
Distributed Structural and Value XML Filtering

Iris Miliaraki
∗

Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens

Athens, Greece
iris@di.uoa.gr

Manolis Koubarakis
Dept. of Informatics and Telecommunications

National and Kapodistrian University of Athens
Athens, Greece

koubarak@di.uoa.gr

ABSTRACT

Many XML filtering systems have emerged in recent years
identifying XML data that structurally match XPath queries
in an efficient way. However, apart from structural match-
ing, it is considered equally important to deal with value-
based predicates. In this paper, we propose methods to com-
bine both structural and value XML filtering in a distributed
environment based on distributed hash tables. Structural
matching is performed using automata, while we study dif-
ferent methods for evaluating value-based predicates. As a
result, our algorithms scale in both the size of the query set
and the number of the predicates per query. We perform an
experimental evaluation and demonstrate the strengths and
weaknesses of the proposed methods in both a controlled
environment of a cluster and on a real testbed provided by
the PlanetLab network.

1. INTRODUCTION
As the Web is growing continuously, a great amount of

data is available to users, making it more difficult for them
to discover interesting information by searching. For this
reason, publish/subscribe systems, also referred to as infor-
mation filtering systems, have emerged in recent years as a
promising paradigm. In a publish/subscribe system, users
express their interests by submitting a continuous query or
subscription and wait to be notified whenever an event of
interest occurs or some interesting piece of information be-
comes available. Applications of such systems include popu-
lar notification services such as news monitoring, blog mon-
itoring and alerting services for digital libraries. Since XML
is widely used for data exchange on the Web, a lot of re-
search has focused on designing efficient and scalable XML
filtering systems.

In XML filtering systems, subscribers submit continuous
queries expressed in XPath/XQuery asking to be notified

∗Iris Miliaraki is supported by Microsoft Research through
its European PhD Scholarship Programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’10, July 12–15, 2010, Cambridge, UK.
Copyright 2010 ACM 978-1-60558-927-5/10/07 ...$10.00.

whenever their queries are satisfied by incoming XML doc-
uments. In recent years, many approaches have been pre-
sented for providing efficient filtering of XML data against
large sets of queries. Centralized approaches include works
like XTrie [8], YFilter [14], FiST [23] and others [28, 7,
32, 21]. However, in order to offer XML filtering func-
tionality on Internet-scale and avoid the typical problems
of centralized solutions, such a service should be deployed
in a distributed environment. Therefore, many works study
distributed content-based routing protocols to disseminate
XML data over a network of XML brokers or routers [31,
11, 17, 15, 18, 34, 9, 27, 10, 25]. XML brokers are organized
in mesh [31] or tree-based overlay networks, and disseminate
XML data using information stored in their routing tables.
A major weakness of these proposals is that a tree-based
overlay can result in load imbalances between the brokers.
In addition, some kind of centralized control is frequently re-
quired for assigning queries or data sources to the network
brokers. With this in mind, we propose an alternative ar-
chitecture that exploits the power of distributed hash tables
(DHTs) to overcome these weaknesses [26].

With respect to the strategy employed for XML filter-
ing, many works use automata or tree-based structures [14,
17, 26], Tian et al. [32] employ relational database tech-
niques, while Chan and Ni [9] and Vagena et al. [35] focus
on aggregation techniques for reducing the number of sub-
scriptions. While these strategies have been used with suc-
cess for representing a set of queries and identifying XML
documents that structurally match XPath queries, little at-
tention has been paid to value matching (i.e., evaluation
of value-based predicates). This is an important problem
since typical queries, apart from defining a structural path
(e.g., /bib/article/author), also contain value-based pred-
icates (e.g., /bib/article[@year > 2007] /author[text() =
“John Smith”]). Depending on the selectivity of these pred-
icates, the number of queries which are only structurally
matched (i.e., false positives), might be large. For this rea-
son, the benefit of using a filtering engine for structural
matching, can be diminished. In other words, XML filtering
systems should scale with respect to both the number of the
queries indexed and the predicates included in the queries.

Works that deal with the evaluation of value-based pred-
icates in a centralized setting include Gupta and Suciu [19],
Diao et. al [14] and Kwon et al. [24]. Gupta and Suciu pro-
pose to perform predicate evaluation directly with automata
by treating predicates as elements. For this purpose, they
compute a lazy deterministic finite automaton (DFA) with
the hope that only a small fraction of the DFA states will



be constructed during runtime. Diao et al. [14] propose two
methods to deal with predicate evaluation in the centralized
engine of YFilter, where structural matching is performed
using a nondeterministic finite automaton (NFA). Method
Inline processes predicates as soon as the relevant state is
reached during NFA execution while Selection-Postponed
delays predicate evaluation until after the whole structure
of a query is matched. Kwon et al. [24] extend FiST, a
centralized filtering engine [23], where XML filtering takes
place by converting queries and data to Prüfer sequences.
They propose pFist (predicate enabled FiST) which eval-
uates queries in a bottom-up fashion, meaning that value-
based predicates are checked before the structural matching.
To the best of our knowledge, the only approach that deals
explicitly with the evaluation of value-based predicates in a
distributed environment is the recent work by Chand and
Felber [10]. The authors describe an XML content-based
network, called XNet, which performs filtering using the
XTrie algorithm [8]. Queries are organized in a tree struc-
ture (called factorization tree), while aggregation techniques
are applied to minimize the size of the routing tables kept by
XML routers. Value-based predicates are handled in XNet
by associating each tree node with a set of predicates.

In this paper, we study how we can combine structural and
value XML filtering in an efficient way in a distributed envi-
ronment based on DHTs. We are interested in XML filtering
systems that will run on large collections of loosely main-
tained, heterogeneous, unreliable machines spread through-
out the Internet, thus focus in P2P techniques and espe-
cially DHTs. One can imagine that collections of such ma-
chines may be used in the future to run non-commercial
XML-based public filtering/alerting services for community
systems like CiteSeer, blogs etc. Our focus in this work is
on how different methods perform when dealing with value-
based predicates in such an environment. The main contri-
butions of this paper are the following:

• We fully implement a system offering structural and
value XML filtering functionality on top of Pastry DHT
[30] (Section 4). For this purpose, we adopt and extend
our previous work [26] which only deals with structural
matching. (Section 3).

• We describe and compare different methods for com-
bining structural and value XML filtering in our sys-
tem (Section 4). Firstly, we consider a baseline method
which performs filtering in a bottom-up way, evaluat-
ing first the value-based predicates and then proceed-
ing with the structural matching. The second method
filters the document in a top-down fashion, perform-
ing structural matching before predicate evaluation.
Finally, we propose a method that performs step-by-
step evaluation, checking at each step of the evalu-
ation both the structural and the value-based predi-
cates. To the best of our knowledge, no other work
exists that provides an extensive comparison of meth-
ods for combined structural and value XML filtering
in a distributed environment.

• We propose an optimization for the top-down evalua-
tion method that prunes execution to decrease redun-
dant structural matching. While the former methods
are able to deal with all types of predicates, the latter
method employs Bloom filters to optimize its perfor-
mance and is only applicable to equality predicates.

To make the comparison of our methods meaningful,
we focus only on the evaluation of equality predicates
in the rest of this paper.

• We use sampling methods for collecting statistics of
XML data filtered by the system and estimate predi-
cate selectivities. These statistics are utilized by one
of our methods for improving its performance during
predicate evaluation (Section 5).

• We perform an experimental evaluation in both a con-
trolled environment provided by a local cluster and a
real-world network infrastructure provided by Planet-
lab. We demonstrate that our approach scales with
respect to the size of the query set and the number of
predicates per query for various query workloads (Sec-
tion 6).

2. BACKGROUND
In this section, we give a very short introduction to the

XML data model, the subset of XPath we allow, nonde-
terministic finite automata, the structure of Bloom filters
which will be used for summarizing predicate information
and DHTs.

Q

1

: /bib/phdthesis[@published=2005]/author[@nationality=greek]


Q

2

: /bib/*/author[text()="John Smith"]


Q

3

: /bib/article/conference[text()="WWW 2010"]


Q

4

: 
//article[@year=2009]


4


0


6


1


7


8


2


9


5


3

Q


1


Q

2


Q

3


Q

4


bib


e


article


phdthesis


author


author


article


*


*


conference


Figure 1: An example NFA constructed from a set
of XPath queries

2.1 XML and XPath
An XML document can be represented using a rooted,

ordered, labeled tree where each node represents an element
or a value and each edge represents relationships between
nodes such as an element - subelement relationship. Element
nodes may contain attributes which describe their additional
properties or textual data.

XPath [12] is a language for navigating through the tree
structure of an XML document. XPath treats an XML doc-
ument as a tree and offers a way to select paths of this tree.
Each XPath expression consists of a sequence of location
steps. We consider location steps of the following form:

axis nodetest [predicate1] . . . [predicaten]

where axis is a child (/) or a descendant (//) axis, nodetest
is the name of the node or the wildcard character “*”, and
predicatei is a predicate in a list of one or more predicates
used to refine the selection of the node. Each predicate is
either an attribute predicate of the form [attr op value] where



Pastry network
Distributed NFA


3
0


9


1


4


2
 5


6


8


Q

1


Q

4


Q

3
 Q


2


Q

7


bib


e


article


phdth
esis




author


author


author


*


article


*


10


7


{Q

5

,Q


6

}
cite


P7


P4

P1


P5


P8


P3


P9


P2


P6


P1


P2
P8


P7


P6


P5


P4


P3


P9

5


8


6
 7


4
 8


2
 5


9
 10


3
 6
 7


2
 3
 4
1


1
 9
 10
0


Figure 2: Distributing the NFA on top of a DHT network (l=1)

attr is an attribute name, value is an attribute value and
op is one of the basic logical comparison operators {=, >
, >=, <, <=,<>} or a textual predicate of the form [text()
op value] where value is a string value and op is a string
operator [12].

A linear path query q is an expression of the form l1l2 . . . ln,
where each li is a location step. In this paper queries are
written using this subset of XPath, and we will refer to such
queries as path queries or XPath queries interchangeably.
Queries containing branches can be managed by our algo-
rithms by splitting them into a set of linear path queries.
Example path queries for a bibliographic database are:

Q1: /bib/phdthesis[@published=2007]

which selects PhD theses published in year 2007.

Q2: /bib/*/author[text()="John Smith"]

which selects any publication of author John Smith.

2.2 Nondeterministic finite automata
A nondeterministic finite automaton (NFA) is a 5-tuple

A = (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a
finite set of input symbols, q0 ∈ Q is the start state, F ⊆ Q is
the set of accepting states and δ, the transition function, is a
function that takes as arguments a state in Q and a member
of Σ∪{ǫ} and returns a subset of Q [20]. The language L(A)

of an NFA A = (Q, Σ, δ, q0, F ) is L(A) = {w | δ̂(w, q0)∩F 6=

0}. L(A) is the set of strings w in Σ∪{ǫ} such that δ̂(q0, w)

contains at least one accepting state, where δ̂ is the extended
transition function constructed from δ. Function δ̂ takes a
state q and a string of input symbols w, and returns the
set of states that the NFA is in, if it starts in state q and
processes the string w.

Any path query can be transformed into a regular expres-
sion and consequently there exists an NFA that accepts the
language described by this query. Following Diao et al. [14],
for a given set of path queries, we will construct an NFA
A = (Q,Σ, δ, q0, F ) where Σ contains element names and
the wildcard (*) character, and each path query is associ-
ated with an accepting state q ∈ F . An example of this
construction is depicted in Figure 1.

2.3 Bloom filters
A commonly used data structure for probabilistic repre-

sentation of a set to support membership queries is the struc-
ture of Bloom filters [6]. A Bloom filter is a bit-vector of

length m used to represent a set S = {x1, x2, . . . , xn} of n
elements. Initially all bits are set to 0. Then, using k in-
dependent hash functions h1, h2, . . . , hk with range 1 to m,
each element x ∈ S sets to 1 the bits of positions hi(x) for
1 ≤ i ≤ k. Each bit can be set to 1 many times, but only
the first operation has an effect. Then, to check whether an
item y is in S, the bits at positions h1(y), h2(y), . . . , hk(y)
are checked. In case any of them is 0 then y is not a member
of S, else we assume y is in S. There is however a probabil-
ity that this is a false positive and it has been shown that
this probability is equal to (1 − ekn/m)k [6].

2.4 Distributed hash tables
DHTs like Pastry [30] have emerged as a promising way

of providing a highly efficient, scalable, robust and fault-
tolerant infrastructure for the development of distributed
applications. DHTs are structured P2P systems which try
to solve the following lookup problem: given a data item x
stored in a network of peers, find x. In Pastry [30], each peer
and each data item is assigned a unique m-bit identifier.
The identifier of a peer can be computed by hashing its
IP address and is used to indicate its position in a circular
identifier space ranging from 0 to 2m − 1. For data items,
we first have to compute a key and then hash this key to
obtain the identifier. Pastry routes messages to the peer
whose identifier is numerically closest to the given key using
a technique called prefix routing. Such requests can be done
in O(logn) steps, where n is the number of nodes in the
network.

In the rest of the paper we use Pastry as the underlying
DHT. However, our techniques are DHT-agnostic; they can
be implemented on any DHT that offers the standard lookup
operation.

3. STRUCTURAL MATCHING
Before describing the methods we propose for dealing with

value-based predicates, we briefly discuss in this section how
structural matching is performed. We have chosen to use
the methods described in our previous work [26], where
we use an nondeterministic automaton (NFA) for index-
ing XPath queries and execute this NFA for filtering in-
coming XML data. The NFA representing the queries is
distributed among the network peers and peers collaborate
with each other for filtering incoming XML data distribut-
ing the processing load. In the following, we describe how



the distributed NFA corresponding to a set of XPath queries
is constructed, maintained and executed. A more detailed
description can be found in our previous work [26].

3.1 NFA-based distributed index
We use an NFA-based model, similar to the one used in the

system YFilter [14], for indexing queries in our system. The
NFA is constructed from a set of XPath queries and is used
as a matching engine that scans incoming XML documents
and discovers matching queries. We distribute the NFA on
top of a Pastry network and for this reason we use the term
distributed NFA to refer to it. Each state is uniquely identi-
fied by a key and this key is used for determining the peer
that will be responsible for this state. The responsible peer
for state with key k is the peer whose identifier is numer-
ically closest to Hash(k), where Hash() is the DHT hash
function. The states of the NFA are distributed by assigning
each state q along with every other state included in δ̂(q, w),
where w is a string of length l included in Σ ∪ {ǫ}, to the
responsible peer for q. Note that l determines how much of
the NFA is the responsibility of each peer and this results
in having peers responsible for overlapping fragments of the
NFA, the size of which is characterized by parameter l. The
key of an automaton state is formed by the concatenation
of the labels of the transitions included in the path leading
to the state. For example, the key of state 2 in Figure 1
is the string “start”+“bib”+“phdthesis” and the key of state
6 is “start”+“$”1, since ǫ-transitions are represented using
character $. An example of how an NFA is distributed on
top of a Pastry network for l = 1 is depicted in Figure 2.

3.2 Constructing the NFA
To achieve the above distribution of the NFA, the au-

tomaton is incrementally constructed as queries arrive. A
location step can be represented by an NFA fragment [14].
The NFA for a path query can be constructed by concate-
nating the NFA fragments of the location steps it consists
of, where the last state of the NFA is the accepting state of
the path query. Inserting a new query into an existing NFA
requires to combine the NFA of the query with the already
existing one. To insert a new query represented by an NFA
S to an existing NFA R, we start from the common start
state shared by R and S, and we traverse R until either the
accepting state of S is reached or we reach a state for which
there is no transition that matches the corresponding transi-
tion of S. If the latter happens, a new transition is added to
that state in R. Since the states of the NFA are distributed
among the network peers, we traverse the distributed NFA
by visiting the relevant peers. Depending on the value of pa-
rameter l a peer may need to store additional states locally
before forwarding the indexing request.

3.3 Executing the NFA
NFA execution proceeds in an event-driven fashion. The

XML document is parsed using a SAX parser and the pro-
duced events are fed, one event at a time, to the NFA. The
parser produces events of the following types: StartOfElement
(SOE), EndOfElement (EOE), StartOfDocument (SOD),

EndOfDocument (EOD) and Text. The nesting of elements in

1Operator + is used to denote the concatenation of strings.

an XML document requires that when an EOE event is raised,
the NFA execution should backtrack to the states it was in
when the corresponding SOE was raised. For achieving this,
YFilter maintains a stack, called the run-time stack, while
executing the NFA. Since many states can be active at the
same time in an NFA, the stack is used for tracking multiple
active paths. The states placed on the top of the stack rep-
resent the active states while the states found during each
step of execution after following the transitions caused by
the input event, are called the target states. Execution is
initiated when a SOD event occurs and the start state of the
NFA is pushed into the stack as the only active state. Then,
each time a SOE event occurs for element e, all active states
are checked for transitions labeled with e, wildcard and ǫ-
transitions. In case of an ǫ-transition, the target state is
recursively checked one more time. All active states con-
taining a self-loop are also added to the target states. The
target states are pushed into the run-time stack and become
the active states for the next execution step. If a EOE event
occurs, the top of the run-time stack is popped and back-
tracking takes place. Execution proceeds in this way until
the document has been completely parsed.

Similarly to YFilter, we maintain a stack in order to be
able to backtrack during the execution of the NFA. For each
active state, we want to retrieve all target states reached by
a certain parsing event. We propose two methods for exe-
cuting the NFA [26]: the first proceeds in an iterative way
while the other executes the NFA in a recursive fashion. In
the iterative method, the publisher peer is responsible for
parsing the document, maintaining the run-time stack and
forwarding the parsing events to the responsible peers. In
this case, the execution of the NFA proceeds in a similar
way as in YFilter, with the exception that target states can-
not be retrieved locally but need to be retrieved from other
peers. In the case of the recursive method, the publisher
peer forwards the XML document to the peer responsible
for the start state to initiate the execution of the NFA. The
execution continues recursively, with each peer responsible
for an active state continuing the execution. Notice that the
run-time stack is not explicitly maintained in this case, but
it implicitly exists in the recursive executions of these paths.
The execution of the NFA is parallelized in two cases. The
first case is when the input event processed has siblings with
respect to the position of the element in the tree structure
of the XML document. In this case, a different execution
path is created for each sibling event. The second case is
when more than one target states result from expanding a
state. Then, a different path is created for each target state,
and a different peer continues the execution for each such
path. We experimented with both methods [26] and demon-
strated that the recursive method outperforms the iterative
one with respect to both the required messages and total
filtering time. In the rest of the paper, we only use the
recursive method for filtering incoming XML data.

4. VALUE MATCHING
In the previous section, we described how structural match-

ing is performed using the methods described in our previous
work [26]. In this work, we focus on the evaluation of value-
based predicates. Consider for example query q:
/bib/article[@conf = DEBS]/author[text() = “John Smith”],

which selects the articles of author “John Smith” published
at the DEBS conference. Filtering incoming XML data



against this query requires to check whether the data struc-
turally match the query and also whether the value-based
predicates of the query are satisfied. In this section, we de-
scribe different techniques for dealing with the evaluation of
value-based predicates together with distributed structural
matching approaches as the ones supported by our system.

Following a widely used strategy from relational query
optimization, where selections are applied as early as pos-
sible, we can check the value-based predicates before pro-
ceeding with the structural matching following a bottom-up
approach. Even though the heuristic of pushing selections
early works well in the case of relational query processing, in
our case peers may put a lot of effort evaluating predicates
for queries whose structure may not be matched. Thus, we
can alternatively check the predicates after the structural
matching operating in a top-down fashion. In this case,
value-based predicate evaluation takes place after the struc-
tural matching of queries. Furthermore, considering that
XPath queries consist of distinct steps and each step may
be associated with one or more value-based predicates, we
can perform structural matching along with predicate eval-
uation at each step. We consider that the latter approach
performs XML filtering in a step-by-step fashion.

Finally, since in our case the XPath queries are indexed us-
ing an NFA, we could perform predicate evaluation directly
with the automaton by adding extra transitions for the pred-
icates. An expected drawback of such a method comes from
the fact that the elements in a set of XPath queries represent
a rather small set since they are constrained by the schema,
while the values of the predicates may form a large set. This
could result in a huge increase of the NFA states and also
destroy the sharing of path expressions for which the NFA
was selected to begin with. For this reason, we do not study
this method any further.

In the following, we describe how we implement the above
methods for offering XML filtering functionality on top of
the Pastry DHT. We design our methods assuming that
queries are indexed using the distributed NFA described in
our previous work [26]. In the case of bottom-up evalua-
tion method, we use a different indexing algorithm based
on the query predicates similar to the ones used in the area
of information filtering (IF) by Tryfonopoulos et al. [33]
and Aekaterinidis and Triantafillou [4], where queries are ex-
pressed using a simple attribute-value data model. Lastly,
we propose certain optimizations for achieving better per-
formance when dealing with equality predicates by utilizing
Bloom filters. While the former methods are able to deal
with all types of predicates, the latter method which em-
ploys Bloom filters to optimize its performance is only ap-
plicable to equality predicates. To make the comparison of
these methods meaningful, we study only the evaluation of
equality predicates in the rest of this paper.

4.1 Prerequisites

4.1.1 Data representation

As in our previous work [26], we use the same representa-
tion for the XML documents that arrive for filtering. In par-
ticular, we parse the XML document using a SAX parser and
produce events of the following types: SOE, EOE, SOD, EOD

and Text (also described in Section 3). We enrich parsing
events SOE and EOE with the position of the corresponding
element using a pair (L:R,D), where L and R are generated

by counting tags from the beginning of the document until
the start tag and the end tag of this element, and D is its
nesting depth. This representation was introduced by Con-
sens and Milo [13] and is used to efficiently check structural
relationships between two elements.

We also generate a set of candidate predicates from the
XML document. Each candidate predicate is an equality
predicate constructed using either an element name, an at-
tribute and its value (attribute predicates) or the element
name and its text value (textual predicates), as found in the
XML data fragment. We consider these predicates as candi-
dates because they correspond to the query predicates that
can be satisfied by this document.

The publisher peer is responsible for enriching the pars-
ing events and producing the set of the candidate predicates.
The enriched parsing events along with the candidate predi-
cate set are forwarded with each filtering request. Note that
we need to parse the document for generating the above
structures before the execution begins. However, we do not
consider this additional parsing operation to cause signifi-
cant load to the system since it is typical for XML dissemi-
nation systems to deal with relatively small documents. As
mentioned in the study of Barbosa et al. [5], the average
size of an XML document in the Web is only 4 Kb, while
the maximum size can reach 500Kb.

4.1.2 Terminology

In the following we give some definitions that will be used
throughout the rest of the paper.

Definition 1. An NFA path is a sequence of NFA states
st0, st1, . . . , stn such that for every pair states sti,sti+1 there
exists an input symbol w where δ(w, sti) = sti+1 (i.e., there
exists a transition from sti to sti+1).

Definition 2. An NFA accepting path of a query q is an
NFA path st0, st1, . . . , stn where st0 is the start state of the
NFA and stn is the accepting state of q.

4.2 Bottom-up evaluation
Based on the heuristic of pushing selections as early as

possible in the case of relational query processing, we de-
scribe a method that operates in a bottom-up fashion. This
method indexes queries in the network using their predicates
and performs filtering by first checking the value-based pred-
icates and then proceeding with the structural matching.
We will refer to this method as bottom-up evaluation and
we consider this to be our baseline method. Even though
we only describe how this method operates for equality pred-
icates, the algorithms can be extended to support other com-
plex predicates, like range predicates, adopting techniques
like the ones described by Aekaterinidis and Triantafillou [4].

4.2.1 Indexing queries

In contrast to the other methods, where the indexing of
the queries is done using the distributed NFA, a different in-
dexing algorithm is used in the bottom-up evaluation. Since
we first want to discover queries that contain specific predi-
cates and then structurally match them against the incoming
XML data, indexing is based on the predicates included in
the query. For each distinct predicate included in a query
set, we consider a certain peer which will be responsible for
it and hence also responsible for the set of queries that con-
tain this predicate. Each predicate is uniquely identified by



...


1


...


0


0

0


0

1


0

0


1


h

1

(p)


h

2

(p)


h

k

(p)


k 
hash-functions

m-bit


filter


Distributed NFA


Q

1

: phdthesis[@published=2005]


Q

2

: author[text()="John Smith"]


Q

3

: article[@conf=debs]


Q

4

: author[@degree-from="UOA"]


Q

5

: article[@year=2009]


Q

6

: cite[@paper-id=2392]


Peer p


Pastry network
 Value filter


Queries


keeps value


filter


3
0


9


1


4


2
 5


6


8


Q

1


Q

4


Q

3
 Q


2


Q

7


bib


e

article


phdthesis



author


author


author


*


article


*


10


7


{Q

5

,Q


6

}
cite


Q

1

: /bib/phdthesis[@published=2005]/author[@nationality=greek]


Q

2

: /bib/*/author[text()="John Smith"]


Q

3

: /bib/article[@conf=debs]


Q

4

: /bib/article[@year=2009]/author[@degree-from="UOA"]


Q

5

: 
/bib/article[@year=2009]/cite[@paper-id=2392]


Q

6

: /bib/article/cite[@paper-id=2770]


Q

7

: //article[@year=2007]


select 1 predicate from each query 
 to insert in VF
is responsible for state 1


Figure 3: Top-down evaluation with pruning: Constructing value filters

a key formed by its string representation and this key is
used for determining the peer that will be responsible for
it. Given that we assume the Pastry DHT as the underly-
ing network, the responsible peer for predicate with key k is
the peer whose identifier is numerically closest to Hash(k),
where Hash() is the DHT hash function. Each peer keeps
a local index mapping predicates to the list of queries that
contains them. This indexing algorithm resembles works
presented for information filtering (IF) on top of DHTs in-
cluding work of Tryfonopoulos et al. [33], where queries are
expressed using a simple attribute-value data model and at-
tribute values are used to map queries to peer identifiers.

4.2.2 Filtering data

Whenever XML data arrives for filtering, we construct a
set of candidate predicates as usual. For each candidate
predicate, we send a filtering request to the peer responsible
for this predicate. The peer checks its local hash index,
retrieves the queries that contain the specific predicate and
then performs locally structural matching for these queries.
If a query is also structurally matched with the incoming
XML data, a notification is sent to its subscriber.

4.3 Top-down evaluation
In contrast to the previous method, this approach oper-

ates in a top-down fashion, evaluating predicates after per-
forming structural matching. In this method, we use the
distributed NFA [26] to identify the subset of queries that
structurally match incoming XML documents, and then we
evaluate the predicates of these queries. In other words, this
method evaluates predicates after the execution of the NFA.
Since structural matching is performed in parallel by multi-
ple peers, each of these peers identifies a different subset of
structurally-matched queries. So, whenever a peer identifies
such a set, it is also responsible for the predicate evaluation.
We will refer to this method as top-down evaluation.

4.3.1 Indexing queries

Query indexing is performed as described in Section 3.
However, when an accepting state is reached, we need to
perform predicate evaluation for the queries associated with
that state. In order to avoid evaluating each one of the pred-

icates in the queries separately, we utilize an index structure.
Since we only deal with equality predicates at the current
state of our work, it is sufficient to construct a hash in-
dex mapping predicates to the list of queries which contain
them. For each accepting state, we include in the hash in-
dex all the predicates of the corresponding queries. We can
easily extend our method to support range predicates if we
keep B+-tree indexes instead of hash indexes.

PREDICATE
 QUERY LIST


PREDICATE
 QUERY LIST


[@conf=debs]
 {
Q

3

}


[@year=2009]
 {
Q

5

,Q


6

}


[@paper-id=2392]
 {
Q

5

}


[@paper-id=2770]
 {
Q

6

}


0


Q

1


Q

2


Q

4


bib

phdth

esis

 author


*


article

cite


author


7


6


5


3


2


1


4

author


8


{
Q

5

,Q


6

}


8


Q

3


Figure 4: Hash indexes for top-down evaluation

We illustrate the above using an example shown in Figure
4. Using the same example NFA, in the top-down evaluation
we keep hash indexes for the accepting states (i.e., states
3, 5, 6, 7 and 8). The hash index of state 3 contains only one
entry for Q3 and the index of state 7 contains three entries,
one for each distinct predicate contained in Q5 and Q6.

4.3.2 Filtering data

Filtering is performed by executing the distributed NFA
until we reach an accepting state. When a peer reaches
an accepting state, it needs to further evaluate the queries
associated with that state with respect to their value-based
predicates. Instead of sequentially checking all queries, we
use the candidate predicates to probe the hash index. If a
query is matched by incoming data then it will be returned
as a match by the index. If a query has all its predicates
satisfied, then a notification is sent to its subscriber.



XML Document


bib


article


@conf
@year
 author


text()
 @institute
2007


"John Smith"
 Harvard


VLDB


@title


"XML Filtering"


CP

1

:article[@title="XML Filtering"]


CP

2

:article[@conf=VLDB]


CP

3

:article[@year=2007]


CP

4

:author[text()="John Smith"]


CP

5

:author[@institute=Harvard]


Candidate predicates


Distributed NFA
 Execution steps


Step 1: expanding state 0


Step 2: expanding state 1


Filter comparison


returns MATCH!

(for candidate predicate


[@year=2007])


Filter comparison


returns MISS!

Peer p


2


Peer p

1


execute


NFA


use to check Value filters


Value filter of p

1


Value filter of p

2


3
0


9


1


4


2
 5


6


8


Q

1


Q

4


Q

3
 Q


2


Q

7


bib


e

article


phdthesis



author


author


author


*


article


*


10


7


{Q

5

,Q


6

}
cite


Q

1

: /bib/phdthesis[@published=2005]/author
[@nationality=greek]


Q

2

: /bib/*/author
[text()="Michael Smith"]


Q

3

: /bib/article
[@conf=www]


Q

4

: /bib/article
[@year=2009]
/author[@degree-from="UOA"]


Q

5

: 
/bib/article[@year=2009]/cite
[@paper-id=2392]


Q

6

: /bib/article/cite
[@paper-id=2770]


Q

7

: //article
[@year=2007]


Queries


generate candidate


predicates


1


...


0


0

0


0

1


0

1


1


1


...


0


0

0


0

1


0

0


1


Figure 5: Top-down evaluation with pruning: Querying value filters

4.4 Top-down evaluation with
pruning

To overcome possible shortcomings of top-down evalua-
tion caused by spending too much effort with structurally
matching queries containing predicates that are not satis-
fied by incoming XML data, we propose the following opti-
mization when dealing with equality predicates. We use a
compact summary of predicate information to stop the exe-
cution of the NFA (i.e., prune this execution path) whenever
we can deduce that no match can be found if the execution
continues. We will refer to this method as top-down evalua-
tion with pruning.

Recall that the NFA is a tree structure distributed among
the network peers and during structural matching we tra-
verse the distributed NFA. Each peer is responsible for stor-
ing many fragments of this NFA. At each step of the exe-
cution, we can consider that a part of the NFA has been
revealed while the rest part is not. So, we can use Bloom
filters to represent these NFA fragments with respect to the
predicates they contain. Then, we can decide whether or
not we will continue execution by consulting these filters.
The main idea of this method is the use of Bloom filters to
summarize the query predicates indexed in a specific NFA
fragment. For this reason, each peer keeps one Bloom filter,
called value filter (VF), which summarizes a set of value-
based predicates.

Consider a peer p and a state st for which p is respon-
sible for. Since we assume only conjunctions of predicates
in queries, if at least one of the query predicates is not sat-
isfied, then the query cannot be matched. Thus, for each
query q whose NFA accepting path contains st, we insert
one predicate of q in the V F of p. In other words, only one
predicate of each query is required in the value filter. Each
attribute predicate of the form element[@attr = value] is in-
serted as a whole in the V F using its string representation
element+attr+value concatenated with the state identifier.
Likewise, textual predicates of the form element[text() =
value] are inserted as a whole in the V F using their string
representation element + text() + value together with the
state identifier. We insert predicates in the filters during
query indexing. Since we need to traverse the NFA accept-
ing path of each query in order to index it, it is guaranteed
that all relevant VFs will be updated. Since each query may

contain more than one predicates, we need to select which
one will be inserted in the value filter. Section 5 studies how
we can select this predicate.

We illustrate the above using an example shown in Figure
3. We consider queries Q1, Q2, Q3, Q4, Q5, Q6 and Q7 and
the corresponding NFA. This NFA is distributed among the
network peers. In our example, peer p is responsible for
state 1. Since state 1 belongs to the NFA accepting paths
of queries Q1, Q2, Q3, Q4, Q5 and Q6, one predicate of each
query is inserted in the VF of p. Note that we do not insert a
predicate of Q7 since Q7 is not indexed in the corresponding
NFA fragment i.e., its NFA accepting path does not include
state 1.

4.4.1 Filtering data

In this method, each peer that participates in the execu-
tion process performs an additional step before expanding
an NFA state. During this step, it checks whether its VF
matches any of the candidate predicates. In case no candi-
date predicate can be matched (miss), execution is pruned
instantly, while if at least one of the candidate predicates is
found in the filter (match), the peer proceeds with the exe-
cution. In the worst case where no execution path is pruned,
this method works exactly like the top-down evaluation. As
described previously, when we reach an accepting state each
peer keeps a hash index for performing predicate evaluation.

Note that we do not explicitly check query predicates,
but at each step of the execution, VF only give us enough
information regarding whether to continue the execution or
not. We have no further information regarding which queries
contain any of the candidate predicates.

We demonstrate how we use value filters to prune NFA
execution using an example shown in Figure 5. Again, we
consider the same set of queries and the corresponding NFA
distributed among the network peers. In our example, peer
p1 is responsible for state 0, while peer p2 is responsible for
state 1. The value filters at peers p1 and p2 contain the
query predicates that are underlined in the figure. Suppose
a peer publishes the XML document depicted in the figure.
This peer is responsible for generating candidate predicates
from the document and initiating filtering. Peer p1 which is
responsible for the start state receives the filtering request
and initiates filtering. Before proceeding with the expansion
of state 0, it checks whether any of the candidate predicates



is included in its local value filter. In this case, VF returns a
match for predicate article[@year = 2007] which is included
in query Q7. So, state 0 is expanded causing states 1 and 9
to become active. Peer p2 continues execution from state 1.
In this case, when p2 checks its local value filter, it founds
no match and this execution path is pruned and state 1 is
not expanded. Due to space limitations, the execution path
from state 9 is not depicted in the figure.

4.5 Step-by-step evaluation
Our last method is based on the concept of performing

value matching simultaneously with the structural match-
ing. Considering that XPath queries consist of distinct steps
and each step may be associated with one or more value-
based predicates, we can perform structural matching along
with predicate evaluation at each step. Therefore, in this
case predicates are evaluated during NFA execution.

4.5.1 Indexing queries

As before, queries are indexed using the distributed NFA.
During query indexing, each peer organizes all the predicates
included in its local queries using an index. Each predicate is
associated with the relevant NFA state it refers to. This local
index maps predicates to the list of queries which contain
them. Since a query may not contain predicates, we also
map a generic true predicate to queries with no predicates
at this step.

0


Q

1


Q

2


Q

4


bib

phdth

esis

 author


*


Q

1

: /bib/phdthesis[@published=2005]/author[@nationality=greek]


Q

2

: /bib/*/author[text()="John Smith"]


Q

3

: /bib/article[@conf=debs]


Q

4

: /bib/article[@year=2009]/author[@degree-from="UOA"]


Q

5

: 
/bib/article[@year=2009]/cite[@paper-id=2392]


Q

6

: /bib/article/cite[@paper-id=2770]


article


cite


author


7


6


5


3


2


1


4

author


8

PREDICATE
 QUERY LIST


true
 {Q

1

,Q


2

,Q


3

,Q


4

,Q


5

,Q


6

}


PREDICATE
 QUERY LIST


true
 {
Q

6

}


[@conf=debs]
 {
Q

3

}


[@year=2009]
 {
Q

4

,Q


5

}


{
Q

5

,Q


6

}


Q

3


Figure 6: Hash indexes for step-by-step evaluation

4.5.2 Filtering data

Recall that each filtering request carries a document rep-
resentation and the candidate predicates produced by the
document. In addition, each filtering request also includes
the queries which have been partially matched with respect
to both their structure and predicates until the current exe-
cution step. To filter incoming XML data, each peer partic-
ipating in the filtering process uses the candidate predicates
to probe its local index.

Let us explain how this works in detail. After peer p
expands a state st during execution, it uses the candidate
predicates to probe its hash index. Let CurrQ and PrevQ
be the set of queries returned by the hash index and the
set of previously satisfied queries respectively. We will de-
note as NextQ, the set of satisfied queries after expanding

st, i.e., NextQ = PrevQ ∩ CurrQ. In case state st is an
accepting state for a query q ∈ NextQ (both structure and
predicates have been satisfied), then p notifies the subscriber
of q and removes q from NextQ. Then, execution continues
and p forwards a new filtering request that includes NextQ.
At the current state of our work, we only support equality
predicates and for this reason we use a hash index. We plan
to support range predicates using appropriate indexes like
B+-trees.

We illustrate the above using an example shown in Fig-
ure 6. We construct an NFA from a set of six queries. For
the sake of simplicity, we do not show how this NFA is dis-
tributed among network peers. For each NFA state, we keep
a different hash index. In Figure 6, we show the contents of
the hash indexes associated with states 1 and 3 respectively.
The index at state 1 contains only one entry mapping the
true predicate to {Q1, Q2, Q3, Q4, Q5, Q6}, since no query
contains a predicate at that step. While, the index at state
3 contains three entries, one for the true predicate and two
for the predicates contained in queries Q3,Q4 and Q5. Q4

and Q5 contain the same predicate, so one entry is added
to the hash index. Execution ends when NextQ becomes
empty.

5. ONLINE SELECTIVITY ESTIMATION
We previously described the top-down evaluation with

pruning which uses Bloom filters to summarize predicate
information. Recall that we want to select and insert only
one of the predicates for each query in the respective filters.
This selection can be made randomly or ideally we can select
the predicate which can lead to better pruning. For exam-
ple, consider query Q:
/dblp/article[@year=2009]/author[text()="John Smith"],
which selects all articles by John Smith published in 2009.
Since one would expect that there are many more articles
published in 2009 than articles written by John Smith in
general, we would like to insert the predicate on the author
in VF. Thus, it is reasonable to prefer inserting the most
selective predicate of each query in the value filter.

In this section, we define the selectivity of predicates in
our context, describe our techniques for keeping statistics to
estimate predicate selectivities in our system, and describe
how these statistics are used by the top-down evaluation
method.

5.1 Definitions
As described in Section 2.1, we deal with attribute and

textual predicates on XML elements. We define the selec-
tivity of a textual predicate [text() = v] on element e for an
XML document collection D as the fraction of elements e,
reachable by any path, with value v in D. Similarly, we de-
fine the selectivity of an attribute predicate [@attr = v] for
attribute attr on element e for an XML document collection
D as the fraction of elements e, reachable by any path, that
satisfy the predicate in D. We also consider that any pred-
icate on an element explicitly defined is more selective than
a predicate on a wildcard element. The following formulas
give the formal definitions:

sel(e[text() = v]) =
total occurrences of e equals v in D

total occurrences of e in D
(1)

sel(e[@attr = v]) =
total occurrences of attr equals v in D

total occurrences of e in D
(2)



5.2 Distributed sampling
In an XML dissemination system like the one described

in this work, a large volume of XML data is expected to
arrive for filtering. As a result, it is not feasible to store
the entire set of XML data that have been processed to
compute the exact predicate selectivities. For this reason,
we use sampling and keep information only about a fixed-
size random subset of the data collection.

Formally, we want to obtain a random sample of size n
from a set of size N , where N is not known beforehand.
A well-known and broadly used algorithm for random sam-
pling is the reservoir sampling algorithm proposed by Vitter
et al. [36]. For obtaining a random sample of size n, the
algorithm works as follows. The first n items are inserted in
the reservoir. Then, a random number of items is skipped
and the next item replaces a random item from the reser-
voir. Again, a random number of items is skipped and so
on. This way the reservoir always contains a random sample
of n items.

Let us recall at this point what kind of selectivities we
want to extract from the document sample. We keep the
occurrences of each element along with the occurrences of
its attributes and their values. Each peer keeps its own in-
dependent reservoir of n items, in our case XML documents.
This reservoir is created from the documents that arrive at
this peer. This random sample is kept at the document-
level, so each item in the reservoir is actually an XML doc-
ument that has previously arrived for filtering. Whenever
a document arrives at peer, it runs the reservoir sampling
algorithm to decide whether or not to add this document to
its local reservoir.

5.3 Using statistics in predicate evaluation
We have described what kind of selectivity statistics we

keep and how we compute them. Let us now describe how
these statistics are exploited by the top-down evaluation
method with pruning to select which predicates will be in-
serted in the VFs.

Each time a query arrives at a peer p, before starting
indexing the query, p computes the selectivities of its pred-
icates by consulting its local reservoir. Then, p marks the
most selective predicate of the query and initiates index-
ing. This process is performed only by the subscriber peer.
Recall that we update value filters during query indexing,
so the most selective predicate is chosen using the current
selectivity statistics. Alternatively, we could also update fil-
ters at a later time because XML data may follow a different
distribution. However, this would require to be able to also
remove entries from the Bloom filters. In this case, one could
use Counting Bloom filters [16].

6. EXPERIMENTS
In this section, we present an experimental evaluation of

our system. We have implemented our methods for com-
bined structural and value matching in Java on top of FreeP-
astry [1]. For our experiments, we used as testbeds both
PlanetLab network (http://www.planet-lab.org/) as well
as a more controlled environment provided by a local shared
cluster (http://www.grid.tuc.gr/). We focus on the per-
formance of the methods we described previously for evalu-
ating value-based predicates in our system. Demonstrating
the performance of structural matching is out of the scope of

this paper and the interested reader can refer to our previous
work [26].

6.1 Experimental setup
In the case of the top-down evaluation method which uses

pruning, we run two versions of this method based on how
the predicate of each query included in the value filters is
chosen. In the first case, we use selectivity statistics to
choose the most selective predicate (denoted as top-down
with pruning (most-sel)) and in the second case, we choose
the predicate randomly (denoted as top-down with prun-
ing (random)). We are interested in measuring the time
at which the notifications arrive at the subscribers during
the XML filtering process referred to as notification arrival
times. We also refer to the arrival time of the last noti-
fication as the total filtering time or filtering latency. In
addition we also measure the total number of messages sent
through the network either during indexing queries or dur-
ing the filtering of XML data. All measurements presented
below are averaged over 10 runs for each experiment. In the
following, we describe our experimental setup.
Network setup. When using the Planetlab testbed, our
network consists of 253 peers across four continents that
were available and lightly loaded at the time of the exper-
iments. In the cluster, which consists of 34 machines, we
run up to 136 peers, i.e., 4 peers in each machine. In each
experiment, firstly, queries are indexed in the system by a
set of randomly selected available peers and then, XML data
is published by random peers. In the case of Planetlab, we
used 100 peers of the 253 available peers for indexing the
query set. The same number of peers was also used for the
experiments conducted in the cluster.
Data sets. We generate a synthetic data set using the
NITF (News Industry Text Format) DTD, which has also
been used in other works [26, 8, 14, 21]. The NITF DTD
represents an interesting case where a large fraction of ele-
ments are allowed to be recursive. We use the IBM XML
generator [2] to synthetically generate 100 documents. The
same DTD is used to generate sets of 1,000,000 path queries
using the XPath generator available in the YFilter release
[3]. Each set is generated using the following parameters:
the maximum number of steps d per query fixed at 15 and
the number of predicates P per query ranging from 1 to 6.
Bloom filter size. We use Bloom filters with a fixed size
of 100,000 bits in our experiments resulting in a false prob-
ability rate of about 0, 8% while using 7 hash functions. We
have chosen the above parameters based on our experimen-
tal setting. However, the false positive rate depends on the
total number of items (i.e. in our case predicates) expected
to be inserted in the Bloom filter. This may not be known
beforehand in a realistic scenario and different assumptions
should be made for selecting the values for the above param-
eters. We consider as future work to further explore this.

6.2 Filtering data
In this experiment, we study the performance of our meth-

ods during XML filtering. Firstly, we show results from
experiments conducted using the cluster machines after in-
dexing 100,000 queries (Figures 7(a) and 7(b)). Figures
7(a) and 7(b) show the arrival times for queries involving
2 and 4 predicates respectively plotted on a logarithmic
scale. In general, methods which evaluate predicates in a
top-down fashion outperform the others by a wide margin.



1


10


100


1000


10000


1
 21
 41
 61
 81
 101
 121
 141
 161


Notifications


Step
-
by
-
step


Bottom
-
up


Top
-
down


Top
-
down with pruning (random)


Top
-
down with pruning (most
-
sel)


(a) Cluster (2 predicates per query)

1


10


100


1000


10000


100000


1
 21
 41
 61
 81


Notifications


Step
-
by
-
step


Bottom
-
up


Top
-
down


Top
-
down with pruning (random)


Top
-
down with pruning (most
-
sel)


(b) Cluster (4 predicates per query)

0


5


10


15


20


25


30


35


1
 51
 101
 151
 201
 251
 301
 351


Notifications


Step
-
by
-
step


Bottom
-
up


Top
-
down


Top
-
down with pruning (random)


Top
-
down with pruning (most
-
sel)


(c) Planetlab (2 predicates per query)

Figure 7: Notification arrivals

0


50


100


150


200


250


300


350


400


450


1
 21
 41
 61
 81
 101
 121
 141
 161


Notifications


Top
-
down


Top
-
down with pruning (random)


Top
-
down with pruning (most
-
sel)


(a) Cluster (2 predicates per query)

0


200


400


600


800


1000


1200


1400


1600


1800


1
 21
 41
 61
 81


Notifications


Top
-
down


Top
-
down with pruning (random)


Top
-
down with pruning (most
-
sel)


(b) Cluster (4 predicates per query)

0%


5%


10%


15%


20%


25%


30%


35%


40%


45%


50%


1
 2
 3
 4

Predicates per query


Top
-
down with pruning (most
-
sel)
-
Planetlab


Top
-
down with pruning (most
-
sel)
-
Cluster


(c) Performance improvement

Figure 8: Benefit of using value filters

The step-by-step method exhibits the worst performance in
both cases, deteriorating as the number of predicates per
query is increased from 2 to 4. This is due to the fact that
peers spend a lot of effort evaluating predicates for queries
whose structure is not matched by the XML data. Like-
wise, bottom-up evaluation method which indexes queries
based on their value-based predicates also demonstrates a
poor performance, even though it is 10 times faster com-
pared to step-by-step. This is explained because each peer
responsible for a candidate predicate (as this is generated
by incoming XML data) performs structural matching for
all queries containing this predicate.

In Figure 7(c) we show the notification arrival times when
using the Planetlab network. Since Planetlab peers are lo-
cated in four continents, network delays in such a setting
are considerably higher compared to the ones observed in
the cluster. As before, the step-by-step evaluation method
exhibits the worst performance suffering even more from the
network delays of Planetlab peers. It is interesting though
that the bottom-up evaluation method generates the first
notifications faster than top-down evaluation methods. An
explanation for this behavior is that less peers participate
in the filtering process decreasing network delays, while top-
down evaluation methods exhibit a more stable performance
due to the fact that processing load is distributed among a
larger number of peers. For example, bottom-up evaluation
generates the 260th notification about 3 seconds later com-
pared to the top-down evaluation methods.

In Figure 9, we show the total number of messages that
travel through the network during filtering of XML data
while varying the total number of indexed queries. Note
that the notifications generated during the filtering are not
included since all methods generate the same amount of no-

tification messages. Bottom-up method generates a constant
number of messages since this is analogous to the number
of candidate predicates generated by the XML data and
independent of the total indexed queries. Moreover, top-
down evaluation method and step-by-step generate almost
the same number of messages in each case. This is due to
the fact that both methods traverse almost the same NFA
fragment during XML filtering. Finally, when pruning is
used less messages are sent since, as expected, execution is
stopped at some cases.

0


100


200


300


400


500


600


700


800


200k
 400k
 600k
 800k
 1000k


Indexed queries


Step
-
by
-
step


Bottom
-
up


Top
-
down


Top
-
down with pruning (random)


Top
-
down with pruning (most
-
sel)


Figure 9: Filtering messages for 200k to 1M queries

6.3 Benefit of using value filters
In this experiment, we study the benefit of using Bloom

filters to summarize predicate information aiming at stop-
ping NFA execution if we determine that no query can be
satisfied by the incoming XML data. We compare our meth-
ods after having indexed 100,000 queries and again show
notification arrival times after publishing the XML docu-



ments. The number of predicates per query ranges from
2 to 4. Figures 8(a) and 8(b) show the arrival times for
queries involving 2 and 4 predicates respectively. In gen-
eral, we observe that top-down evaluation demonstrates a
better performance when pruning is used, either by exploit-
ing selectivity statistics or not. As queries involve a larger
number of predicates, the gain of using Bloom filters in-
creases, resulting in faster arrival times. This is depicted
in Figure 8(b) where queries involve 4 predicates and the
use of value filters results in a better performance. In addi-
tion, the use of selectivity statistics when constructing the
value filters results in better arrival times in most cases. We
expect that we could further improve its performance with
more sophisticated techniques for selectivity estimation but
we consider this to be out of the scope of the paper.

Figure 8(c) summarizes how the use of selectivity statistics
can result in better performance as we increase the number
of predicates per query. We have conducted this experiment
in both Planetlab and the cluster. We measure the perfor-
mance improvement using the formula tbase−tmethod

tbase

, where

tmethod is the filtering time for the method under observa-
tion and tbase is the filtering time of the top-down evaluation
method without any pruning. As shown in the figure, for
queries with one predicate, the use of pruning results in a
20% improvement in Planetlab, while in the cluster, where
network delays are minimized, we achieve a 30% improve-
ment. As the number of predicates per query grows, the
performance improvement due to the use of pruning over the
simple top-down evaluation method increases significantly,
reaching a 39% improvement for queries involving 4 predi-
cates. We have experimented with a higher number of pred-
icates using other datasets and the trend observed was sim-
ilar. However, in most datasets, more predicates result in
significantly less notifications, minimizing the potential im-
provement in performance.

6.4 Indexing queries
We also compared our methods with respect to the time

required for query indexing. Let us recall at this point
that top-down evaluation which uses pruning needs to main-
tain and update the value filters, step-by-step method keeps
predicate information for each NFA state, while in simple
top-down evaluation peers keep predicate indexes associated
with the accepting NFA states. In the case where 100,000
queries were indexed in the Planetlab network we can report
the following. All the methods exhibit similar performance
indexing the set of queries in about 20 seconds. Even when
the number of predicates increases, total indexing time re-
mains almost the same due to the fact that many peers par-
ticipate and share the load. We omit the relevant graph due
to space limitations.

7. RELATED WORK
Many approaches exist for XML filtering in a centralized

setting like YFilter [14], XTrie [8], XPush [19], Index-Filter
[7] and others. Also, many systems have been proposed that
deal with XML dissemination in distributed environments
[11, 17, 15, 18, 34, 9, 26]. As mentioned previously, systems
like XTrie [8] which use automata or other tree-structures
for indexing XML path queries, can be efficiently used to
identify XML documents which structurally match XPath
queries but cannot be used to efficiently perform predicate
evaluation.

Works that deal with the evaluation of value-based pred-
icates in a centralized setting include Gupta and Suciu [19],
Diao et. al [14] and Kwon et al. [24]. Gupta and Suciu
[19] propose to perform predicate evaluation directly with
automata by treating predicates as elements. For this pur-
pose, they compute a lazy DFA with the hope that only a
small fraction of the DFA states will be constructed dur-
ing runtime. Diao et al. [14] propose two methods to deal
with predicate evaluation in the centralized engine of YFil-
ter. Method Inline processes predicates as soon as the rele-
vant state is reached during NFA execution while Selection-
Postponed delays predicate evaluation until after the whole
structure of a query is matched. Kwon et al. [24] ex-
tend FiST, a centralized filtering engine [23], where queries
and data are converted to Prüfer sequences. They propose
pFist (predicate enabled FiST) which evaluates queries in a
bottom-up fashion, meaning that value-based predicates are
checked before the structural matching.

Vagena et al. [35] deal with XML message aggregation
and describe the VA-RoXSum structure. VA-RoXSum ag-
gregates structural information of XML data in a compact
way, while Bloom filters are used to encode values of root-
to-leaf XML data paths. Similarly to YFilter, in each broker
queries are indexed using an NFA and value predicates are
augmented with the final states of the NFA using Bloom
filters. Also, Gong et al. [18] use Bloom filters to sum-
marize path queries and build routing tables for efficiently
filtering XML data. Finally, Bloom filters have been used
by Koloniari and Pitoura [22] as summaries of XML data to
efficiently route path queries in a P2P network.

To the best of our knowledge, the only approach that deals
explicitly with the evaluation of value-based predicates in a
distributed environment is the recent work by Chand and
Felber [10]. The authors describe an XML content-based
network, called XNet, which performs filtering using XTrie
[8]. Queries are organized in a tree structure (called fac-
torization tree) while aggregation techniques are applied to
minimize the size of the routing tables kept by XML routers.
Value-based predicates are handled in XNet by associating
each tree node with a set of predicates. In addition, the
authors consider that the overhead of predicate evaluation
depends on the query workload and assume that it is typi-
cally very low compared to the cost of structural matching.

With respect to our selectivity estimation techniques, each
peer uses the well-known algorithm of reservoir sampling and
keeps its own independent sample for computing estimates.
However, Pitoura and Triantafillou [29] focus on distributed
sampling algorithms on top of DHTs and describe sampling
algorithms to estimate peer loads. These algorithms can
be easily adapted to obtain better estimates of predicate se-
lectivities by combining the estimates computed by different
peers. For instance, using the random walking algorithm de-
scribed [29], each peer can collect the estimated selectivities
from its neighbors and compute better estimates.

8. CONCLUSIONS AND FUTURE WORK
We describe, implement and study the performance of a

system which combines both structural and value XML fil-
tering on top of Pastry DHT. Our system performs struc-
tural matching using automata and supports several meth-
ods, each of which operates in a different fashion, namely
top-down, bottom-up and step-by-step, for evaluating pred-
icates. We propose an optimization for one of our methods,



which utilizes Bloom filters to summarize predicate informa-
tion aiming to decrease the effort spent during value match-
ing. We experimentally evaluate our approach on both Plan-
etLab and on a local cluster and demonstrate how our meth-
ods can scale in both the size of query set and the number of
predicates per query. Our future work concentrates on ex-
tending our methods for range predicates. Additionally, we
want to consider more fine-grained statistics for estimating
predicate selectivities as well as other distributed sampling
methods.

9. ACKNOWLEDGMENTS
We would like to thank Neoklis Polyzotis for useful com-

ments and discussions regarding the issues raised in Sec-
tion 5. Also, we would like to thank Mihalis Nicolaou for
implementing the algorithms for structural matching [26].

10. REFERENCES
[1] FreePastry 2.1 release.

http://www.freepastry.org/FreePastry/.

[2] IBM XML Generator.
http://www.alphaworks.ibm.com/xmlgenerator.

[3] YFilter 1.0 release.
http://yfilter.cs.umass.edu/code_release.htm.

[4] I. Aekaterinidis and P. Triantafillou. PastryStrings: A
Comprehensive Content-Based Publish/Subscribe
DHT Network. In ICDCS 2006.

[5] D. Barbosa, L. Mignet, and P. Veltri. Studying the
XML Web: Gathering Statistics from an XML
Sample. World Wide Web, 9(2):187–212, 2006.

[6] B. H. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[7] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava.
Navigation- vs. Index-Based XML Multi-Query
Processing. In ICDE 2003.

[8] C. Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Efficient Filtering of XML Documents
with XPath Expressions. In ICDE 2002.

[9] C. Y. Chan and Y. Ni. Efficient XML Data
Dissemination with Piggybacking. In SIGMOD 2007.

[10] R. Chand and P. Felber. Scalable Distribution of XML
Content with XNet. IEEE Transactions on Parallel
and Distributed Systems, 19(4):447–461, 2008.

[11] R. Chand and P. A. Felber. A Scalable Protocol for
Content-Based Routing in Overlay Networks. In NCA
2003.

[12] J. Clark and S. J. DeRose. XML Path Language
(XPath) Version 1.0. World Wide Web Consortium,
Recommendation, November 1999.

[13] M. P. Consens and T. Milo. Optimizing Queries on
Files. In SIGMOD 1994.

[14] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path Sharing and Predicate Evaluation for
High-Performance XML Filtering. ACM TODS, 28(4),
2003.

[15] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an
Internet-Scale XML Dissemination Service. In VLDB
2004.

[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary Cache: a Scalable Wide-Area Web Cache

Sharing Protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[17] P. Felber, C.-Y. Chan, M. Garofalakis, and
R. Rastogi. Scalable Filtering of XML Data for Web
Services. IEEE Internet Computing, 7(1), 2003.

[18] X. Gong, W. Qian, Y. Yan, and A. Zhou. Bloom
Filter-Based XML Packets Filtering for Millions of
Path Queries. In ICDE 2005.

[19] A. K. Gupta and D. Suciu. Stream Processing of
XPath Queries with Predicates. In SIGMOD 2003.

[20] J. E. Hopcroft, R. Motwani, Rotwani, and J. D.
Ullman. Introduction to Automata Theory, Languages
and Computability. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[21] S. Hou and H.-A. Jacobsen. Predicate-based Filtering
of XPath Expressions. In ICDE 2006.

[22] G. Koloniari and E. Pitoura. Content-based Routing of
Path Queries in Peer-to-Peer Systems. In EDBT 2004.

[23] J. Kwon, P. Rao, B. Moon, and S. Lee. FiST: Scalable
XML Document Filtering by Sequencing Twig
Patterns. In VLDB 2005.

[24] J. Kwon, P. Rao, B. Moon, and S. Lee. Value-based
Predicate Filtering of XML Documents. Data and
Knowledge Engineering, 67(1):51–73, 2008.

[25] G. Li, S. Hou, and H.-A. Jacobsen. Routing of XML
and XPath Queries in Data Dissemination Networks.
In ICDCS 2008.

[26] I. Miliaraki, Z. Kaoudi, and M. Koubarakis. XML
Data Dissemination using Automata on Top of
Structured Overlay Networks. In WWW 2008.

[27] M. M. Moro, P. Bakalov, and V. J. Tsotras. Early
Profile Pruning on XML-aware Publish/Subscribe
Systems. In VLDB 2007.

[28] F. Peng and S. S. Chawathe. XPath Queries on
Streaming Data. In SIGMOD 2003.

[29] T. Pitoura and P. Triantafillou. Load Distribution
Fairness in P2P Data Management Systems. In ICDE
2007.

[30] A. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location and Routing for
Large-scale Peer-to-Peer Systems. In Middleware 2001.

[31] A. C. Snoeren, K. Conley, and D. K. Gifford.
Mesh-based content routing using XML. SIGOPS
Oper. Syst. Rev., 35(5), 2001.

[32] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, and
J. Myllymaki. Implementing a scalable XML
publish/subscribe system using relational database
systems. In SIGMOD 2004.

[33] C. Tryfonopoulos, S. Idreos, and M. Koubarakis.
Publish/Subscribe Functionality in IR Environments
using Structured Overlay Networks. In SIGIR 2005.

[34] H. Uchiyama, M. Onizuka, and T. Honishi.
Distributed XML Stream Filtering System with High
Scalability. In ICDE 2005.

[35] Z. Vagena, M. M. Moro, and V. J. Tsotras.
Value-Aware RoXSum: Effective Message Aggregation
for XML-Aware Information Dissemination. In
WebDB 2007.

[36] J. S. Vitter. Random Sampling with a Reservoir. ACM
Transactions on Mathematical Software, 11(1):37–57,
1985.


