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Context

BIONETS: Biologically-inspired Networks and Services

• Situated and Autonomic Communication FET Initiative

• 4-year project starting January 2006

• Central question: How to make protocols and services 
evolve automatically during usage: runtime evolution

– 1ststep: Parameter evolution: analogy: genetic algorithms

– 2nd step: Code evolution: analogy: genetic programming

This talk:

• Code evolution experiments using genetic programming
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Introduction

Autonomic Communication (AC)
• Network elements conspire to do what we want
• Self-*, including self-management

Fully selfFully self--managing networksmanaging networks networks must take 
complete care of themselves, including software software 
maintenance maintenance 
• Detect and correct software failures
• Optimize software for specific context
• Constantly keep on target and improve itself, without 

direct human intervention: autonomic!
Thus: full AC requires automated software evolutionautomated software evolution
• Otherwise humans must intervene to modify software
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Adaptation and Evolution

Long-term 
adaptation: 
Evolution

Change in behavior

Short-term
adaptation

Change in functionality
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Evolving Autonomic Network Software
Automated evolutionevolution

• Functional scaling: beyond self-adaptive software

Automatically generate new, better replacement code

SelfSelf--modifying codemodifying code

During operation: runtime evolutionruntime evolution

• Resilience and survivability

– Potentially hostile operational environment

– Heterogeneous networks and users, competing interests

– Code errors, malicious code, non-trusted parties, …

• Fully cooperative learning scheme not realistic

A possible path: distributed ondistributed on--line genetic programmingline genetic programming
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Evolving Autonomic Network Software
Genetic Programming

• Machine learning method for synthesizing programs

• Agnostic program transformations: crossover, mutation

• Natural selection: survival of the fittest

• In general off-line: optimal solution as output

Distributed onDistributed on--line genetic programmingline genetic programming

• Program transformations rely on code mobility

• Non-disruptive execution of synthesized programs

• Competitive/hostile environment

– Natural selection pressure Survivability

– Redundancy Resilience
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Framework for Protocol Evolution

Start with working protocol implementations

Evolution via genetic programming

FragletsFraglets chemical programming model

• Easy GP: any code fragment (fraglet) is a valid program

• Parallelism redundancy resilience

– Resilience to code loss: initial results in WAC 2004

Still off-line (simulations), but assumptions for on-line

• Small population

• Limited number of generations

• Resilience: minimize service disruptions due to 
malfunctioning code
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Genetic Operators

Mutation

[ split : send : b : n1 : * : wait : store :n2 ]

Example:

[ split : send : b : n1 : * : dup : store : n2 ]

Purpose: to create variability

Program A

Program B
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Genetic Operators

AB C D E F G H

A’ B’ C’ D’ E’ F’ G’ H’

AB C D’ E’ F’ G H

A’ B’ C’ D E F G’ H’

⇩

Crossover by homologous 
recombination

preserving functional modules

A B

A’ B’

⇩

N-point Crossover

Random points chosen,
and segments exchanged

AA’ B’B

A’A BB’
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Framework for Protocol Evolution

client
application
component

other
client appl.
components

Communication channel (reliable or unreliable)Communication channel (reliable or unreliable)

protocol
component

other
protocol

components

protocol
component

protocol
component

code pool (population)

competition:
fitness evaluation

selection

resilience and

service performance

service execution

new variants
through

crossover and
mutation
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Experiments

Reliable transmission protocols

• Initial population: Multiple variants (alternative 
implementations): more/less efficient

Two types of channel

•• ReliableReliable transmission channel (no packet loss)

•• UnreliableUnreliable (lossy) channel

Application: requires 100% reliable transmission

• Underlying protocol must retransmit lost packets if 
channel is unreliable

• Fitness evaluation = measure of reliability = score

Adaptation: selection and dissemination of suitable code
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Adaptation Experiment

reliable channel lossy channel

genetic programming
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Adaptation Experiment: No Packet Loss

Scores % Individuals

Generations Generations

score > 80% ideal
score < 40% ideal
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Adaptation Experiment: With Packet Loss

Scores % Individuals

Generations Generations

score > 80% ideal
score < 40% ideal
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Adaptation Experiment

Successful individuals (ideal scores) remain and also spread 
in the population

After a few generations

• More than 80% of individuals in the population have a 
score close to the ideal

• Less than 20% of individuals have poor score

But genetic variability is severely reduced, population 
becomes very uniform
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Re-adaptation Experiment

reliable channel lossy channel

genetic programming
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Re-adaptation Experiment (1)

Scores lossy to non-lossy Scores non-lossy to lossy

Generations Generations
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Re-adaptation Experiment (2)

Scores lossy to non-lossy Scores non-lossy to lossy

Generations Generations
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Is On-Line Protocol Evolution Possible?

Answers so far:

• Can "survival of the fittest" strategy really make best 
protocols spread in the population?

– Yes, and quickly, but then genetic variability is lost

• Can they readapt?

– Yes, provided that at least one already adapted individual 
is present in population
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Lessons Learned

Code modification via genetic operators:

• Crossover

– Homologous recombination is safe but limited
• Unable to "create" really new code

– Unbounded crossover (random points) leads to "intron 
growth" phenomenon

• Rise of polluted code containing useless garbage

• Mutation

– Currently too slow and random

– Low probability to produce viable individuals
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Conclusions

Experiments show conditions under which adaptation and 
re-adaptation are possible: first steps towards evolution

Resilience at the population level achieved via selection of 
best and elimination of unsuitable code variants

GP can do much better than random search, but size of 

search space still too vast (~ 10^200 for these simple 
experiments)
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Next Steps

Improve genetic operators

• Compromise between code safety and variability

• Hybrid operators using deterministic and formal methods

Resilience at the individual level

• Inspired by genome redundancy, metabolic pathways

Decentralized fitness evaluation

• Redundant protocol execution circuits

• Trust and reputation

Propagation of evolved protocols

• User and node mobility, code mobility


