Autonomic Wireless Network Management

Kai Zimmermann, Sebastian Felis, Stefan Schmid, Lars Eggert and Marcus Brunner

NEC Europe, Network Laboratories, Germany

stefan.schmid@netlab.nec.de

WAC 2005, Athens, Greece, 3-5 October 2005

Overview

- Problem Statement
- Autonomic Management System
 - Underlying principles
 - Functionality
 - Basic concepts
- Monitoring Capabilities
 - Relevance and implementation
- Implementation State
- Quantitative Evaluation
- Conclusion

Empowered by Innovation

Problem Statement

- Configuration and management of large wireless networks (= many base stations) is challenging
- Wireless network environments are especially demanding due to ...
 - high dynamics numbers, location and traffic patterns of mobile systems change constantly
 - use of shared resource (unlicensed spectrum) problems can occur as a result of uncoordinated base station configuration/ deployment
- Need for autonomic management (to adapt to changing environment/context)
 Empowered by Innovation NEC

State-of-the-Art

- Today's wireless networks systems are already self-configuring and self-managing to some extent (e.g., autonomic selection of frequencies)
- However, self-configuration and self-management is typically limited to ...
 - local information that do not require explicit information exchange with neighbours
 - few configuration options due to lack of relevant feedback/context information
- Need for collaboration among autonomic systems and more feedback/context information

Tenets

- Automatic operation:
 - Autonomic systems must be able to bootstrap themselves in any environment (i.e., selfconfiguration of basic operation)
- Aware operation:
 - Autonomic systems must be *self-aware* (i.e., able to observe/monitor their operation and context)
- Adaptive operation:
 - Autonomic systems must continuously adapt themselves based on the changing context (e.g., fine-tune its operation)

Required Functionality

- Coordination of autonomous configurations
 - among neighboring base stations (e.g., frequency, transmission strength)
 - for system-wide management (e.g., load balancing, routing)
- Self-protection of system operation
 - identify and isolate potential attacks
- View of global system state
 - for validation/monitoring of system operation
 - for logging purposes

Empowered by Innovation

⇒ Individual autonomic systems have to collaborate to optimize the overall system (composite)

Autonomic Management

- Management functionality entirely distributed (across all base stations)
- Autonomic systems request/collect management and context information from neighbours
- Based on local and external information, every system makes autonomous decisions (self-X)
- Dissemination and synchronisation of information is achieved through epidemic communication paradigm
- Management information categorized into global, local and private

Empowered by Innovation

Information Categories

Wireless Monitoring for Self-Awareness

- Self-awareness (i.e. feedback on system operation/context) forms the basis for autonomic behavior
- Build-in monitoring capabilities are vital for self-configuration and self-management
- Monitoring (incl. traffic measurements) also required to protect wireless networks

Use of Monitors in the System

- Built-in monitoring capabilities in most nodes
- Specialized monitoring/measurement nodes
- End systems (e.g. client nodes) should contribute as well – they can reveal important information!

Example: Connectivity Problem Detection

- Monitoring system can detect connectivity problems
- For example, observation of repeated transmissions of *retry* frames with identical sequence numbers can indicate wireless link problems

Implementation State

- Prototype implementation on 802.11a/b/g WLAN Router (running Linux)
- 1 uplink (backhaul) and 1-2 wireless interfaces
- C implementations for main components:
 - autonomic management (incl. epidemic communication modules)
 - wireless monitoring
- TCP for exchange of local and global information
- UDP for neighbour resolution/discovery (to bootstrap epidemic information exchange)

Quantitative Evaluation

- Performance evaluation of autonomic management system (for increasing numbers of base stations)
- Measurements include ...
 - convergence time for initial self-configuration
 - dissemination time for new global information
 - number of messages for initial self-configuration
- Based on simulator (in Perl)
 - Allows for simulation of large numbers of base stations (on a single host)
 - Use of randomly generated topologies
- Results are shown as mean values with standard deviations over 500 simulation runs

Empowered by Innovation

Dissemination Time of new Global Information

NEC

Number of Messages for Initial Self-Organization

Conclusion

- Autonomic Wireless Management System
 - Fully decentralized approach
 - Inherent monitoring capabilities (feedback/context)
 - Self-configuration and self-management based on local and global information
- Current State
 - Prototype implementation available
 - Simulations show approach scales well
- Next Steps
 - Evaluation in real deployment scenarios
 - Development of further management and monitoring control applications
 - Autonomic Systems Monitor (a monitoring framework for autonomic systems)