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Abstract 
We present a learning-based method to identify 
single-snippet answers to definition questions in 
question answering systems for document 
collections. Our method combines and extends two 
previous techniques that were based mostly on 
manually crafted lexical patterns and WordNet 
hypernyms. We train a Support Vector Machine 
(SVM) on vectors comprising the verdicts or 
attributes of the previous techniques, and additional 
phrasal attributes that we acquire automatically. 
The SVM is then used to identify and rank single 
250-character snippets that contain answers to 
definition questions. Experimental results indicate 
that our method clearly outperforms the techniques 
it builds upon. 

1 Introduction 

Since the introduction of the TREC QA track 
(Voorhees, 2001), question answering systems for 
document collections have attracted a lot of 
attention. The goal is to return from the collection 
text snippets (eg., 50 or 250 characters long) or 
exact answers (e.g., names, dates) that answer 
natural language questions submitted by users. 

A typical system first classifies the question into 
one of several categories (questions asking for 
locations, persons, etc.), producing expectations of 
types of named entities that must be present in the 
answer (location names, person names, etc.). Using 
the question terms as a query, an information 
retrieval (IR) system identifies possibly relevant 
passages in the collection, often after query 
expansion (e.g., adding synonyms). Snippets of 
these passages are then selected and ranked, based 
on criteria such as whether or not they contain the 
expected types of named entities, the percentage of 
question words in each snippet, the percentage of 
words that also occur in other candidate snippets, 
etc. The system reports the most highly-ranked 
snippets, or, in the case of exact answers, named 
entities of the required type therein. 

Unfortunately, the approach highlighted above 
falls short with questions that do not generate 
expectations of particular types of named entities 
and contain very few non-stop-words. Definition 
questions (e.g. “What is a nanometer?”, “Who was 
Duke Ellington?”) have both properties, and are 

particularly common. In TREC-2001, where the 
distribution of question types reflected that of real 
user logs, 27% of the questions were requests for 
definitions. Hence, techniques to handle this 
category of questions are very important. 

We propose a new method to answer definition 
questions, that combines and extends the technique 
of Prager et al. (2001, 2002), which relied on 
WordNet hypernyms, and that of Joho et al. (2001, 
2002), which relied on manually crafted lexical 
patterns, sentence position, and word co-
occurrence across candidate answers. We train an 
SVM (Schölkopf and Smola, 2002) on vectors 
whose attributes include the verdict of Prager et 
al.’s method, the attributes of Joho et al., and 
additional phrasal attributes that we acquire 
automatically. The SVM is then used to identify 
and rank 250-character snippets, each intended to 
contain a stand-alone definition of a given term, 
much as in TREC QA tasks prior to 2003. 

In TREC-2003, the answers to definition 
questions had to be lists of complementary 
snippets (Voorhees, 2003), as opposed to single-
snippet definitions. Here, we focus on the pre-2003 
task, for which TREC data were publicly available 
during our work. We believe that this task is still 
interesting and of practical use. For example, a list 
of single-snippet definitions accompanied by their 
source URLs can be a good starting point for users 
of search engines wishing to find definitions. 
Single-snippet definitions can also be useful in 
information extraction, where the templates to be 
filled in often require short entity descriptions; see 
Radev and McKeown (1997). Experiments indicate 
that our method clearly outperforms the techniques 
it builds upon in the task we considered. We sketch 
in section 6 how we plan to adapt our method to 
the post-2003 TREC task.  

2 Previous techniques 

Prager et al. (2001, 2002) observe that definition 
questions can often be answered by hypernyms; for 
example, “schizophrenia” is a “mental illness”, 
where the latter is a hypernym of the former in 
WordNet. Deciding which hypernym to report, 
however, is not trivial. To use an example of 
Prager et al., in “What is a meerkat?” WordNet 
provides hypernym synsets such as {“viverrine”, 



“viverrine mammal”} (level 1), {“carnivore”} 
(level 2), {“placental”, …} (level 3), {“mammal”} 
(level 4), up to {“entity”, “something”} (level 9). 
In a neutral context, the most natural response is 
arguably “mammal” or “animal”. A hypernym on 
its own may also not be a satisfactory answer. 
Responding that an amphibian is an animal is less 
satisfactory than saying it is an animal that lives 
both on land and in water.  

Prager et al. identify the best hypernyms by 
counting how often they co-occur with the 
definition term in two-sentence passages of the 
document collection. They then short-list the 
passages that contain both the term and any of the 
best hypernyms, and rank them using measures 
similar to those of Radev et al. (2000). More 
precisely, given a term to define, they compute the 
level-adapted count (LAC) of each of its 
hypernyms, defined as the number of two-sentence 
passages where the hypernym co-occurs with the 
term divided by the distance between the term and 
the hypernym in WordNet’s hierarchy. They then 
retain the hypernym with the largest LAC, and all 
the hypernyms whose LAC is within a 20% margin 
from the largest one. To avoid very general 
hypernyms (e.g., {“entity”, “something”}), Prager 
et al. discard the hypernyms of the highest 1 or 2 
levels in WordNet’s trees, if the distance from the 
top of the tree to the definition term is up to 3 or 5, 
respectively; if the distance is longer, they discard 
the top three levels. This ceiling is raised gradually 
if no co-occurring hypernym is found.  

Prager et al.’s method performed well with the 
definition questions and documents of TREC-9 
(Prager et al., 2001). In 20 out of the 24 definition 
questions they considered (83.3%), it managed to 
return at least one correct response in the five most 
highly ranked two-sentence passages; in all 20 
questions, the correct response was actually the 
highest ranked. In TREC-2001, however, where 
there were more definition questions mirroring 
more directly real user queries, this percentage 
dropped to 46% (Prager et al., 2002). In 44 of the 
130 definition questions (33.8%) they considered, 
WordNet did not help at all, because it either did 
not contain the term whose definition was sought, 
or none of its hypernyms were useful even as 
partial definitions. Even when WordNet contained 
a hypernym that constituted a self-contained 
definition, it was not always selected.  

In work that led to an alternative method, Hearst 
(1998) sketched a method to identify patterns that 
signal particular lexical semantic relations, in 
effect a bootstrapping approach. Applying this 
process by hand, Hearst was able to identify four 
high precision hyponym–hypernym patterns that 
are common across text genres. The patterns are 

shown below in the slightly modified form of Joho 
and Sanderson (2000). Here, qn (query noun) and 
dp (descriptive phrase) are phrases containing 
hyponyms and hypernyms, respectively.  

 
(1) (dp such | such dp) as qn 
e.g., “injuries such as broken bones” 
(2) qn (and | or) other dp 
e.g., “broken bones and other injuries” 
(3) dp especially qn 
e.g., “injuries especially broken bones” 
(4) dp including qn 
e.g., “European countries including England, 
France, and Spain” 

 
Compared to Prager et al.’s method, Hearst’s 

patterns have the advantage that they may identify 
hyponym–hypernym relations that are not present 
in WordNet, which is often the case with domain-
specific terminology and proper names. 

Joho and Sanderson (2000) observe that co-
occurrences of hyponyms and hypernyms are often 
indicative of contexts that define the hyponyms. 
Instead of using WordNet, they identify hyponym–
hypernym contexts using Hearst’s patterns, to 
which they add the following ones.1 Here, qn is the 
term to define, and dp is a phrase that contains a 
definition of qn; dp no longer necessarily contains 
a hypernym of qn. Each pattern is assigned a 
weight, which is its precision on a training set (the 
number of sentences it correctly identifies as 
containing a definition, over the number of 
sentences it matches). 

 
(5) qn “(” dp “)” | “(” dp “)” qn 

e.g., “MP (Member of Parliament)” 
(6) qn (is | was | are | were) (a | an | the) dp 

e.g., “Tony Blair is a politician” 
(7) qn , (a | an | the) dp 

e.g., “Tony Blair, the politician” 
(8) qn , which (is | was | are | were) dp 

e.g., “bronchitis, which is a disease of…” 
(9) qn  , dp , (is | was | are | were) 

e.g., “Blair, Prime Minister of Britain, is…” 
 
Joho and Sanderson first locate all the sentences 

of the document collection that contain the term to 
define, and then rank them using three attributes. 
The first one (KPW) is the weight of the pattern the 
sentence matched, if any. The second attribute 
(SN) is the ordinal number of the sentence in its 
document, ignoring sentences that do not contain 
the term; sentences that mention first the term in a 
document are more likely to define it. The third 
attribute (WC) shows how many of the words that 

                                                      
1 We ignore a variant of (7) that ends in “.”, “?” or “!”. 



are common across candidate answers are present 
in the sentence. More precisely, to compute WC, 
Joho and Sanderson retrieve the first sentence of 
each document that contains the definition term, 
and retain the 20 most frequent words of these 
sentences after applying a stop-list and a 
lemmatizer. WC is the percentage of these words 
that are present in the sentence being ranked. The 
sentences are ranked using the weighted sum of the 
three attributes, after hand-tuning the weights of 
the sum on a training set. In Joho et al. (2001), this 
method was evaluated with 50 definition questions 
and the top 600 documents that Google returned 
for each definition term. It returned a correct 
definition in the five top-ranked sentences in 66% 
of the questions.2 As with Prager et al.’s method, 
then, there is scope for improvement. 

3 Our method 

Prager et al.’s approach is capable of answering 
a large number of definition questions, though, as 
discussed above, it does not always manage to 
locate the most appropriate hypernym, and the 
appropriate hyponym-hypernym relation may not 
be present in WordNet. Joho et al.’s technique 
does not rely on a predetermined ontology, which 
makes it less vulnerable to domain-specific 
terminology and proper names. Its limited pattern 
set, however, cannot capture definitions that are 
phrased in less typical ways, and the fact that the 
weights of the three attributes are hand-tuned 
raises doubts as to whether they are optimal. Our 
method overcomes these limitations by combining 
the two approaches in a common machine learning 
framework, and by using a larger attribute set. 

We assume that a question processing module 
that separates definition from other types of 
questions is available, and that in each definition 
question it also identifies the term to be defined. 
When such a module is not available, the user can 
be asked to specify explicitly the question type and 
the term to be defined, via a form-based interface 
as in Buchholtz and Daelemans (2001). Hence, the 
input to our method is a (possibly multi-word) 
term, along with the most highly ranked documents 
that an IR engine returned for that term (in the 
experiments of section 4, we used the top 50 
documents). The goal is to identify five 250-
character snippets in these documents, such that at 
least one of the snippets contains an acceptable 
definition of the input term. As an example, we 
show below the two snippets that configuration 4 
of our method (to be discussed) considered most 

                                                      
2 Joho et al. report better results when using a less stringent 

form of evaluation that admits partial answers, but their 
acceptance criteria in that case appear to be over-permissive. 

appropriate in the case of “What are pathogens?”. 
The first snippet defines pathogens as hazardous 
microorganisms. The second one provides 
instances of pathogens, but does not actually state 
what a pathogen is.  

 
…considerations as nutrient availability. In particular, 
the panel concluded that the fear of creating hazardous 
microorganisms, or pathogens, is overstated. "It is 
highly unlikely that moving one or a few genes from a 
pathogen to… 
…definite intraspecial physiological and morphological 
diversity. Ph. helianthi thrives at higher temperatures 
than other sunflower pathogens (Sclerotinia 
sclerotiorum and Botrytis cinerea) do. In various 
nutrient media, Ph. helianthi … 

 
We select the five snippets to report using 

alternatively a baseline and four different 
configurations of our learning-based method.  

3.1 Baseline 

As a baseline, we use a reimplementation of 
Prager et al.’s method that operates with 250-
character snippets.3 Unlike Prager et al., our 
reimplementation does not use a ranking function 
(Radev et al., 2000). When more than five snippets 
contain both the input term and one of its best 
hypernyms, we rank the snippets according to the 
ranking (RK) of the documents they derive from, 
i.e., the ranking of the IR engine. Our evaluation 
results (section 4) indicate that the performance of 
our implementation is still very similar to that of 
Prager et al. 

3.2 Learning-based method 

In all the configurations of our learning-based 
method, we use a Support Vector Machine (SVM) 
with a simple inner product (polynomial of first 
degree) kernel (Schölkopf and Smola, 2002), 
which in effect learns an optimal linear classifier 
without moving to a higher-dimension space. (We 
have experimented with higher degree polynomial 
kernels, but there was no sign of improvement.) 
The SVM is trained as follows. Given a training set 
of terms to be defined and the corresponding 
documents that the IR engine returned, we collect 
from the documents all the 250-character snippets 

                                                      
3 Following Prager et al. (2002), we consider 

synonyms of the input term as level-0 hypernyms, and 
include them in the search for best hypernyms; their 
LAC is the number of times they co-occur with the 
input term. We did not implement the tests for 
orthographic variations and count ratios of Prager et al. 
When an input term occurs in multiple synsets, which 
produces multiple paths towards hypernyms, we select 
the hypernyms with the best overall LAC scores, instead 
of the best scores per path, unlike Prager et al. (2001). 



that have the term at their center. Each snippet is 
then converted to a training vector, the attributes of 
which differ across the configurations presented 
below. The training vectors are manually classified 
in two categories, depending on whether or not the 
corresponding snippets contain acceptable 
definitions. The SVM is trained on these vectors to 
predict the category of new, unseen vectors from 
their attributes. 

The SVM implementation we used actually 
returns confidence scores, showing how probable it 
is that a particular vector belongs to each 
category.4 Using a classifier that returns confidence 
scores instead of binary decisions is crucial, 
because the training vectors that correspond to 
definitions are much fewer than the vectors for 
non-definitions (3004 vs. 15469 in our dataset of 
section 4). As a result, the induced classifier is 
biased towards non-definitions, and, hence, most 
unseen vectors receive higher confidence scores 
for the category of non-definitions than for the 
category of definitions. We do not compare the 
two scores. We pick the five vectors whose 
confidence score for the category of definitions is 
highest, and report the corresponding snippets; in 
effect, we use the SVM as a ranker, rather than a 
classifier; see also Ravichandran et al. (2003). The 
imbalance between the two categories can be 
reduced by considering (during both training and 
classification) only the first three snippets of each 
document, which discards mostly non-definitions. 

3.2.1 Configuration 1: attributes of Joho at al. 
In the first configuration of our learning-based 

approach, the attributes of the vectors are roughly 
those of Joho et al.: two numeric attributes for SN 
and WC (section 2), and a binary attribute for each 
one of patterns (1)–(9) showing if the pattern is 
satisfied. We have also added binary attributes for 
the following manually crafted patterns, and a 
numeric attribute for RK (section 3.1). 

(10) dp like qn 
e.g., “antibiotics like amoxicillin” 

(11) qn or dp 
e.g., “autism or some other type of disorder” 

(12) qn (can | refer | have) dp 
e.g., “amphibians can live on land and…” 

(13) dp (called | known as | defined) qn 
e.g., “the giant wave known as tsunami” 
 

This configuration can be seen as an 
approximation of Joho et al.’s method, although it 
is actually an improvement, because of the extra 
attributes and the fact that it uses an SVM learner 

                                                      
4 We used Weka’s SVM implementation. Weka is 

available from http://www.cs.waikato.ac.nz/ml/weka/ . 

instead of a weighted sum with hand-tuned weights 
to combine the attributes.  

3.2.2 Configuration 2: adding WordNet 
The second configuration is identical to the first 

one, except that it adds an extra binary attribute 
showing if the snippet contains one of its best 
hypernyms, as returned by the baseline. This is 
essentially a combination of the approaches of 
Prager et al. and Joho et al. Unlike simple voting 
(Chu-Carroll et al., 2003), the two methods 
contribute attributes to the instance representations 
(vectors) of an overall learner (the SVM). This 
allows the overall learner to assess their reliability 
and adjust their weights accordingly. 

3.2.3 Configuration 3: n-gram attributes 
The third configuration adds m extra binary 

attributes, each corresponding to an automatically 
acquired pattern. (In the experiments of section 4, 
m ranges from 100 to 300.) Observing that most of 
the previously proposed patterns are anchored at 
the term to define, we collect from the documents 
that the IR engine returns for the training questions 
all the n-grams (n ∈ {1, 2, 3}) of tokens that occur 
immediately before or after the definition term. 
The n-grams that are encountered at least 10 times 
are considered candidate patterns. From these, we 
select the m patterns with the highest precision 
scores, where precision is defined as in section 2, 
but for snippets instead of sentences. 

In our experiments, this pattern acquisition 
process re-discovered several of the patterns (1)–
(13) or sub-expressions of them, namely [dp such 
as qn], [qn and other dp], [qn “(“ dp], [dp “)” qn], 
[qn is (a | an | the) dp], [qn (are | were) dp], [qn , (a 
| an | the) dp), [qn , which is dp], [qn , dp], [qn or 
dp], [qn can dp], [dp called qn], [dp known as qn]. 
It also discovered some reasonable variations of 
patterns (1)–(13); e.g, [qn is one dp], [dp , (a | an) 
qn] (as in “A sudden health problem, a heart attack 
or …”), [dp , qn], [qn , or dp]. We include dp, the 
phrase that defines qn, in the acquired patterns to 
make them easier to compare to patterns (1)–(13). 
The acquired patterns, however, do not predict the 
position of dp in a snippet. 

Many of the acquired patterns at first look odd, 
but under a closer examination turn out to be 
reasonable. For example, definition sentences often 
start with the term they define, as in “Amphibians 
are…”, “An alligator is…”, sometimes with the 
term quoted, which is how patterns like [. qn], [. 
An qn], [. ' ' qn] arise.  Many of the questions in 
our data set were about diseases, and, hence, 
several of the acquired patterns were expressions 
(e.g,, “people with”, “symptoms of”) that co-occur 
frequently with definitions of diseases in snippets. 



This suggests that automatic pattern acquisition 
would allow domain-specific question answering 
systems (e.g., systems for medical documents) to 
exploit domain-specific indicators of definitions.  

The pattern acquisition process also produced 
many patterns (e.g., “the hallucinogenic drug”,        
“President Rafael”) that do not seem to provide 
any useful information in general, although they 
occurred frequently in definition snippets of our 
training data. Since we did not filter manually the 
automatically acquired patterns, patterns of the 
latter kind gave rise to irrelevant attributes that 
carried noise. This is a common problem in 
machine learning, which most learning algorithms 
are designed to cope with. Our experimental results 
indicate that the SVM learner benefits from the n-
gram attributes, despite the noise they introduce. 

We also experimented with keeping both high 
and low precision patterns, hoping to acquire both 
n-grams that are indicative of definitions and n-
grams that are indicative of contexts that do not 
constitute definitions. The experimental results, 
however, were inferior, and manual inspection of 
the low precision n-grams indicated that they 
carried mostly noise, suggesting that it is difficult 
to identify frequent n-grams whose presence rules 
out definitions reliably. 

The reader may wonder why we rely only on 
precision, rather than selecting also attributes with 
high recall. (Here, recall is the number of snippets 
the pattern correctly identifies as containing a 
definition, over the total number of snippets that 
contain a definition.) In multi-source document 
collections, like the Web or the TREC documents, 
one can expect to find several definitions of the 
same term, phrased in different ways. Unlike 
traditional document retrieval tasks, we are not 
interested in obtaining all the definitions; a single 
correct one suffices. Furthermore, as the number of 
snippets that can be reported is limited, we need to 
be confident that the snippets we return are indeed 
definitions. Hence, we need to rely on high-
precision indicators. Preliminary experiments we 
performed using the F-measure (with β=1), a 
combination of recall and precision, instead of 
precision led to inferior results, confirming that 
attribute recall is not helpful in this task. 

We have also experimented with information 
gain. In that case, one selects the n-grams with the 
m highest IG(C,X) scores, defined below, where C 
and X are random variables denoting the category 
of a snippet and the value of the n-gram’s binary 
attribute, respectively, and H(C) and H(C|X) are 
the entropy and conditional entropy of C. By 
selecting the attributes with the highest information 
gain scores, one selects the attributes that carry 
most information about the value of C. 
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   Although information gain is one of the best 
attribute selection measures in text categorization 
(Yang and Pedersen, 1997), in our case it led to 
very few attributes with non-zero IG(C,X) scores 
(around 90 attributes from the entire dataset of 
section 4). This is because most of the n-grams are 
very rare (i.e., P(X=0) is very large), and their 
absence (X=0) provides very little information 
about C (i.e., H(C) ≈ H(C | X = 0)). For example, 
not encountering [dp such as qn] provides very 
little information on whether or not the snippet is a 
definition. The experiments we performed with the 
resulting attributes led to inferior results, compared 
to those that we got via precision. 

3.2.4 Configuration 4: discarding WordNet 
The fourth configuration is identical to the third 

one, except that it does not use the attribute that 
shows if the snippet contains one of the best 
hypernyms of Prager et al. (The attribute is present 
in configurations 2 and 3). The intention is to 
explore if the performance of configuration 3 can 
be sustained without the use of WordNet.  

4 Experimental results 

We evaluated the baseline and the machine 
learning configurations of section 3 on the 
definition questions of TREC-9 (2000) and TREC-
2001, the same data used by Prager et al. For each 
question, the TREC organizers provide the 50 most 
highly ranked documents that an IR engine 
returned from the TREC documents. The task is to 
return for each question five 250-character snippets 
from the corresponding 50 documents, such that at 
least one of the snippets contains an acceptable 
definition. Following Prager et al., we count a 
snippet as containing an acceptable definition, if it 
satisfies the Perl answer patterns that the TREC 
organizers provide for the corresponding question 
(Voorhees, 2001).  The answer patterns incorporate 
the correct responses of all the participants of the 
corresponding TREC competition. In TREC-9, the 
correlation between system rankings produced by 
answer patterns and rankings produced by humans 
was at the same level as the average correlation 
between rankings of different human assessors 
(Voorhees and Tice 2000). In TREC-2001, the 
correlation between patterns and judges was lower, 
but still similar for 250-character responses 
(Voorhees, 2001). 

All the experiments with machine learning 
configurations were performed with 10-fold cross-
validation. That is, the question set was divided 
into 10 parts, and each experiment was repeated 10 
times. At each iteration, the questions of a different 



part and the corresponding documents were 
reserved for testing, while the questions and 
documents of the remaining nine parts were used 
for training. (In configurations 3 and 4, pattern 
acquisition was repeated at each iteration.) Table 1 
reports the total number of questions that each 
method managed to handle successfully over the 
ten iterations; i.e., questions with at least one 
acceptable definition in the five returned snippets. 
When questions for which there was no answer in 
the corresponding 50 documents and/or there was 
no answer pattern are excluded, the results are 
those shown in italics. The second row contains the 
results reported by Prager et al. (2001, 2002), 
while the third one shows the results of our 
reimplementation. We include six questions that 
Prager et al. appear to have excluded, which is 
why the total number of questions is different; 
there are also some implementation differences, as 
discussed in section 3. 

 
Method % questions handled correctly 
Prager et al. 51.95 (80/154), 60.15 (80/133) 
baseline 50.00 (80/160), 58.39 (80/137) 
config. 1 61.88 (99/160), 72.26 (99/137) 
config. 2 63.13 (101/160), 73.72 (101/137) 
config. 3 72.50 (116/160), 84.67 (116/137) 
config. 4 71.88 (115/160), 83.94 (115/137) 

Table 1: Results on TREC-9 & TREC-2001 data 

The SVM learner with roughly Joho et al.’s 
attributes (config. 1) clearly outperforms Prager et 
al.’s WordNet-based method. Adding Prager et 
al.’s method as an extra attribute to the SVM 
(config. 2) leads to only a marginal improvement. 
Automatic pattern acquisition (config. 3) is much 
more beneficial. Removing the attribute of the 
WordNet-based method (config. 4) caused the 
system to fail in only one of the questions that 
configuration 3 handled successfully, which again 
suggests that the WordNet-based method does not 
contribute much to the performance of 
configuration 3. This is particularly interesting for 
languages with no WordNet-like resources.  

The results of configurations 3 and 4 in table 1 
were obtained using the 200 n-gram attributes with 
the highest precision scores. When using the 100 
n-gram attributes with the highest and the 100 n-
gram attributes with the lowest precision scores, 
the results of configuration 3 were 70.63% and 
82.48%. When using all the n-gram attributes with 
non-zero information gain scores, the results of 
configuration 3 were 66.25% and 77.42%.  
Configurations 2 and 3 achieved inferior results 
with 300 highest-precision n-gram attributes (table 

2), which may be a sign that low reliability n-
grams are beginning to dominate the attribute set. 

 
n-grams config. 3 (%) config. 4 (%) 

100 68.13, 79.56 70.00, 81.75 
200 72.50, 84.67 71.88, 83.94 
300 68.75, 80.29 71.25, 83.21 

Table 2: Results for variable number of n-grams 

5 Related work 

Ng et al. (2000) use machine learning (C5 with 
boosting) to classify and rank candidate answers, 
but do not treat definition questions in any special 
way, and use only four generic attributes across all 
question categories. Some of their worst results are 
for “What …?” questions, that presumably include 
a large number of definition questions.  

Ittycheriah and Roukos (2002) employ a 
maximum entropy model to rank candidate 
answers, which uses a very rich set of attributes 
that includes 8,500 patterns. The latter are n-grams 
of words that occur frequently in answers of the 
training data, each associated with a two-word 
question prefix (e.g., “What is”) that also has to be 
matched for the pattern to be satisfied. Unlike our 
work, the n-grams have to be five or more words 
long, and, in the case of definition questions, they 
do not need to be anchored at the term to define. 
Ittycheriah and Roukos (2002) do not provide 
separate figures on the performance of their system 
on definition questions. 

Blair-Goldensohn et al. (2003) focus on 
definition questions, but aim at producing coherent 
multi-sentence definitions, rather than identifying 
single defining snippets. At the heart of their 
approach is a component that uses machine 
learning (Riper) to identify sentences that are 
candidates for inclusion in the multi-sentence 
definition. This component plays a role similar to 
that of our SVM learner, but it is intended to admit 
a larger range of sentences, and appears to employ 
only attributes conveying the position of the 
sentence in its document and the frequency of the 
definition term in the context of the sentence. 

Automatically acquired n-gram patterns can also 
be used for query expansion in information 
retrieval, as in Agichtein et al. (2001). 

6 Conclusions and future work 

We have presented a new method to identify 
single-snippet definitions in question answering 
systems. Our method combines previously 
proposed techniques as attributes of an SVM 
learner, to which an automatic pattern acquisition 
process contributes additional attributes. We have 



evaluated several configurations of our method on 
TREC data, with results indicating it outperforms 
previous techniques.  

The performance of our method may improve if 
n-grams that start or end within a margin of a few 
tokens from the term to define are added. This may 
allow definitions like “X, that Y defined as …” to 
be found. Further improvements may be possible 
by using a sentence splitter instead of windows of 
fixed length, anaphora resolution, clustering of 
similar snippets to avoid ranking them separately, 
and identifying additional n-gram attributes by 
bootstrapping (Ravichandran et al. 2003). 

We believe that it is possible to address the post-
2003 TREC task for definition questions with the 
same approach, but training the SVM learner to 
identify snippets that should be included in multi-
snippet definitions. With sufficient training, we 
expect that n-grams indicative of information 
commonly included in multi-snippet definitions 
(e.g., dates of birth, important works for persons) 
will be discovered. Larger amounts of training 
data, however, will be required. We are currently 
working on a method to generate training examples 
in an unsupervised manner from parallel texts. 
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