
	Example

	CART VCOM

	Text Handling
	Example 1: Billions
	Example 2: Acronyms

	Prosody
	Time and Pitch VCOMs
	Rule-based approach

	Discussion
	Conclusion
	Acknowledgments
	References

