Incentive Schemes in Memory-less P2P Systems

Costas Courcoubetis Athens University of Economics and Business

joint work with Panos Antoniadis and Richard Weber

Workshop on Autonomic Communication October 2005

Outline

- Important issues for addressing free riding in p2p systems
- Recent results from public good theory
- A memory-less incentive mechanism
- Economic modeling and evaluation

The free riding issue in p2p systems

- Peers exploit their unused resources to build a generic service for the benefit of everybody
 - Positive and (sometimes) negative externalities
- Free riding is the rational strategy
- Suitable incentive mechanisms could increase efficiency
- Different applications have different requirements
- Two major challenges:
 - Economic modeling
 - Enforcement of incentive mechanisms

Important characteristics of p2p systems

- Public good aspect
- Complicated cost modeling
- Heterogeneity
- Size
- Highly dynamic environment
- Cheap pseudonyms
- Unpredictable quality of service
- Centralized vs. distributed implementation
- Hidden action
- Rationality vs. altruism

Economic Modelling

- Contribution (and cost)
 - Initial contribution (e.g. hardware, bandwidth, content)
 - Peer availability (e.g. amount of time on-line)
 - Service provision (e.g. number of uploads)
- Utility
 - Amount of resources acquired through service provision
 - Size of the system (public good aspect)
- Different weights according to application/technology
 - Operating system and/or bandwidth manager could minimize the cost of service provision in certain cases and then initial contribution and availability become the dominant factor of contribution (e.g. grids, content sharing)
 - On the contrary, when resources are congested (e.g. bandwidth) or consumable (e.g. battery) service provision becomes dominant (as in the case of ad-hoc networks)

Enforcement issues

- Incentive mechanisms require some sort of accounting of peers' past transactions.
- A very challenging problem when the system designer cannot rely on
 - trusted software
 - ability to monitor transactions
 - false trading
 - persistent identities
 - whitewashing
 - the "sybil attack"
 - central authority to store and certify accounting information
- The majority of research on p2p economics focus on ways to enforce simple reciprocity rules in terms of actual downloads/uploads under the above restrictions

We focus on content availability

- Definition: amount of files shared per unity of time
- Content availability is a public good
 - A file is not consumed by downloading but contributing files to the common pool is costly
- We assume
 - Service provision (i.e. uploading) has negligible cost
 - -particularly true while consuming resources (see later)
 - There is no congestion
 - -We focus on the 'long tail' of the content
 - Existing systems focus on bandwidth sharing for downloading popular items (e.g. Bittorrent)

Maximizing Social Welfare

- "Free market" solution is inefficient
 - each peer maximizes own net benefit
 - actions affect others
 - hence private optimum differs from social optimum
- Need regulation: use prices or rules to influence behaviour
 - incentives for each peer reflect the effect it has on others
 - example of a rule: downloads = uploads
- Problem: optimal design requires information on user types
 - under full info: personalized price/rule for each peer
 - "first-best" policy

What to do?

- How can the system/planner/network manager get the required information to design optimal contribution rules?
 - if lucky, can gather personalized data about users
 - otherwise, users must be given incentives to reveal relevant information to planner
- Mechanism Design: set prices/rules to encourage users to act truthfully, maximize social welfare
 - Well-developed economic theory; but solutions typically
 - very complex, dependent on fine details
 - require large amounts of info to be passed to centre
 - "second-best" policy
- Approximations?

A non-excludable public good

- *n* agents bargain to provision a public good
- Q = quantity of public good, all agents enjoy it
- $c(Q) = \text{cost of public good, agent i pays } p_i$

$$\theta_i u(Q) - p_i = \text{agent's i net benefit}$$

$$u(Q) = Q^{1/2}, \quad c(Q) = Q^2$$

 $Q \in \{0,1\}, \quad u(Q) = Q, \quad c(Q) = c$

Costas Courcoubetis

Allocations

- For each $\theta = (\theta_1, \dots, \theta_n)$
 - what quantity Q(.) ?
 - what contributions $p_1(.), \ldots, p_n(.)$?
- Feasible: $c(Q(\theta)) \leq \sum p_i(\theta)$
- incentive compatible: $E_{\theta_{-i}}[\theta_i u(Q(\theta_i, \theta_{-i}) p_i(\theta_i, \theta_{-i})]$ $\geq E_{\theta_{-i}}[\theta_i u(Q(\hat{\theta}_i, \theta_{-i}) - p_i(\hat{\theta}_i, \theta_{-i})]$
- Individually rational: $E_{\theta_{-i}}[\theta_i u(Q(\theta_i, \theta_{-i}) p_i(\theta_i, \theta_{-i})] \ge 0, \forall \theta_i$

Allocations (2)

• First-best: maximizes Social Welfare (SW) under complete information (is trivially feasible)

$$\max_{Q(i)} \sum_{\substack{Q(i) \\ Q}} \theta_i u(Q(\theta)) - c(Q(\theta))$$
$$= \max_{Q} u(Q) \sum_{\substack{Q(i) \\ Q}} \theta_i - c(Q)$$

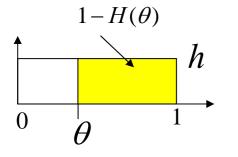
- Second-best: maximizes SW under incomplete information, i.e.,
 - subject to
 - feasibility
 - incentive compatibility
 - individual rationality

Large systems are simpler!

- Size helps!
 - simplifies mechanism, limits per capita efficiency loss
- <u>Theorem</u>: A very simple mechanism

"contribute f if join, 0 otherwise" is nearly optimal when the network is large

- Why?
 - in a large network it is hard to get people pay more than a minimum
- Other major benefits:
 - Low informational requirements, easy to apply in a large class of examples


WAC Oct. 2005

Some formulas for SW...

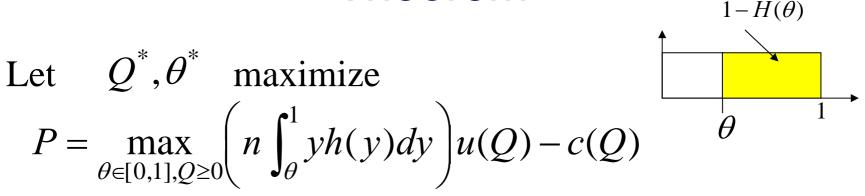
No contributions, system of size Q

$$SW = \left(n \int_0^1 yh(y) dy\right) u(Q) - c(Q)$$

Fixed contributions covering cost, system of size Q

 $SW = \left(n\int_{\theta}^{1} yh(y)dy\right)u(Q) - c(Q)$

fee = $\theta u(Q)$


WAC Oct. 2005

$$\underbrace{n[1-H(\theta)]}_{\theta u(Q)} - c(Q) \ge 0$$

expected number fee of participants Costas Courcoubetis

slide - 14

Theorem

subject to
$$n[1-H(\theta)]\theta u(Q) - c(Q) \ge 0$$

Then, the policy:

each participating peer contributes $f = \theta^* u(Q^*)$ achieves $P_{SB} \le P(1 + O(1/n))$

$$P_{SB}$$
 = efficiency of second-best policy

WAC Oct. 2005

Costas Courcoubetis

Example

 $u(Q) = 0.6Q^{1/2}, \quad c(Q) = Q, \quad \theta_i \text{ uniform in } [0,1]$

$$\max_{\theta \in [0,1], Q \ge 0} \left(n \int_{\theta}^{1} y dy \right) 0.6Q^2 - Q \quad s.t. \quad n[1-\theta]\theta \ 0.6Q^2 - Q \ge 0$$

Solution:

$$f = 0.0168n, Q^* = 0.0126n^2, \theta^* = 1/4, SW = 0.006328n^2$$

• satisfaction of cost coverage constraint: reduction of SW by 43%

Applications

- File sharing
 - Q = content availability
 - p_i = number of files shared per unity of time
 - Not necessarily copyright infringement (but requires a global indexing –e.g. earth coordinates)
- WLAN sharing
 - Q = coverage
 - p_i = area covered by access points of peer *i*

Other equal contribution schemes

• Fix Q, share cost among participants

$$f = c(Q) / m$$

 Fix fee *f*, build a facility according to how many decide to participate

$$c(Q) = mf$$

• Define Q(m), charge c(Q(m))/m

Enforcement issues (reminder)

- Incentive mechanisms require some sort of accounting of peers' past transactions.
- A very challenging problem when the system designer cannot rely on
 - trusted software
 - ability to monitor transactions
 - false trading
 - persistent identities
 - whitewashing
 - the "sybil attack"
 - central authority to store and certify accounting information
- The majority of research on p2p economics focus on ways to enforce simple reciprocity rules in terms of actual downloads/uploads under the above restrictions

Real life applications

Kazaa

- Simple reputation mechanisms with priority under contention as an incentive
- Enforced by the software -> failed!
- Direct Connect
 - Fixed contribution rules (focus on content availability)
 - Centralized monitoring and punishment (exclusion based on IP addresses)
- BitTorrent
 - Direct exchange of resources (i.e. upload bandwidth)
 - A very nice example of a memory-less mechanism
 - But doesn't address the issue of content availability
 - Has attracted a lot of attention lately!

Proposed solutions in the literature

- Token based currencies
 - Require central or distributed bank to check for double spending
 - Self-minted currencies need reputation
- Public accounts
 - Require account holders, cryptography, substantial communication overhead
 - Additional incentive issues
- Reputation mechanisms
 - Suffer from whitewashing and false trading
 - Extensive research in this area. Basic concepts:
 - Treat newcomers badly (the social cost of cheap pseudonyms)
 - Don't trust ratings of unknown peers

WAC Oct. 2005

Costas Courcoubetis

Our approach: contribute while consuming

- Recall that
 - Peer contribution: number of files per unity of time
 - We assume uploading is costless while downloading
 - Asymptotically optimal rule: fixed contribution (but difficult to enforce over time)
- Enforcing entity = service provider (i.e. uploader)
 - Ensures that the downloader shares a predefined number of valid files while offering service
 - Upload using a fixed throughput so as not to be completed too fast and thus increase peer availability
- Contribution of each peer will depend on her request rate and content availability
- Additional incentive issues arise (we discuss them later)

Economic modelling

- Average download time d (depends on fixed upload throughput)
- Peer chooses her type x_i between 0 and θ_i according to d and Q
- Request rate $g(x_i)$ depends on type
- Assume initial amount of content Q₀ (made available by super peers)
- Peer's cost depends on the percentage of time she stays on-line downloading (the cost for providing a fixed amount of files *f* is considered sunk)

A simple model

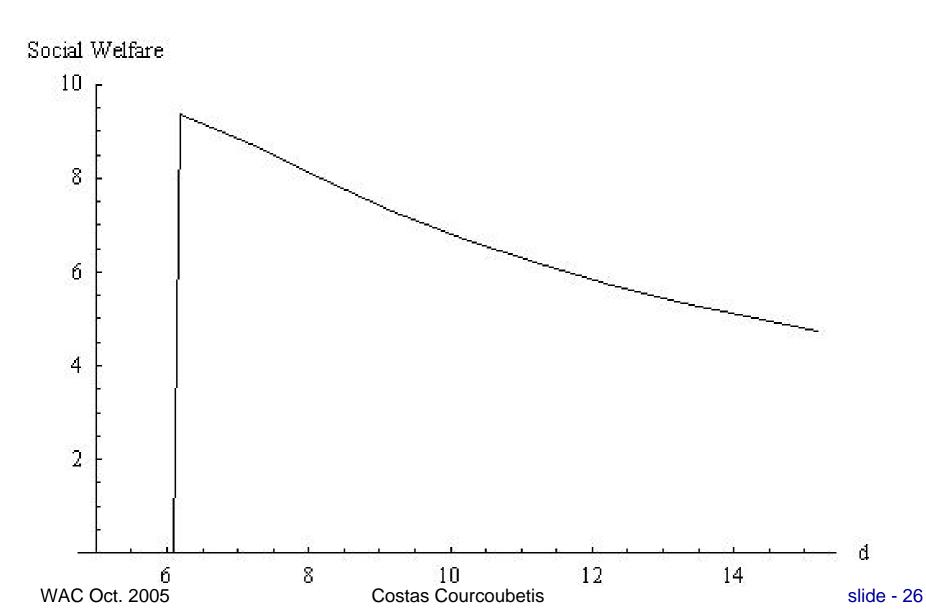
• Each peer chooses his type x_i given Q, d

$$\max_{x_i, x_i \le \theta_i} x_i u(Q_0 + Q) - ag(x_i) \frac{Q_0 + Q}{N} d$$

where $Q(x): Q = \sum g(x_i) \frac{Q_0 + Q}{N} f d$

For
$$u(Q) = Q^{1/2}, g(x) = x^2, Q_0 = 0$$

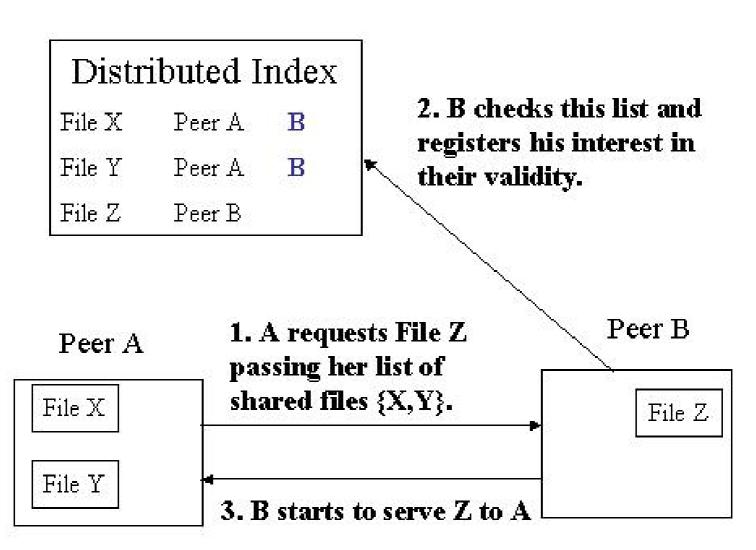
- we can compute the equilibrium
- the SW is maximized for d = 3.06 N / nf


V

The basic issues

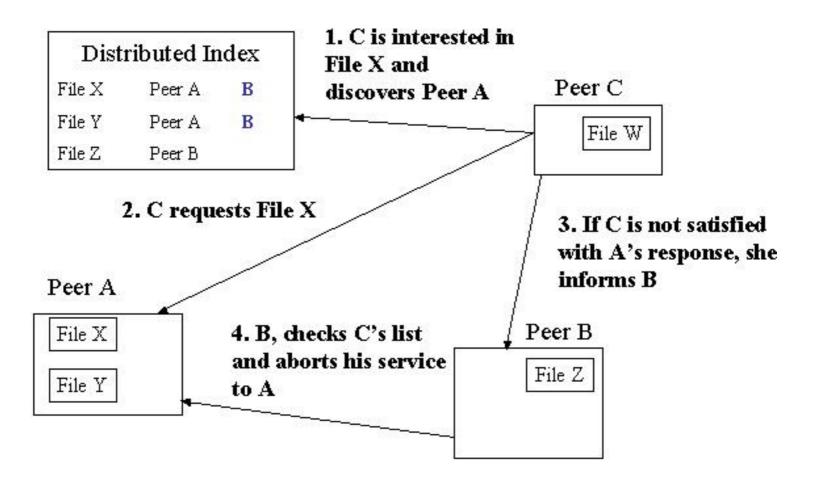
- Properties of equilibria
- Convergence of myopic strategies
 - super modularity?
- How the equilibrium is affected by d
 - how to adapt d to maximize efficiency
- More refined models of interaction
 - extend the above results for a general class of models

$$\theta_i u(y_i) - a(1 - e^{-y_i d}), y_i(x)$$


Simulation results (1)

System Requirements

- Super peers
 - Realistic assumption (see Kazaa)
 - Run a distributed index for search
 - Act as seeds of content
 - Tune system parameters (e.g. fixed upload throughput)
- Protocols for broadcasting the value of the upload throughput and for checking validity of files
- Two types of attacks on validity
 - illegal file names (flush invalid files from the index using a service like CDDB)
 - corrupted files (check while downloading or before upload)


Checking for file validity (1)

WAC Oct. 2005

Costas Courcoubetis

Checking for file validity (2)

Incentive Issues

- Failing to serve
 - Possible strategy to avoid uploading
 - BUT not rational under our assumptions
- Incentives for enforcement
 - Checking for file validity
 - There is a cost and system designer should try to minimize this
 - Fixing upload throughput
 - Not rational to increase or decrease it under our assumptions
 - If its decrease is considered a valid strategy there are ways to address it
 - There should be a majority of peers who wish to play by the rules
 - a requirement for all distributed enforcement mechanisms

Conclusions

- As access bandwidth increases and large amounts of content is readily available in people's PCs peer availability will become a very important factor for the success of p2p file sharing systems
- We propose a memory-less mechanism to provide the suitable incentives
 - With appropriate tuning of its basic parameters (number of files and upload throughput) can achieve comparable to the optimal efficiency
 - Introduces a new class of incentive mechanisms that require contribution to the public good while consuming resources and has some very interesting related modeling issues

Future work

- Study the application of both our modelling (public good) approach and enforcement (contribute while consuming) in other contexts
 - A public good model for scientific grids
 - A "contribute while consuming" mechanism for ad-hoc networks
- http://nes.aueb.gr/p2p.html