Trust management issues for ad hoc and self-organized networks

Vassileios Tsetsos, Giannis F. Marias and Sarantis Paskalis

eSec / P-Comp / CNL Research Groups and Labs Dept. of Informatics and Telecommunications, University of Athens

2nd IFIP International Workshop on Autonomic Communications WAC2005

> 4 October 2005 Athens, Greece

Presentation Structure

Introduction

- Ad Hoc Trust Framework (ATF)
- Trust Issues in Autonomic Computing and Communications
- Conclusions

Self-organized networks

- MANETs
- Ad hoc collaborations
- No infrastructure available
- Many threats from selfish, malicious or hacker nodes
- Advanced needs for QoS and security
- Self-optimization principle promotes selfish behavior

WAC, Athens, Greece

3

Trust management

- A new paradigm for security and QoS solutions in open systems
- Key components:
 - recommendations exchange
 - reputation building/fading
- No central authorities
- Many different trust management schemes have been proposed

4

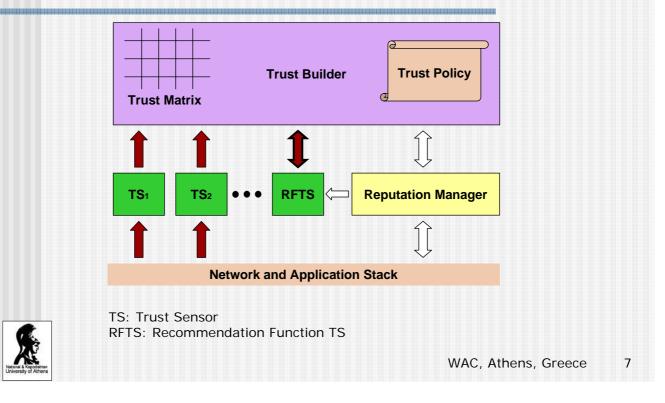
Motivation

- Trust management schemes seem suitable for ACC
- Existing schemes proposed for MANETs are too specialized
- Those proposed for middleware services are too complex to apply
 - Belief networks, probabilistic methods
- A lightweight flexible framework is needed for assessing the trustworthiness of nodes

→ ATF (Ad hoc Trust Framework)

WAC, Athens, Greece 5

Presentation Structure


Introduction

Ad Hoc Trust Framework (ATF)

- Trust Issues in Autonomic Computing and Communications
- Conclusions

Overall Architecture

Trust Sensors

- Every node provides functions to other nodes
 - Packet forwarding, routing, naming services, ...
- Trust Sensors evaluate the quality of these functions in a node's neighborhood – i.e., capture the *direct evidence*
 - I.e., Capture the **arrect evident**
 - 1. Observation of neighbors' behavior
 - 2. Comparison to reference/ideal behavior
 - 3. Quantification of the difference to Success/Failure

Reputation Manager

- On-demand recommendations exchange
- The nearest and most trustworthy recommenders are selected
- Recommendations are requested only when there is no sufficient direct evidences about a node
- Trusted paths are preferred

WAC, Athens, Greece

9

Trust Builder

- Main components:
 - Direct evidence (DE)
 - Recommendations (REC)
 - History of interactions
 - Subjective factor (SUB)
- The values for all open parameters are defined in the Trust Policy of each node
- Trust Values are assigned per (node, function) in a Trust Matrix

Trust Computation Model

$$Value_{n,f}(t) = w \cdot NewValue_{n,f} + (1-w) \left[\sum_{i=1}^{H} Value_{n,f}(t-i) \right] / H$$

 $TV(n, f, t) \cong (a \cdot DE_{n, f} + b \cdot REC_{n, f}) \cdot SUB_{n, f}(t)$

Value = DE or REC NewValue = last TS or REC received

 $TV \in [0,1]$ $DE \in [0,1]$ $REC \in [0,1]$ $SUB \in [0,2]$

w and *H* are defined in Trust Policy so as to decrease the trust fluctuations without losing sensitivity

WAC, Athens, Greece

11

SUB

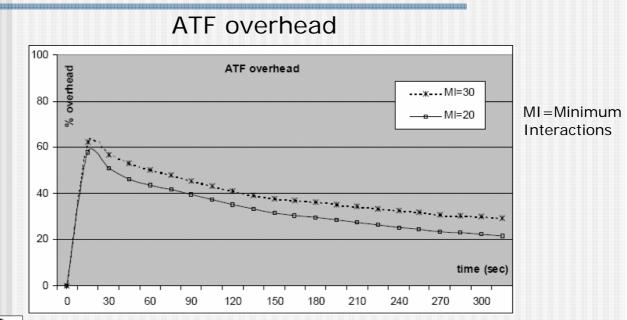
- SUB is a time function in the range [0,2]
- It allows for the introduction of subjective criteria in trust assessment
 - SUB=0 → distrust always
 - SUB=1 \rightarrow use the default ATF trust policy
 - SUB=2 \rightarrow be enthusiastic
- Ideally used for modeling more complex time-variant behaviors and trust strategies

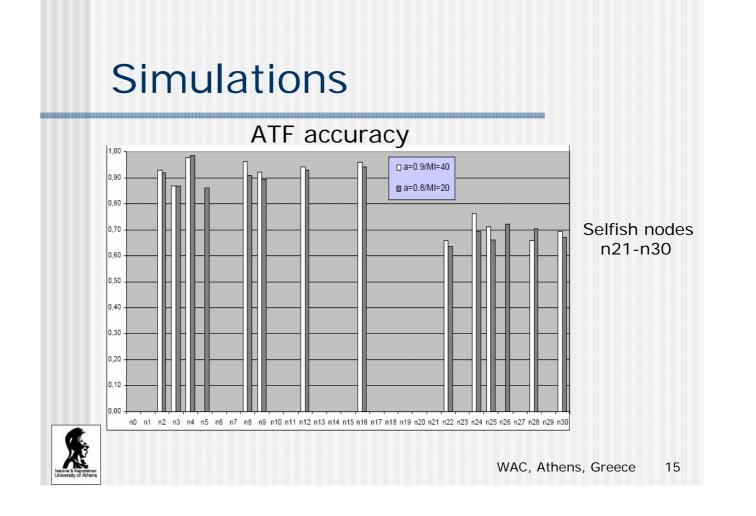
• Example strategy: do not trust the function X of any node until there are W successful interactions

ATF assessment

- J-Sim
- MANET / AODV routing
- Target: packet forwarding function (f)

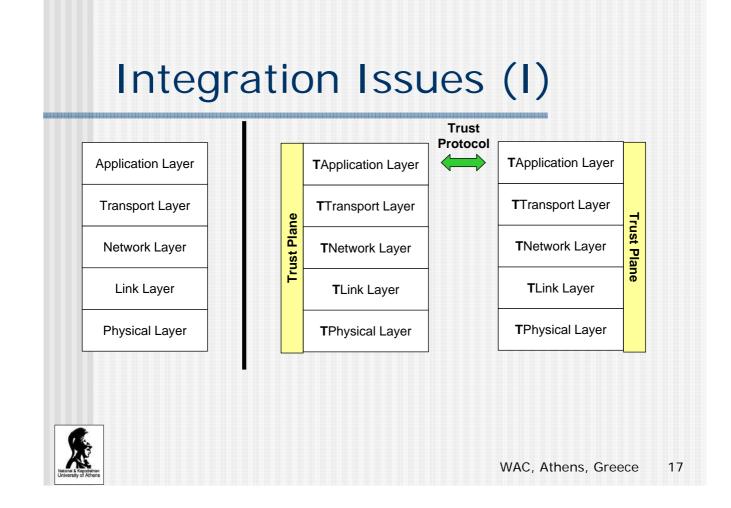
10
10
2 m/sec
5sec
300m x 300m
CBR
20
4 pkts/sec
30m
5 3 2 4


- Communication overhead
- Accuracy
- Convergence rate


WAC, Athens, Greece 13

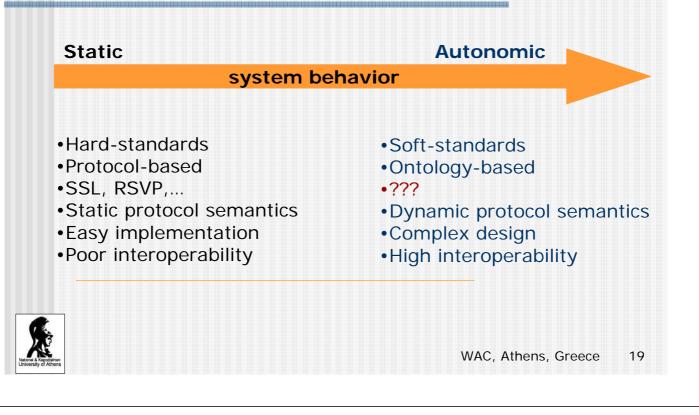
3

Simulations



Presentation Structure

- Introduction
- Ad Hoc Trust Framework (ATF)
- Trust Issues in Autonomic Computing and Communications
- Conclusions



Trust support in ACC systems requires: 1) Trust Plane

- trust sensing, trust memory, trust brokering between layers
- ~ Knowledge Plane [D. Clark et al.]
- 2) Trust Protocol
 - recommendations exchange
 - possibly in the application layer
- 3) Trust-aware protocols
 - trust-driven protocol reconfigurability
 - e.g., Software-defined radio

Interoperability

Trust Semantics

- Numeric trust value ranges carry no semantics
 - e.g., range_A(TV) = [0,1], range_B(TV) = [1,12], range_C(TV) = { low, high }
 - How can systems A, B, C collaborate?
- Solution: alignment of arbitrary trust ranges to reference trust model
 - Alignment=assignment of semantics
 - Ontologies are perfect candidates for reference models

Trust Policies

- High-level policies is a key component of autonomic systems
 - distributed policies in hierarchical environments (e.g., grids, ad hoc nets)
- Semantic Web technologies used for ruleand logic-based policies
 - Definition and enforcement of TPs in ACCs
 - Precondition: already established well-defined semantics for trust itself

WAC, Athens, Greece 21

Conclusions

- ATF seems suitable for ACC
 - Not function-specific
 - Lightweight
 - Involves subjective criteria and policies
- First simulations are encouraging
 - Future work: more simulation scenarios
- Many "trust elements" are still missing
 - Trust semantics, protocol reconfigurability, ...

 ACC research should explore the applicability of knowledge engineering and Semantic Web solutions

