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The Vision

FUTURE PERVASIVE ENVIRONMENTS'

> Technological trend toward the inclusion of embedded devices with com-
puting/communication capabilities in all(?) surrounding objects

> Possibility of envisioning and introducing novel services, able to provide a
radical shift in people/technology interactions

> In order to exploit the possibilities of such ICT-immersive environments,
novel computing & communication paradigms are needed
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The Vision (contd.)

ISSUES AND CHALLENGES '

> Two main issues arise when dealing with such novel systems: scalability
and complexity

> Scalability: the resulting network should be able to scale well up to billions
of nodes & the E2E communication paradigm of the Internet does not (re-
call Gupta and Kumar’s lesson). Direction to go: give up the connectivity
constraint & support disconnected operations

> Complexity: need to perform network management functions over a large-
scale disconnected system. Direction to go: put the user at the center of
the network operations and build autonomic services to control the system

> But: nature has been confronted with and successfully resolved such is-
sues long time ago ...
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The Framework

TARGETING AUTONOMIC SERVICES AND NETWORKS '

Long-term goal (I): build a fully distributed network architecture able to
support innovative services while scaling up to billions of nodes

Long-term goal (ll): provide a support for a dynamic eco-system, in which
autonomic services evolve to adapt to the local environment and user’s
needs

Common flavour: look for bio-inspired solutions

Paper’'s goal: investigate the service evolution process in a nomadic wire-
less networks, targeting the design of service mating policies, understand-
ing their limiting properties (stability, optimality) and studying the impact of
some parameters on the convergence speed
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Network Architecture

NOMADIC WIRELESS NETWORS '

Exploit heterogeneity by splitting network nodes in two categories
U-Nodes are complex devices that run situated services (e.g., smartphones)

T-Nodes are simple, cheap, low-power devices with sensing capabilities
(e.g., RFIDs)

T-Nodes devices are passive and can be read by U-Nodes in proximity (no
communication stack required, no store-and-forward operations)

U-Nodes exchange information (data, codes etc.) on the fly when getting
within mutual communication range

No need for addressing: all communications are based on single-hop
broadcast

Moving from E2E to localized peer-to-peer interactions
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Network Architecture (contd.)

Connected Islands

U-Nodes

> An archipelago-like topology: the net-
work breaks in connected islands

> U-Nodes’ mobility is exploited to con-
vey information among different is-
lands

> No routing protocol is needed

T-Nodes
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Self-Evolving Services

THE PICTURE '

> The “old” question: where to place intelligence?

> A radically distributed user-centric approach: services are in charge of
controlling (in a cooperative way) the network. Since services are user-
situated, the user becomes the king

> Need for self-organizing, self-optimizing, self-healing & self-protecting (in
a single word: autonomic) services

> Apply a bio-inspired paradigm for the deployment of such services
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A Bio-Inspired Approach

TOWARD A DYNAMIC DIGITAL ECO-SYSTEM .

> Services are user-situated and present a modular structure; each module
Is called gene

> Each service is characterize by a fitness level, assumed to be in the range
[0, 1]

> The fitness level depends on a variety of factors, including user’s satisfac-
tion, trust level etc.

> When users meet, their services can decide to mate, depending upon the
respective fitness levels

> Mating rules are common to all nodes and compose a service mating pol-
icy
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A Bio-Inspired Approach (contd.)

SYSTEM MODEL'

> Each instance of the service is composed of the set of its genes, repre-

sented as a binary vector v; = [v;(1),..., Vvi(T)]
> The fitness level associated with such vector is assumed to be:
T
> Vi(k)
[ = k=1
: T

> The parameters we consider are the average and minimum fitness level of
the network at time t:

N
X(ty= 03 KO Y= min Kt
=1

> We consider the evolution of such processes embedding at the meeting
instants
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Optimality & Stability Criteria

> Definition 1 A service mating policy is called stable if it leads to conver-
gence of X(t) [Y (t)] with unitary probability.

> Definition 2 A service mating policy is called optimal if it leads to conver-
gence of X(t) [Y(t)] to 1 with unitary probability.

> The optimality condition is, in general, not sufficient for a mating policy to
be efficient. Indeed, efficiency concerns the dynamics of the process X(t),
l.e., its ability to converge fast to the optimal operating point
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3 Service Mating Policies

> Definition 3 (Clonation mating policy) Let us assume Iy > bL (if I = b
no mating takes place). Then user 2 downloads (clones) user 1’s service.
User 1 keeps its service unchanged.

> Definition 4 (Clone-and-mutate mating policy) Letus assume |y > b (if
li = b = 1 no mating takes place). Then user2 downloads user1°’s service.
Mutation is then performed on the new vector v,, by changing each digit
independently with a given probability p (called the mutation probability). If
li > b, user 1 keeps its service unchanged.

> Definition 5 (Combine-and-mutate mating policy) Lef us assume |; >
L (if i = b = 1 no mating takes place). User 2 downloads user 1's
service. A number k € U{1,..., T} is generated. A new vector V', =
[vi(1),...,vi(k), vo(k +1),..., vo(T)] is formed. Mutation is performed on
this vector. If Iy > I, user 1 keeps its service unchanged.
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Limiting Properties

The following results can be drawn on the 3 mating policies, exploiting
a classical result in stochastic processes (i.e., the submartingale conver-
gence theorem)

Proposition 1 The clonation/clone-and-mutate/combine-and-mutate mat-
Ing policies are stable.

Proposition 2 The clonation mating policy is not optimal.
Proposition 3 The clone-and-mutate mating policy is optimal.
Proposition 4 The combine-and-mutate mating policy is optimal.
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Understanding the Dynamics of the Fitness Evolution Process
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CONSIDERATIONS'

The limiting property does not tell us much about the actual performance of the
mating policies

We resort to numerical simulations (Omnet++) to study the impact on the conver-
gence time of (i) the number of nodes (ii) the nodes speed (iii) the mobility model

SIMULATION SETTING'

Square area of 2000 x 2000 m?; nodes equipped with an IEEE802.11b-compliant
PHY and MAC

Mutation probability p = 0.1, number of genes T = 100

Mobility models: Random Waypoint Mobility (RWM) and Brownian Motion (BM)
Parameters: time taken by X(f) and Y(f) to exceed the 0.95 threshold

Results: 95% confidence interval over 50 simulations
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Performance Results
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> Clone&Mutate performs usually better than Combine&Mutate, but the latter per-

forms well in very dense highly mobile scenarios
> General consideration: the convergence process speeds up with both population

size and nodes speed



Carreras et al., Service Evolution in a Nomadic Wireless Environment 14/15

Performance Results (contd.)
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> BM has convergence times that are one order of magnitude higher than RWM
> Cannot be explained by the different distributions of inter-meeting times
> A detailed trace analysis shows that in BM few nodes tend to remain isolated for a

long time, thus leading to poor performance
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Conclusions

OPEN ISSUES'

How can we realistically define the fitness? How to account for user’s
satisfaction?

How to ensure the coexistence in the same ecosystem by different ser-
vices?
What about cooperation enforcement & trust mechanisms?

DIRECTIONS FOR FUTURE RESEARCH '

Model the dynamics of service evolution process

Understand the impact of more realistic mobility models (i.e., with inter-
meeting times following Zipf’'s law)

Draw from results in GAs to design more performant combine & mutate
policies




