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Abstract

In this paper we introduce a new scheme for the purpose of routing in the wireless sensor networks. Our
proposed approach is for the case in which many sensors need to collect data and send it to a central node. We
will show that in order to find the routes that give energy efficiency, we can solve a set of partial differential
equations similar to the Maxwell’s equations in the electrostatic theory. These partial differential equations give the
geographical paths from each sensor to the destination. In order to find the actual routes, we approximate the found
paths by a sequence of wireless links each between a pair of sensors. Our simulation results show considerable
improvement in the life of the network compared to the traditional shortest path approach.

. INTRODUCTION

The wireless sensor networks have been studied extensively in the recent years. Such
networks are made of several hundred to several thousand of sensors propagated in a
geographical area. There are many different applications for such networks including
military, environment monitoring, agriculture, transportation control, disaster, fire fight-
ing and protection, and home applications. Sensors are very simple identical electronic
devices equipped with a processor and small storage memory and a communication
channel. The sensors can communicate to each other through wireless links, and most
of the times they use radio frequency channels for the purpose of communication.

In many applications the sensors perform measurements of specific metrics like
temperature, pressure, movements or other physical values in a periodic or non-periodic
way. Most of the times it is desired to collect the data of all sensors in a specific
station for processing, archiving and other purposes. This station is a data sink, and
it has enough processing power, storage space, and capability of communicating to
the sensors. We will call this station tlventral nodein the rest of the paper. For the
purpose of communication to the central node, the sensors relay the packets of each
other in a multi-hop way.

Since the sensors operate on the battery power, it is very important to make efficient
use of energy of sensors to increase the lifetime of the network. Most of the energy
of a sensors is spent for transmission of the data packets generated by that sensor or
relaying the packets of the other sensors, so finding optimal transmission paths from
each sensor to the destination is a very important task.

The routing problem in the sensor networks has been studied by many researchers.
Sequential Assignment Routing (SAR) is proposed in [5], and it takes into account
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the energy constraints by making a tree rooted in the central node. The tree starts to
grow toward the sensors on the paths with enough residual energy. The routing from
each sensor to the central node is based on the structure of the tree. Minimum Cost
Forwarding Algorithm for Large Sensor Networks is proposed in [11]. In this approach,
each sensor maintains the least cost from it to the central node. For the transmission
of a packet, it is broadcasted by a sensor, and after receiving a packet, a sensor checks
of it is on the least cost path of the source sensor to the central node. If it is so, it
retransmits that packet. Similar routing schemes can be found in [8], [10] and [9].
Good surveys of the sensor networks have been given in [7] and [6].

In this paper we propose an energy efficient routing scheme for the sensor networks.
Our energy efficiency is based on matching the routes to energy constraints in order to
increase the network life. When the energy of the sensors in some area of the network
is low due to heavy communication activity in the past, we will increase the cost of
routing through this area to protect the sensors from early energy depletion. We will
introduce a mathematical machinery based on partial differential equations very similar
to the Maxwell’'s equations in the electrostatic theory. The routes are found based on the
solution of this partial differential equations. In our formulation, the sensors are sources
of information, and they are similar to the positive charges in the electromagnetic, the
central node is the sink of information and it is similar to a negative charge, and the
network is like a non-homogeneous dielectric media with variable dielectric constant
(or permittivity coefficient). Our routing scheme is based on changing the permittivity
factor to a higher value in the places in the network where we have a high residual
energy of the nodes, and set it to a low value for the places of the network that the
nodes do not have much energy left. Our simulations show that our method gives a
significant increase in the network life compared to the shortest path scheme.

In the next section, we will introduce the mathematical formulation of our method.
In Section 11l we will use the introduced formulation to develop our energy efficient
routing scheme. Section IV shows the results of our simulation experiments.

Il. MATHEMATICAL FORMULATION

Consider a network ofV wireless sensors that can communicate with each other
through radio links. The sensors are placed in a regloim the plane, and they are
intended to collect information about the events in the area of the network. Each sensor
is responsible for the events happening in its neighborhood. All messages are desired
to be collected in a central node. When an event happens at some place in the network,
the closest sensor to the place of the event generates a message. All messages should
be sent to the central node, which is assumed to have enough storage, energy and
processing power. Furthermore, we make the following assumptions:

Al: Each sensor has a limited amount of energy, and the residual energy of the
sensors is known at every time.

A2: The events in the geographical area of the network happen with a known spatial
density rate denoted by(z) > 0 for the placez. This quantity means that for the area
a C A the rate of events that happens insides:

w(s) = /Llr(z) ds 1)

in which integration is over area, andds is a differential area containing



A3: The sensors are not mobile and their locations are known.

A4: The sensor placement in the network is such that the cental node can be reached
from every sensor in the network by a sequence of multi-hop transmissions.

A5: For the purpose of routing, we keep a direction for every poiot the network.
A sensor placed at the pointuses the direction defined for this point, and it forwards
its traffic to sensors that are closest to this direction as the next hop. We assume that
this direction is a continues function ef In other words, the very close sensors either
use the same next hops, or they use the next hops that are very close to each other.

The above set of assumptions is not restrictive from a practical point of view; the
assumption of the knowledge of residual energy of each sensor can be justified by the
fact that if we know the initial energy of a sensor at the start of a time interval and its
communication activity in that interval, the residual energy of that sensor can be found
at the end of that interval. Note that both of these information ore observable to the
central node. The assumption of knowing the locations does not require GPS devices.
We will see that we need the location of the nodes relative to the central node, and
since the sensors are not mobile, the location of each node can be set at the installation
of the network. The value of(z) may be unknown at the start of the network, but it
can be estimated by the central node based on the statistics of the received messages
from the sensors a different locations.

Based on AssumptioA2, the rate of messages generated by each sensor can be
found in terms of the area in which that sensor collects eventswket 0 denotes
the average rate of the messages that are generated by spnfsay denotes the
area in which sensor is responsible for collecting events, then can be found by
using equation (1), and plugging for a. Note that we have assumed that every event
is picked up by only one sensor. If many sensors generate messages corresponding
to an event, we can assume that only one of the sensors takes the responsibility of
reporting that event; this can be achieved in different ways: for example, among all the
sensors that sense an event, the sensor with the lowest ID can take the responsibility
of sending the event, or the sensors wait a small random time before sending the event
and after hearing the transmission of the message of an event, the other sensors in the
neighborhood avoid sending the message of that event.

We also assign a weight to the central node denotedvbyand define it in the
following way:

Wy = —iwi (2)

The purpose of defining this weight for the central node is that we want to assign a
positive weight to the all sources, and a negative weight to the destination. And since
all the traffic of the sources is collected at the destination, we make the above definition
for wy.

Assume for each sensor a path in the plane is chosen to send the messages of that
sensor to the central node. Mathematically, we define a path as a directed curved line
that starts at a sensor and ends at the central node. Therefore fsrdbasors of the
network, we haveV paths. Letp; denotes the path for the sensorThe amount of
load on each path is the rate of generated messages at the sensor located at the start



of the path (i.e.w;). So we define the weight gf; to be w;.

It should be noted that the chosen paths are not constrained by the location of
intermediate nodes. Instead, the paths are ‘abstract’ paths in the plane that represent
desired paths for the transmission of messages. For communication to occur, we need
to define the routes in terms of the paths. For this purpose, each abstract path is
approximated by an actual path route consisting of a piecewise linear multi-hop path
connecting the source and destination through a sequence of intermediate sensors. We
assume the sensors in the network are densely distributed, such that we can always
make the above approximation.

Given a set of (abstract) paths for each sensor to the destination, we define a vector
field on A which we refer to as théad densityvector field and denote bﬁ. This
vector field represents the flux density of the paths to the destination. Given a point
z € A, we choose a small area elementz:afFor each path that intersects we take
the tangent vector to the path and scale it so it has magnitude equal to the weight of
the path. Adding up these scaled tangent vectors, dividing by the areaaol letting
the area element go to zero gives the valugdgt). In the other words:

— ~

D(z) = lim — wl; (3)
15]—0 |.S]| Pir§¢@

in which S is a connected area in the network, ands a unit vector tangent tp;

at S, and pointing toward the direction @f that goes to the destination. The above
definition has been illustrated in Figure 1. It should be noted that whgen- 0, all

paths that pass through will have the saméd,; based on AssumptioA5; hence the
vectors that are summed up in equation (3) have the same direction; in other words,
|D(z)| will be the sum of the weights of the paths that pass throfigtSo |D(z)|
represents the actual amount of communication activity at point

Mathematically, if the number of sensors is finite, the valueb dfefined by equation
(3) will be zero except for a set of measureln practice we do not need to have a
large number of sensors; we can define a small enough lower bound on the value of
depending on the required accuracy of definingFor example, the network terrain
can be divided into small rectangles via vertical and horizontal grids,Scén be
defined as any of these rectangles. In this example the accuragydepends on the
size of rectangles, and the value of this variable will be constant on each rectangle,
so we deal with a discrete version of equations and operators. For instance the partial
derivative inx direction will be written in terms of the difference of the value lof
on adjacent horizontal rectangles and the distance between the rectangles. For the sake
of simplicity, in the rest of this paper we assume that the siz& & small enough
so that we can deal withh as a continuous variable.

The definition of D given by equation (3) satisfies the following equation:
74 D-dn—=uw 4)
C

in which the integral is over a closed contaur dn is a differential vector normal to
the contour at each point of its boundary, dot represents the inner product of vectors
in two dimensional space, and is the algebraic sum of the weights of the nodes



Fig. 1. The illustration of defining the load density vector field based on paths.

inside the closed contour. In calculatingwe count the weights of the sources with a
positive sign and the weight of the destination with a negative sign (if it is inside the
contour). Equation (4) is analogous to Gauss’s law in the electrostatic theory.

We say a message enters a contour if it is forwarded from a node outside the
contour to a node inside it, and similarly, we say a message exits a counter if the
reverse happens. With these definitions, equation (4) has a very simple explanation:
the rate at which the messages exit a contour is the algebraic sum of the weights of the
nodes that are inside that contour (i.e., the net amount of the sources inside the contour).

Now we define another functigmthat represents the spatial density of rate on which
the messages enter the network. This quantity is a function of location, and obviously
p(z) = r(z) for z # z, in which z, is the place of the central node. But since all
messages end at the destination, this means that the density of the rate has a Dirac
delta form at the place of the central node. In other words,

p(z) =1r(z) + wod(z — 20). (5)

With the above definition op equation (4) can be expressed in partial differential
equation form:

V- D(2) = p(2) (6)
whereV is defined as: 9

= _ U Yo 7

\Y% ol T oy’ (7)

in which x andy represent the variables in the Cartesian coordinate frames, am
j represent the unit vectors alongandy axes respectively.

Depending on how we select the set of paths, the valudob different, but
independent of the selection of path3,satisfies the following equations:
v:-D=r ®
D,(z2) =0 for z € Boundary of A
in which A denotes the geographical set that contains the networl{aid) denotes

the normal component oD on the boundary ofd. The first equation in (8) is the
natural limitation imposed by the fact that all the traffic generated at the network should



be delivered to the destination. The second equation comes from the fact that no load
is desired to exit the geographical area of the network or enter into it through the
boundary. It is important to notice that equations (8) do not diveniquely.

Conversely, if we have @ that satisfies equations (8), we can find the paths that
can be used to send the traffic of sources to the destination. In order to define the
routes based on the values bf, we need to define the concept lofad flow lines
These lines are similar to the electric flux lines in electrostatic theory [1] [2][4]. The
load flow lines are a family of two dimensional curved lines that are always tangent to
the direction of theD and their orientation is the same as the orientation ofith@he
load flow lines cannot intersect except at a source or the destination; if they intersect,
at the point of intersection the direction of the field would not be single-valued. The
other property of the load flow lines is that these lines always start at the sources and
end at the destination; this fact is because the value of divergence in equations (8) is
positive at the sources, and it is negative only at the destination.

Based on the definition of the load flow lines, the path corresponding to each sensor
can be easily found: to fingh;, we start at the place of sensérand follow the
direction of the load flow lines. The paths generated by this scheme can only end
at the destination. Mathematically, the path starts at the sepsamd it is always
tangent to the direction ob. It is straightforward to see that if we plug the paths
generated by this method in equation (3), we will get the original valu®.of

[11. ENERGY EFFICIENT ROUTING

In the previous section we established the basic concept of load vector field, and
described its connection to routing. Thus, givér,l we can obtain paths and based
on the paths we will find the routes to the destination. However, equations (8) do not
specifyﬁ uniquely. The remaining issue is to decide what additional condition(s) to
place onD so the resulting vector field generates a desirable set of routes.

In this section, we try to find the paths that give energy efficiency. We define the
following scalar field for the residual energy of the network as a function: of

w(z,t) = lim ~— Y elt) 9)
sensori€S

in which ¢;(t) denotes the residual energy of sensat timet. Like for the case of
defining D, the above definition implies that(z, ¢) is zero except for a set of measure

0 in the z variable. We solve this problem exactly in the same way as we explained it
for D.

We approach the problem of finding energy efficient routes in two steps: in the first
step, we assume that initial distribution of the energy in the network is uniform (i.e.,
w(z,0) = ¢). In the second step, we remove this assumption and try to find the paths
that give the best performance given an arbitrary distribution of the residual energy in
the network.

A. Uniform Initial Residual Energy



For this case, we assume that the energy is distributed uniformly at the start, and so
we try to make the communication load as even as possible to make an even decrease
in the residual energy of the sensors.

In order to find the routes that give energy efficiency, we use the fact that the
communication activity at place of the network is|D(z)|. In other words, at place
z, |D(z)| transmissions are done per unit of time. This means that the rate of decrease
of energy atz is proportional to\ﬁ(z)]. No transmissions will be possible through the
places with zero energy. In order to find energy efficiency, the intuition we follow is
that by making|5| as uniform as possible, we will obtain routes that will cause the
traffic to be highly dispersed throughout the network. So we avoid over-utilization of
energy at some place of the network that causes early death of sensors, while some
other place of the network is under-utilized.

The uniform load distribution can be formulated as minimizing the following cost
function: B L
J(B) = [ (D= Da)l"ds (10)

in which X, is the average value of the vector fieldon the set4, and it can simply
be defined as:

—

1 N
Xa,,:—/Xd. 11
Al La s (11)

The quadratic form of the cost function in equation (10) causes the load to be distributed
as evenly as possible. It prevents having high loads somewhere in the network while
the resources are under-utilized somewhere else. One interesting fact about this cost
function is that it is similar to the definition of energy in electrostatic theory. The above
optimization problem can be summarized as:

Minimize J(D) = [, |(D — D[ ds

%ubjgct to: (12)
V-D=p

D, (z) =0 z € Boundary ofA

The following lemma provides the key to finding the solution of the optimization
problem defined by (12).
Lemma L:f D* denotes the optimal solution of equation (12), then it satisfies:
V x D*=0 (13)

In the above equatioﬁx is the two dimensional curl operator, and it is defined in
the following way for a vector field” = [F,, F,|:

OF, OF,. .
- Ty, 14
By + &p) (14)

in which & is a unit vector perpendicular toand j. More preciselyj = i x ;.

VxF=(

The proof of Lemma 1 is given in the Appendix. Based on the result of this lemma,
we can write a set of partial differential equations for the optimbai

V-D*=p VxD=0 (15)



The above equations are similar to Maxwell’s equations in the electrostatic theory. In
the theory of partial differential equations it is proved that the above equations along
with the boundary condition given by (8) give* uniquely.

Mathematically, a vector field for whick’ x D = 0 is called a conservative vector
field. It is proved that such a vector field can be expressed as the gradient of a scalar
field. In other words: L
D =VU (16)

in which U is a scalar function known as the potential function. Then the set of
equations defined by (15) reduces to:

VU =p (17)

in which the operato®? is defined as:

o? o?
2 —_— — JRE—
Ve = 92 + B (18)
The boundary conditions fab implies that the gradient d¥ is zero on the boundary
along the direction that is normal to the boundary. In other words:
VU(z)-7(z) =0 z e Boundary ofA (19)

in which n(z) is a unit vector normal to the boundary.

The partial differential equation defined by (17) is known as the Poisson equation.
The potential function found as the solution of this equation has very nice inter-
pretations. Firstly, the potential function gives a rough idea of how much effort by
the network is needed to send data from a source to the destination. This effort is
proportional to the potential difference of the source and the destination. Secondly, the
potential function gives insight into the routing. Based on equation (16), the routing is
done in the direction of the gradient of the potential function. Some concerns like the
possibility of forming routing loops are naturally avoided since the potential function
changes strictly monotonic in the nodes that form a path from the source to the
destination.

B. Non-Uniform Initial Residual Energy

So far we have solved the problem of finding paths that give energy efficiency for
the case in which the initial residual energy is uniform. However, this assumption is
not realistic in practice. Since all sensors try to send their messages to the central
node, the rate of energy utilization at the sensors in the neighborhood of the central
nodes is higher than the other nodes. So it is logical to have a higher residual energy
density (i.e.,w(z,0)) at the neighborhood of the central node in the network design
process. This goal can be achieved either by having more energy in the sensors that are
closer to the central node, or if the sensors are identical, we can have a higher density
of the them in the neighborhood of the central node; obviously, when the density of
the nodes increases, the density of the residual energy increases accordingly since the
nodes have the same amount of initial energy.

Another issue that should be noted is that due to stochastic nature of the generation
of events, it might happen that the energy of some sensors is depleted faster than the



others. So we can update paths after a while to take this issue into consideration and
make less utilization of the sensors with low residual energy to save them for a longer
time.

To deal with this problem, we make a change in the optimization problem of equation
(20): .
Minimize J = [, K(2)|D(z) — D,,|*ds
Subject to:
S 20
VD =p(z) 20
D,(z) =0 =z e Boundary ofA

in which K(z) is a scalar weight function that represents where in the network we
prefer to have a higher load and where we want to have less communication activity
in order to save the energy of the nodes. A high valué¢f) means that we do not
want to have a high communication activity gtand on the other hand a low value

of K(z) means that the area aroundhas enough energy. By changing the relative
values of K(z), we can penalize routing on some places versus the other places.

The following lemma gives the key to solve the above optimization problem.

Lemma 2:If D* denotes the optimal solution of equation (20), then it satisfies:
V x (KD*) =0 (21)

The proof of this lemma is given in the appendix. Based on the above, we make the
following definition: . .
E* = KD~ (22)

Then we will have the following set of partial differential equations:
V-D*=p VxE =0 (23)

The solution of equations (23) gives the optimal valu€bfThe boundary conditions
for solving (23) are the same boundary conditions that we introduced foefore.

The potential function that we defined formerly can be defined for this case in a
similar way. Here we hav®& x E* = 0, and mathematically, this means that there is
a potential function/ such thatE* = VU. This potential function has all the useful
properties that we explained before: the direction of its gradient is the direction of
optimalﬁ, and its value at every place represent the amount of routing effort required
to deliver the messages from that place to the destination. It can easily be shown that
the potential function/ satisfies the following partial differential equation for this
case: L
VK.VU

K
The boundary condition fot/ is the same as that in equation (19).

VU — = Kp. (24)

There is one final issue about the way we should chdese). This scalar field
should be assigned in a such way that it has a high value at the places with low residual
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Fig. 2. The placement of sensors in the network terrain

energy. There might be different ways of doing so, but one easy assignméiit:pf
can be done in the following way:

1
w(z,t)
As equation (25) showdy (z) depends on. In practice, we do not need to change the
value of K (z) very frequently, which causes frequent change of the paths and routes.

The update ofK’(z) can be done with a low frequency, and once after a considerable
change in the residual energy of the network happens.

K(z) = (25)

V. SIMULATION RESULTS

In this section we will show the results of the simulation for the proposed method of
distributing the load in the network. In this simulation scenario sensors of the network
are distributed in a000m x 1000m square. The network area has been partitioned
into 21 x 21 = 441 equal squares by equally spaced horizontal and vertical grids.
The number of sensor¥ = 441, and in each small square, a sensor has been placed
randomly. The central node has been placed in the center of the network area. The
generation of the events inside each small square is done according to a Poisson process
with arate0 < \; < 1. The sensor inside each small square is responsible for all events
that happen inside that square.

We have distributed the initial energy 86000 units among the sensors. As it was
stated before, the nodes closer to the cental node need more energy since they have to do
more switching. So the assignment is done such that the initial energy of the sensors is
inversely proportional to their distance from the central node. It should be emphasized
again that if the sensors are identical in terms of their energy, the assignment of initial
residual energy is done by changing the density of the sensors in the network. Each
transmission or switching needs one unit of energy, and the transmission range of each
sensor is’5m.

Figure 2 shows the placement of the nodes in the network. The relatively high
number of sensors allows us to find routes by approximating paths with the relaying



Fig. 3. The value of the potential functidi
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Sensors.

We have numerically solved the set of partial differential equation given by (24)
with the boundary conditions given in equation (19) on #hex 21 grid to find the
potential functionUU. Furthermore, we have made use of equation (25) for finding the
value of K(z) in terms of the residual energy. The resultitigs shown in the figure
5. The value ofE* is found by taking the gradient df, and finally D* is calculated
from E* by using equation (22). Figure 4 shows the directiorbofat different places
of the network. The line segments in this figure show the direction of the optimal
load density vector field*. The paths from the sensors to the destination are found
by following these segment lines, and the routes are calculated by approximating the

11

paths by the sequence of relaying sensors. The resulting routes from the all sensors to
the destination has been plotted in figure 5.

To have a basis of comparison we have also calculated the routes that use the
shortest path to the destination. Figure 6 shows the routes calculated by this method.

By comparing this figure with figure 5, it can be seen that in the case of using optimal

D~ the routes are more evenly spaced in the network.
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Fig. 6. shortest path routes to the destination.

To evaluate the difference of usid@’* for routing to the case in which we use the
shortest path routes, we turn the network ort at 0, and let it run until the nodes
run out of energy and no more communication is possible to the central node. Our
simulations show that for the case of usifly, the total number 02112 messages
are sent to the destination, and for the case of shortest path routing the total number
of delivered messages i§34.

We have done several other experiments with the same conditions as the above
experiment but with different randomly generated locations of the nodes and the traffic
sources. The results are shown in Table I. The second column of this table shows the
total number of delivered messages for the case in which we use the routes generated
by D*, and its third column shows the same quantity for the shortest path case. It can
be seen that in all cases the number of delivered messages is increased considerably,
and the average increase2g%.
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Exp. D* Routes. | Shortest path | improvement
1 2112 1734 22%
2 1901 1465 30%
3 1928 1681 15%
4 1744 1278 36%
5 1839 1233 49%
6 1761 1592 10%
7 1749 1414 24%
8 1774 1193 49%
9 1918 1437 33%
10 2073 1487 39%
11 1911 1691 13%
12 1725 1452 19%

TABLE |

THE COMPARISON OF THE PERFORMANCE OF THE ROUTES FOUND BASED CﬁJWITH THE SHORTEST PATH ROUTES FOR SEVERAL

EXPERIMENTS

V. CONCLUSION

In this paper we introduced an approach for the purpose of routing in the sensor
networks that gives energy efficiency, and increases the network life. The main idea
of our routing approach is to find routes that avoid using places of the network that
have small residual energy and to make a higher utilization of the places with higher
residual energy. We showed that for this purpose a set of partial differential equations
similar to the Maxwell's equations in the theory of electrostatic should be solved. By
solving these equations, we found the routes that give a considerable improvement in
the network performance in terms of energy efficiency and the life of the sensors.

From a practical point of view, the central node can collect all the information like
the position of the sensors and the residual energy to find the routes by running our
proposed method. The routes can be updated once in a while when a considerable
change in the residual energy has occurred.

The set of assumptions that we stated in Section Il is not restrictive. We have assumed
the knowledge of-(z), the density of rate of events in the network. This quantity may
be unknown at the start of the network, but it can be estimated by the central node
based on the frequency of receiving messages from the different sensors.

We have assumed that the locations of the sensors are known. This does not require
the complicated position finding instruments like GPS devices at each individual sen-
sors. The location is needed relative to the central node, and since the sensors are not
mobile, for each sensor it can be set at the installation of the network.

Our other assumption is the knowledge of the residual energy of the nodes as a
function of time. This is also a non-restrictive assumption. If the initial energy of a
sensor is known to the central node at time- ¢, the residual energy at any time
t; > to can be found by subtracting the spent energy of that sensor in the interval
[to t1] from the initial energy. Obviously this calculation can be done by the central
node by making use of the central knowledge of routes and observing the received
messages. To avoid the accumulative errors, each sensor may send its residual energy
to the central node once after a while.
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Appendix
A. Proof of Lemma 1

In order to prove the lemma, it suffices to prove that for every closed contoue
have:

fﬁ.aﬁ:o (26)
C

First we prove the above fact for a contaurthat is a rectangle like that in Figure
7. In this figure we define two other equally spaced rectangles inside and oGtside
and call those”;,, and C,,; respectively. The distance between the edge€’pfand
C, Is assumed to be equal for the four pair of corresponding edges, and we denote
it by 4. AssumeT is the area surrounded betweéf), and C,,; . We divide T" into
four parts: T}, Ts, T3, andT; as illustrated in Figure 7.

Now we define the following vector field:

€l if zeTh
¢ if zeTh

6(z) =< —ei  if z€ Ty (27)
—€j Zf A T4
0 otherwise.

in which € is a small positive constant. Equation (27) defines a vector field that makes
a lossless counterclockwise rotationin It can easily be verified that:

V-5=0 (28)

Now we observe the fact that if we defid& = D* + 4, thenV - D, = p, and hence,
D is in the feasible set of the optimization problem defined by equation (12). The
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Fig. 7. lllustration of the notations for the proof of Lemma 1.

variation of the cost function defined by equation (10) after adczﬁrtg D+ can be

written as:
— — — - — - 2
AJ:J(Dl)—J(D*):fA|D*+(S—D2v—(sa,U‘ ds (29)
— — 2
— Ja|D* = D3| ds

Sinced(z) = 0 for z ¢= T, andd,, = 0 we have:

AJ = [ (|D*+ & = D5, — |D* — Dz, ) ds
=2 [, D §ds+ [y |62 ds

If we assume: is small enough, we can ignore the term that KasThen:

(30)

AJzZ/ﬁ*-gds (31)
T
On the other hand, for small enoughande we have:
/5*-5ds:657§]5*-cﬁ (32)
T C

From the theory of calculus of variations the value/®f should be zero sinc®*
minimizes the cost function defined by equation (10). Hence:

}[ Ds-dl =0 (33)
C

So far we have proved the validity of equation (34) for a rectangular contour. To
complete the proof it suffices to observe the fact that the area surrounded by an arbitrary
contourC; can be divided into many rectangular elements, and the integral over the
boundary ofC’; defined by equation (34) is the sum of integrals over the boundaries
of the small rectangleQED

B. Proof of Lemma 2

This lemma can be proved in a similar way as the Lemma 1. By following the same
track of proving of Lemma 1, it can be proved that for every closed contowe
have: .
72 KD-dl =0 (34)

which means). E*-dl = 0. Mathematically, this is equivalent to the fact thak £* =
0. QED



