Semantic Interoperability for an Autonomic Knowledge Delivery Network

David Lewis, Declan O'Sullivan, Ruaidhri Power, John Keeney

Knowledge and Data Engineering Group Dept of Computer Science Trinity College Dublin

Vouliagmeni-Athens, Greece 4th Oct 2005

Contextual Knowledge for Autonomic Agents

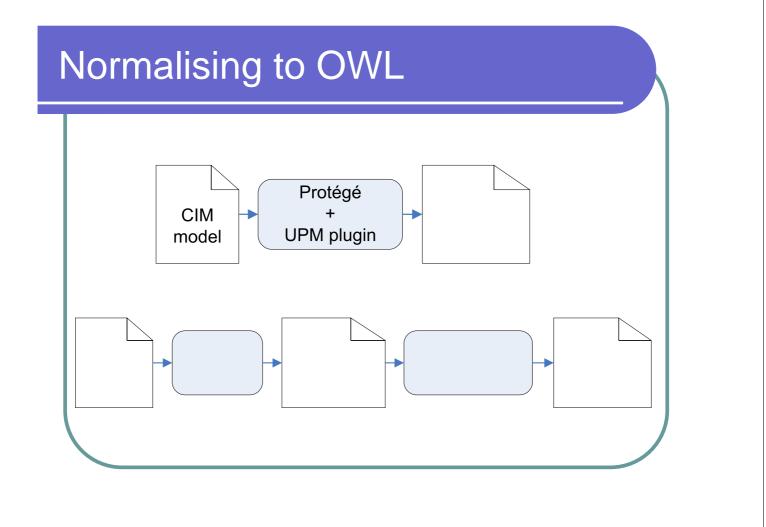
- Autonomic communications involves migration of decision making towards network nodes
- Autonomic Agents need context information from
 - Network neighbours
 - Across end-to-end links
 - Across value chains
 - Nodes serving same customer
 - Nodes in the same market
 - Stigmergic nodes

Problem Statement

- Heterogeneity is a barrier to deploying innovative autonomic agent communities across networks
 - Must build on available sources of context
 - e.g. existing SNMP agents
 - Must introduce and exploit new sources of context
 - Typically other agents types e.g. aggregating agents
- Aim: An Open Global Service for exchanging context between autonomic agents

Loose Coupling between Agents

<u> Types</u>

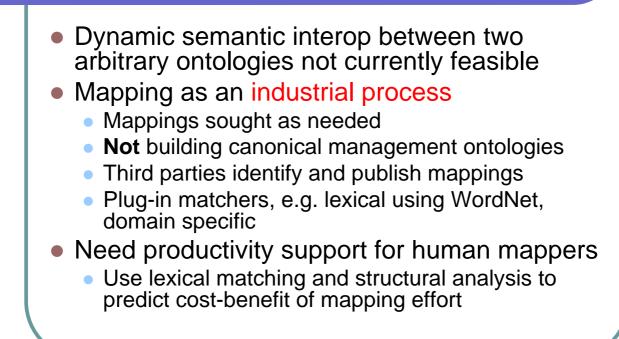

- State coupling
 - Publish-Subscribe messaging
- Address/Message Type coupling
 - Content Based Networking
 - Address message by filtering on attributes
- Semantic coupling of attributes?
 - Needed to scale interoperability and to spur innovation
 - Semantic Interoperability using knowledge-based techniques for explicit message meta-data

Open Semantics

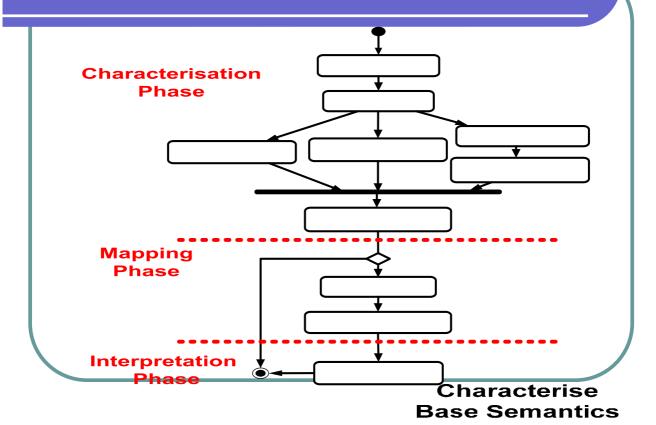
- General purpose standards exist for exchanging explicit semantics
- W3C's Semantic Web standards
 - Ontology language for sharing semantics as classes, properties and instances (OWL)
 - Description logic and rules for automated reasoning
 - Can leverage existing ontologies, knowledge capture tools, reasoners, planners, repositories etc

Network Operation Semantics

- Good News: Conventional management agents offer a rich source of semantics, i.e. Management Information Bases
- Semantic interoperability complicated by different standard meta-schemas:
 - Structure of Management Information (SMI) for SNMP
 - Managed Object Format (MOF) from the Distributed Management Task Force
 - GDMO for OSI management
- First need to normalise meta-schema using OWL
 - Building on work by de Vergara and Villagra at UPM

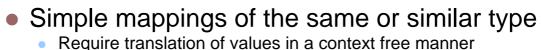

Example Semantic Mapping

- CIM (object-oriented)
 - A PhysicalElement realizes 1 or more LogicalDevices
 - Each logical device's current status is described by one of a set of 5 enumerated status types
 - CIM_LogicalDevice->StatusInfo
- SNMP (table-based information)
 - Each managed resource is made from a set of devices (hrDevice).
 - The status of each device within a resource is described by an integer status variable with 5 possible values
 - hrDevice.hrDeviceTable.hrDeviceEntry.hrDeviceStatus
- Mapping is usually much more difficult


∟ ıtatio

3

Semantic Interoperability


Semantic Mapping Process

Management Specific Matching

- General lexical matching performed poorly for CIM-SMI mapping
- Structural matching restricted by flat nature of SMI-OWL
- Developed domain matcher for mapping DMTF MOF models to IETF SMI models
 - Uses CIM qualifier MappingString
 - Provides hints from CIM authors on mapping to other models
- Otherwise rely on human domain knowledge
 - Identify key mapping anchors between two management ontologies
- Generate XSL Transform bridges at run-time
 - May be context aware

Mappings and Context of Values

- e.g. CIM int $1 \rightarrow$ SNMP int 1
- Simple mappings for different types
 - Still require mapping in a context free manner
 - e.g. int \rightarrow string, octets \rightarrow array etc.
 - e.g. SNMP DateTime 1992-5-26,13:30:15.5,-4:0 → CIM DateTime 19920526133015.500000-004

• Composite mappings for different types

- Translation may require context, or a number of queries or values
 - e.g. CIM_Printer.PrinterStatus →
 - HOST-RESOURCES-MIB::hrDeviceStatus + HOST-RESOURCES-MIB::hrPrinterStatus

Current Status

- Initial implementation trial
 - Uses the Elvin CBN
 - Producer convert SNMP traps to Elvin events using Q3ADE management mediation platform
 - CIM to SMI mapping on consumer subscriptions
- Domain-aware mappers are required
 - Lexical patterns, value-encoded semantics, using documented hints
 - May get easier as context from intelligent agents grows?
- Can combine with agent API masking remote subscriptions and local MIB queries

Future Work

- Location of Mapping Execution
 - Depends on relative distribution of consumers wanting transformed and untransformed versions
 - A producer, consumer or in CBN
- Distribution of Mappings
 - Local, context-aware mapping
 - Distribute via overlay CBN?
- Mapping and subscription languages
 - Expressiveness
 - Ability to specify hints and other intentional metadata
 - Ability to capture / specify / exploit map-time context
 - Composite events and Temporal relationships