

Service Discovery and Provision for Autonomic Mobile Computing

George C. Polyzos, Chris N. Ververidis, Elias C. Efstathiou

Mobile Multimedia Laboratory

Department of Computer Science Athens University of Economics and Business Athens 104 34, Greece

polyzos@aueb.gr, http://mm.aueb.gr/ Tel.: +30 210 8203 650, Fax: +30 210 8203 325

WAC 2005, October 4, 2005

Outline

- Introduction
- Context-aware service publishing, discovery, and access for mobile servers with an infrastructure
- Autonomic service discovery in MANETs
- (Autonomic) incentives-based P2P service provision
- Conclusions

Introduction

Primary goal of Autonomic Systems:
Self Management

Self Configuration
Self Optimization
Self Healing
Self Protection...

Self Management for Mobile Communication and Pervasive Environments (MCPE)

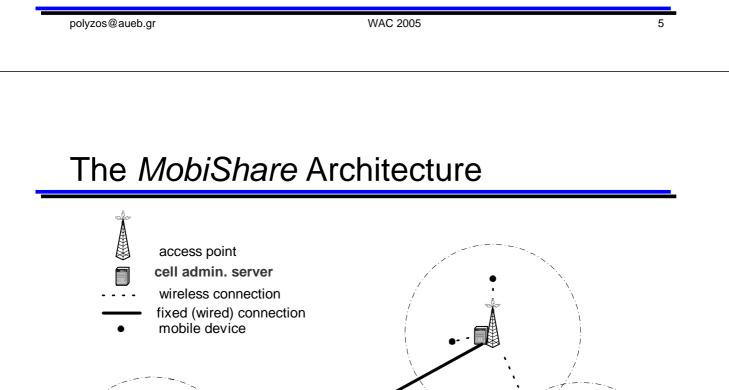
Flexible Service Discovery

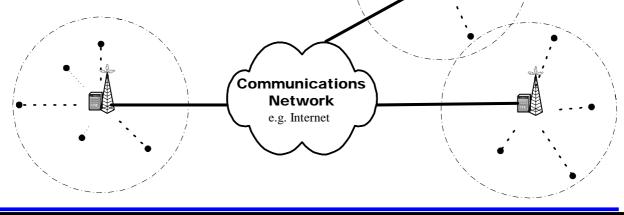
Flexible (& autonomous) Service Provision encourage cooperation

polyzos@aueb.gr

WAC 2005

Service Discovery


- Basic assumption for Service Discovery
 - All nodes run the same discovery protocol
- However in heterogeneous environments nodes have :
 - different capabilities
 - CPU, Memory, Battery
 - interfaces
 - different usage patterns
 - different goals, requirements, etc.
- approach:


Negotiable Service Discovery

3

Context-aware service discovery, publishing, and access over a (Global) infrastructure

- The *MobiShare* architecture
 - part of project DB Globe (IST/FET FP5)
- Distributed, possibly global, system through which:
 - Mobile servers publish services
 - Mobile users discover and access services
- No human intervention for low-level management of the system

Autonomic Aspects of *MobiShare*

- System Characteristics
 - Self configuration for service publication
 - Self optimization
 - Context based filtering of service replies + semantic matching
 - Self healing
 - Service replication on the infrastructure and/or service provider "handover"
- Use of Ontologies
 - for service description etc.

polyzos@aueb.g	r	

WAC 2005

Autonomic Service Discovery in MANETs

- Distributed
 - Cooperative P2P discovery (no directories)
- Ontology-based
 - Semantic matching (e.g. "currency conversion"="currency exchange")
- Context-aware
 - Adaptation of discovery based on high-level policies (e.g. energy consumption minimization)
- Policy-driven
- Group/election based
- Recoverable

- General Framework for disseminating the way that service discovery should be performed
 - according to the "common" goal of **some** nodes/users
 - different parts of a MANET may have different goals
 - tuned per area, according to the nodes' needs and capabilities

polyzos@aueb.gr

WAC 2005

Autonomic Service Discovery Framework

• Split service discovery into tunable components

• Similar approach to autonomic routing (R. Braden et al. 2003)

Programmable Components

• Service Advertisement

- Query vs. Announcement
- Flooding vs. Zone-Based
- Service Selection
 - Location Based vs. Energy Conservation Based
- Service Recovery
 - Statefull vs. Stateless

9

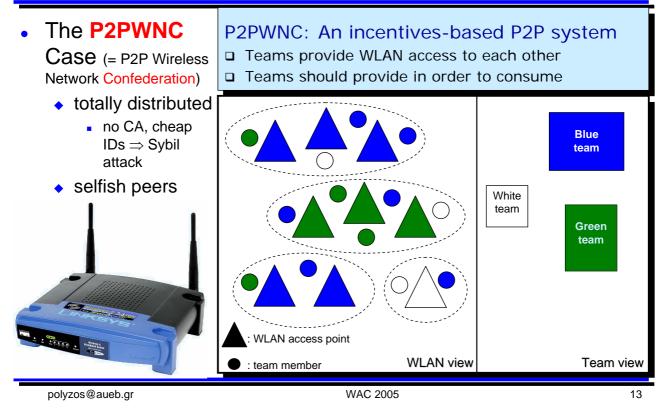
Autonomic Service Discovery Framework: an Example Realization

Goal: "Minimize" total **energy** consumption and **avoid** single server drainage

Framework Interpretation:

- avoid use of flooding
- perform localized service discovery (e.g. up to 2 hops)
- use pull techniques
- include current energy constraints and load information data in service replies

polyzos@aueb.gr


WAC 2005

11


Autonomic Service Discovery in MANETs Open Issues

- How do we select tunable components to include in the Framework?
- How often can we **refresh** area-wide **policies and goals**?
- How can we allow and support **different deployments** of the service discovery approach in **different areas**?
- How can we **aggregate information** from neighboring areas with **different goals** and hence different ways to perform service discovery?

Autonomic, Incentive-based Service Provision

Motivation: The Public Hotspot Market

Roxbury, Newton, and Cambridge)

P2P Systems

General term

- □ Usually associated with **file sharing** systems
- □ Also includes:
 - Grids (computation)
 - (Mobile) ad hoc networks (packet forwarding)
 - Distributed Hash Tables (scalable, fault-tolerant storage)
 - eBay-like (electronically mediated communities
 - of providers and consumers)

Distinctive characteristics

- Peers act as both providers and consumers of resources
- □ System relies on peer cooperation
- □ Free-riding will prevail if:
 - there is a cost involved with providing resources
 - there are no authorities that can punish or reward
 - exclusion from consuming the shared resources is impossible

polyzos@aueb.gr

WAC 2005

15

Incentive Schemes for P2P

Micropayments

- Digitally signed tokens used as payment
- □ Requires online bank to check for double spending (and to issue the credits)

Yang, Garcia-Molina, "PPay: Micropayments for P2P Systems," ACM CCS'03

Tamperproof modules

- Each peer maintains its own account balance
- Increase when providing, decrease when consuming

Buttyan, Hubaux, "Stimulating Cooperation in Self-Organizing MANETs," ACM/Kluwer MONET 2003

Multiple account holders

- □ Other peers maintain a peer's account balance
- □ Use majority rule in case of disagreement

Visnumurthy, Chandrakumar, Sirer, "Karma: A Secure Economic Framework for P2P Resource Sharing," p2pecon'03

P2PWNC Design Principles

Why P2P?

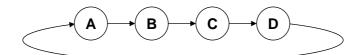
- □ A lot of underexploited WLANs out there set up by individuals
- □ Hotspot operators (in the "centralized model"):
 - operate only a small fraction of the WLANs out there
 - further segregate WLANs by competing for venues among themselves

Micropayments, tamperproof modules, multiple account holders: Why choose another incentive scheme?

- Require central authority (micropayments)
- □ Are unrealistic (tamperproof modules)
- □ Assume peers want to keep accounts for others and/or perform auditing
 - by trying to encourage "account holding" we get back where we started

We need a simple incentive scheme that will encourage participation and cooperation, even at the expense of accurate accounting

polyzos@aueb.gr

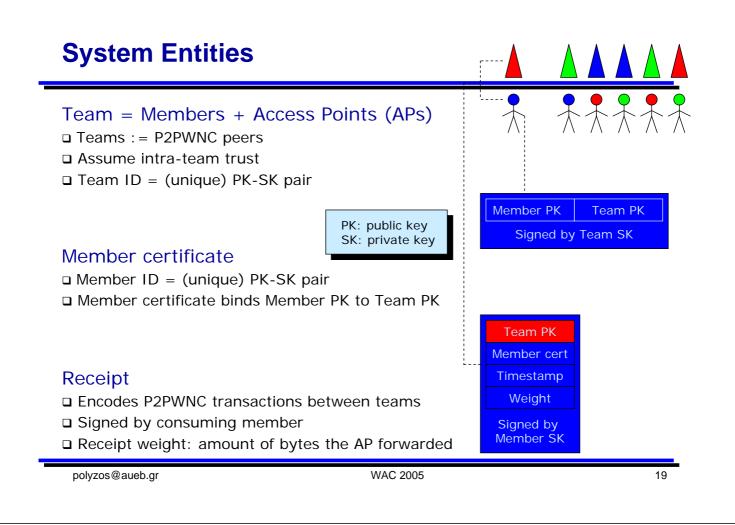

WAC 2005

17

N-way Exchanges

Adopt N-way exchanges as the incentive scheme

- $\hfill\square$ A generalization of barter, which retains some of its simplicity
- "Provide to those [who provided to those]* who provided to me"
- □ A type of indirect reciprocity (sociology)
- □ Scales to larger populations, compared to direct-only exchanges
- Does not require (central or distributed) authorities


Some variants of the basic N-way scheme:

Cox, Noble, "Samsara: Honor Among Thieves in P2P Storage," SOSP'03

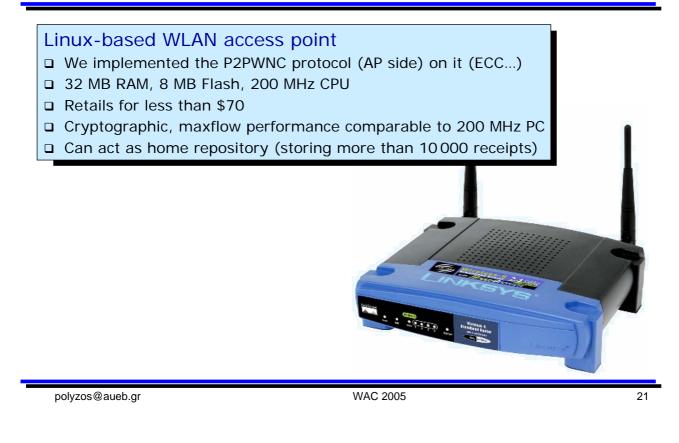
Ngan, Wallach, Druschel, "Enforcing Fair Sharing of P2P Resources, " IPTPS'03

Anagnostakis, Greenwald, "Exchange-based Incentive Mechanisms for P2P File Sharing," ICDCS'04

Feldman, Lai, Stoica, Chuang, "Robust Incentive Techniques for P2P Networks," ACM EC'04

Cooperation Strategies

Three cooperation **strategies** tested so far, each one:


- Uses a different decision algorithm
 - Input: the receipt graph
 - Output: a decision of whether to provide service or not
- □ May use a different **gossiping algorithm** (in the decentralized case)
 - Different ways to choose the receipts that roaming members carry
- May use a different bootstrap algorithm
 - New teams need to provide before starting to consume
 - For how long, and to whom?

Specific decision algorithms include:

- □ **N-WAY** (assumes unit weights on receipts [Efstathiou & Polyzos, "Self-Organized Peering of Wireless LAN Hotspots," *ETT*, vol. 16, no. 5, 2005])
- maxflow (borrowed from Feldman, Lai, Stoica, Chuang, "Robust Incentive Techniques for P2P Networks," ACM EC'04)
- Generalized maxflow

Progressively more robust against double-spending and collusion

Zero Configuration inter-WLAN service with Linksys WRT54GS APs

Conclusions

- Enablers for Autonomic Computing and Communications
 - Context sensing / awareness
 - Ontologies
 - Adaptive composition of strategies
 - Local (group) decisions about (distributed) selection of strategy composition (among different compatible strategies)
 - Incentives for
 - service provision, but also...
 - information dissemination and adhering to protocols...
 - Interesting General Incentives Mechanisms
 - Indirect Reciprocity or N-way Exchange
 - others...

Thanks!

George C. Polyzos

Joint work with my students Chris Ververidis & Elias Efstathiou

Mobile Multimedia Laboratory

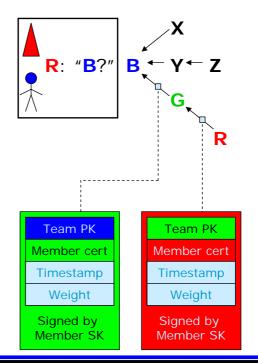
Department of Computer Science Athens University of Economics and Business

http://mm.aueb.gr/

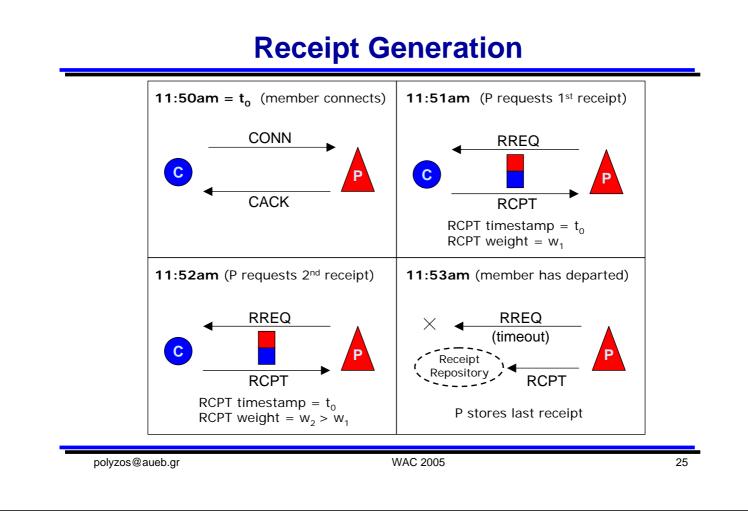
polyzos@aueb.gr

WAC 2005

The NWAY Decision Algorithm

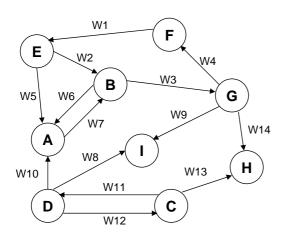

Searches for potential N-way exchanges

Red provides to Blue


 if there is a chain of receipts
 connecting Red to Blue

 Red then discards all receipts

in the discovered chain



23

The Receipt Graph

Directed weighted graph (with cycles)

Graph security

Free-riders and colluders **can** create an arbitrary number of fake vertices and edges

They **cannot** create fake outgoing edges starting from teams who are outside the colluding group (they do not have the relevant private keys)

Vertices: team public keys Edge weight: sum of weights of corresponding receipts

Edges point from the consuming team to the providing team

Receipt Repository

Two options:

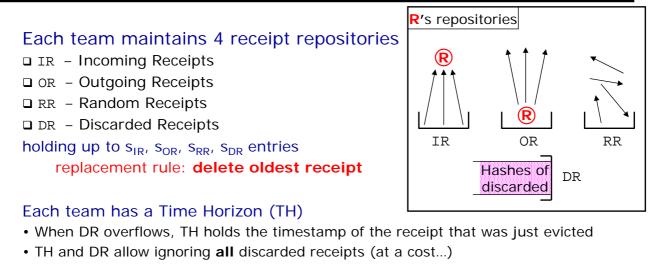
Centralized repository

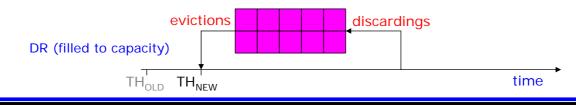
- Requires a well-known server that all teams can agree on
- All receipts are visible by all teams
- Server drops oldest receipts when full
- Mostly used to gauge the effectiveness of decentralized repositories
- Could have some practical importance

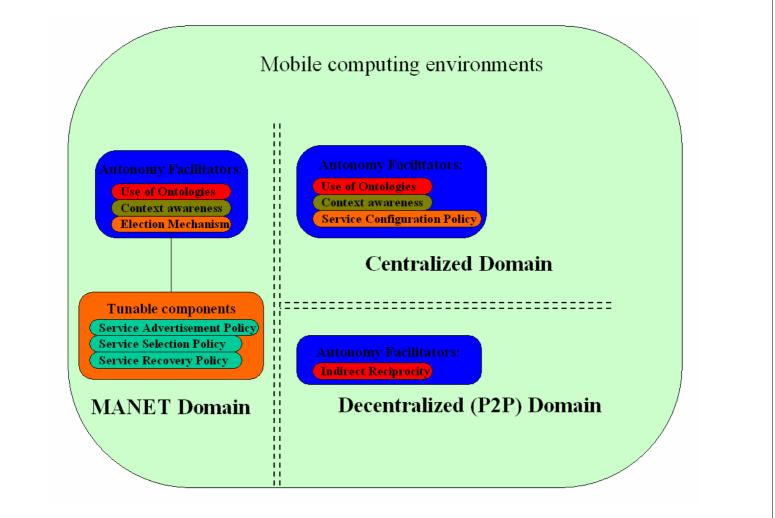
Decentralized repository

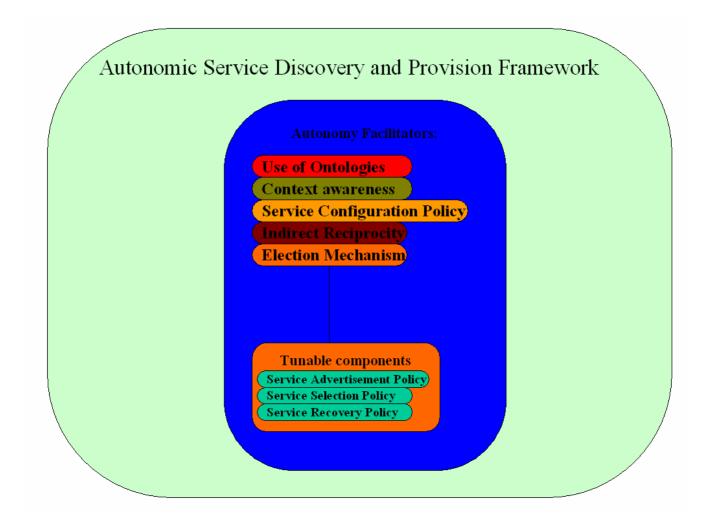
- · Each team maintains its own private repository
- Fills it with receipts it receives during a WLAN transaction
- And with receipts it receives when gossiping

Gossiping algorithm:


- □ Roaming members carry receipts from their team repositories
- They present them to the teams they visit
- □ With RSA-1024 keys, a receipt is about 650 bytes long
- With ECC-160 keys, a receipt is about 150 bytes long


polyzos@aueb.gr


WAC 2005


27

NWAY: Space Requirements

