Integration of Decentralized Economic Models for Resource Self-Management in Application Layer Networks

Pablo Chacin, Felix Freitag, Leandro Navarro, Isaac Chao, Oscar Ardaiz

Distributed Systems and Networks Research Group Technical University of Catalonia, Spain

2nd IFIP Workshop on Autonomic Communications Athens, Oct. 3-5 2005

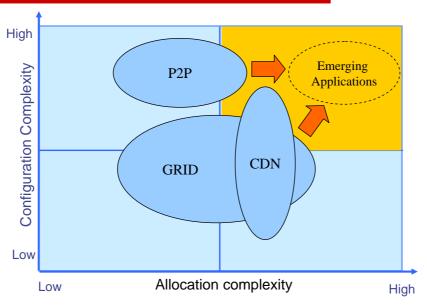
Goals of the Presentation

- Make a case for decentralized economic models for self managed resource allocations
- Present an architecture for implementing resource allocation mechanisms
- Highlight challenges and sketch a research agenda
- Avoid too many implementation details
 - Of course, Available upon request!

- Introduction and Motivation
 - Resource allocation in ALNs
 - A Case for Economics for Autonomic Systems
- Proposed Architecture
 - Conceptual framework
 - Technical platform
- Ongoing Prototype
- Conclusions and future work
- Questions

Application Layer Networks

Large-scale distributed applications that allow the provisioning of services using resources from a large, heterogeneous and dynamic resource pool, with logical topologies that emerges largely from the usage patterns:


-PlanetLab

- -BitTorrent
- -Coral

Identified characteristics

- -Dynamic environment and configuration
- -Diversity of participants
- -Large scale
- -Partial knowledge
- -Complex resource allocation decisions
- -Evolutionary

Evolution of Application Layer Networks

Configuration Complexity: dynamics of the configuration, lack of global knowledge and evolutionary environment

Allocation Complexity: Diversity of requirements and complexity of allocation demands

Requeriments for Resource Allocation

- Situateness
 - Consider location of requestors
 - Be aware of context and environment
- Dynamic (re)configuration
 - Adapt to unpredictable usage patters
 - New instances must be created and located as needed
- Topology neutrality
 - Adapt to different interaction topologies ranging from centralized to fully P2P
- Autonomy
 - Allow for multiple administrative domains with particular policies

- What does Economics offer
 - Rich conceptual framework
 - Formal models and analytical insight
 - Theoretical benchmarks
- Decentralized economic models are a promising approach for resource allocation
 - Economy as a **coordination** device (distributed decision making)
 - Can handle **conflicting** needs
 - Partial knowledge is a fundamental assumption
 - Participants are **selfish** (don't require cooperation)
 - Price and price changes **synthesizes information** about resources and the environment.
 - Bidding protocol amenable for standardization (e.g. Contract net)

Economics versus Biology Inspired Models

Evolution or Intelligent Design?

Biology

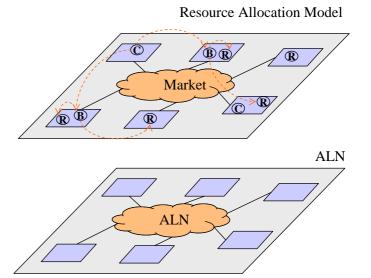
- We were made by biology
- Long terms adaptation
- Adaptation of individual from a population
- Might be unfair: unsuited individuals are extinct

Economics

- We made economy
- Short and long term adaptation
- Adaptation by cooperation and competition between populations
- Allows fair treatment of unsuited individuals (subsidized)

- Unsuitable economic models
 - Ad hoc models
 - Too simplistic
 - Not amenable to modern applications (i.e. centralized auctions)
- Lack of standards
 - Bidding protocols
 - Representation of resources and money
 - Agreements (already been addressed)
- Lack of general frameworks to implement models. Existing architectures are:

- Targeted to specific applications
- Tied to an specific market model (e.g. Auctions)
- Rigid architectures, not amenable for diverse ALN architectures



Objectives of Our Research

- Tackle the complexity of implementing decentralized economics models for resource allocation
- We are interested in Architectures and Models, not specific Algorithms
- Proposed approach:
 - Construction of a framework that offers a set of generic mechanism
 - Allow specialized strategies and policies can be dynamically plugged to adapt to specific application domains or market designs
- Requirements
 - Scalability
 - Self-organization to handle lack of global knowledge
 - Full distribution of critical functions among "peer" nodes
 - Flexibility to deploy in diverse architectures
 - Support coexistence of market models

Proposed Resource Allocation Model

- Direct interaction between trading agents under a "peer to peer" paradigm
 - Self-organizing
 - No hierarchies
 - No central control
- Model applications under a **Service Oriented Architecture**
- Physical resources are virtualized
- Market as a communication and norm enforcement device
 - No direct participation in _ negotiations

Overview Architecture

Design Principles

- Isolate economic decision from technical complexity
- Give freedom to implement each agent's intelligence (reasoning, strategies) to drive the negotiation process
- Take care of complex "mechanical" tasks at the lowest possible layer
- Use pluggable policies and mechanisms
- Use generic and extensible APIs
- Adopt a P2P architecture for the middleware components

Base Platform (ALNs)

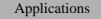
Services

Economic intelligence

Abstractions

Technical mechanism

Resource fabrics


Overview Architecture

Economic Framework

- locate resources according to complex search criteria
- engage in **negotiations** with other agents
- learn and adapt to changing conditions
- Manage resources being traded (allocate, de-allocate, monitor, account usage)

P2P Agent Layer

- Rich execution environment for trading agents
- Generic interface to basic middleware and to common mechanisms like communication
- Supply the features not provided by the underlying platform,
- Allow to plug diverse mechanisms for critical functions (e.g. discovery)

Economic Algorithms

Economic Framework

P2P Agent Layer

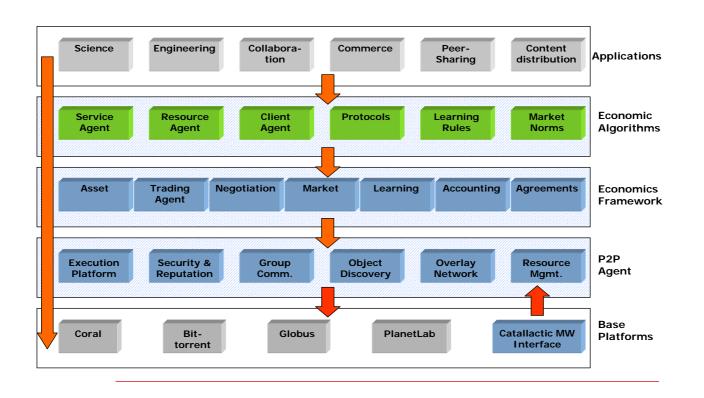
Abstractions

Technical mechanism

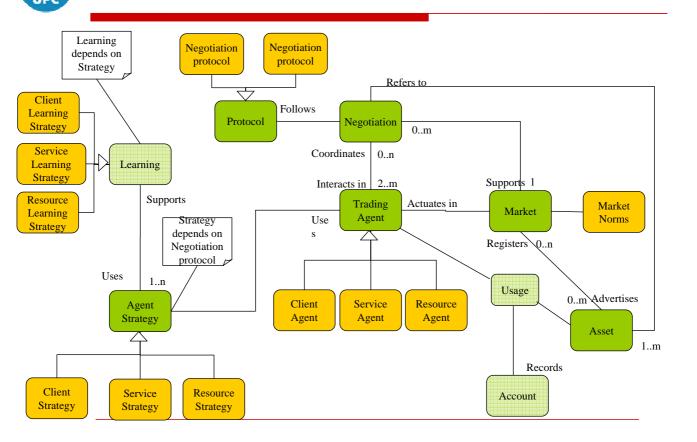
Base Platform (ALNs)

Resource fabrics

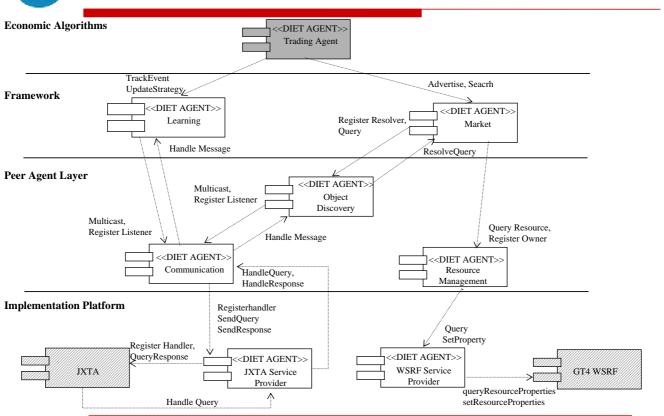
Services


Economic

Basic


intelligence

Detailed Architecture



Economic framework

UPC

Prototype Implementation in DIET/JXTA/GT4

- Cross Layer adaptation
 - From technical to economics and back!
- Standardization of protocols
 - WS Agreements a promising candidate
- Common middleware APIs to develop agents
- Common resource models
 - WSRF a good starting point
 - Handle the virtualization of heterogeneous resources

Some Preliminary Conclusions

- **Separation of concerns** in layers offers the level of flexibility in both the technical implementation and the definition of the market needed to adapt to diverse ALNs.
- **Experience** with early prototype is very encouraging. We are looking towards more **implementation iterations** with different models for further refinement.
- Models for analysis and interpretation of results, from both economical and technical points of view will be needed to obtain some useful insight on the performance of the architecture.

Research Agenda

- Refine the **Economic Framework** to support various decentralized economic models for resource management in order to validate architectural flexibility
- Define **architecture profiles** and blueprints for specific applications and platforms
 - E.g. Grid with GT4, P2P P with Bittorrent
- Develop **models for resource virtualization** in the context of WSRF and other related standards
- Explore options to automate protocol implementations
- Integrate a **general resource monitoring framework** to track the state of heterogeneous resources
- Integrate a fully decentralized mechanism for **accounting and payment**

. . . Thank you

Pablo Chacín Technical University of Catalonia <u>pchacin@ac.upc.edu</u> http://personals.ac.upc.edu/pchacin