Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων

Μαθηματικά για Τηλεπικοινωνίες (Ρ/Η)

Ιωάννης Σταυρακάκης

- > (A) Basics of Stochastic Processes
- (B) Basic Network Modeling, Performance Evaluation and Design

PART A BASICS OF STOCHASTIC PROCESS

- Probability and random variables: Bernoulli trials; Poisson
- Stochastic Processes: independent increments; Wiener & Poisson Processes; stationarity & ergodicity
- > Markov Processes

RELATIVE FREQUENCY-BASED probability

$$P(A) = \lim_{n \to \infty} \frac{\text{\# experiments in which A occurs}}{\text{total # of experiment}}$$

Comments:

- 1. Requires experimentation
- 2. n is usually finite \Rightarrow approximation

3. Convergence implies that as n->∞:

$$\bullet \left\{ \left| \frac{n_A}{n} - P(A) \right| > \delta \right\} \text{ occurs less \& less}$$

• Not that :
$$\left| \frac{n_A}{n} - P(A) \right| < \delta \quad \forall n > n(\delta)$$

AXIOMATIC DEFINITION OF PROBABILITY - PROBABILITY SPACE

- \triangleright Probability Space: $\{\Omega,F,P\}$
- $\triangleright \Omega$: Sample space
- ightharpoonup F: σ -field generated by Ω
- P: A probability measure. It is a set function on F satisfying:
- $P(A) \ge 0 \quad \forall A \in \mathsf{F}$
- $\bullet P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B) \ \forall A, B \in F, A \cap B = \emptyset$

BERNOULLI TRIALS

- Consider a simple experiment with $\Omega = \{s, f\}$, P(s) = p & P(f) = 1 p = q
- Consider 2 indep. experiments: $\Omega_1 = \Omega \times \Omega = \{ss, ff, sf, fs\}, 2^2 \text{ possible outcomes}$
- Consider n indep. experiments: $\Omega_n = \Omega \times \Omega \times \Omega = \{...\}$, 2^n possible outcomes

$$\overline{\omega} = (\omega_1, \omega_2, ..., \omega_n) \quad , \omega_i \in \{s, f\}$$

Joint Probability:

$$P(\overline{\omega}) = P(\omega_1, \omega_2, ..., \omega_n) = P(\omega_1)P(\omega_2)...P(\omega_n)$$

(indep. experiments)

Question: Prob. of k successes in n trials = ?

(A) Consider a pattern Π (outcome in Ω_n) counting k successes

$$\Pi = \underbrace{ss...s}_{k-1}ff \underbrace{sff...f}$$
 This prob. is the ANY pattern where $P(\Pi) = P\{ss...sffsff...f\} = p^k q^{n-k}$ & n-k failures

This prob. is the same for ANY pattern with k successes

(B) Consider all possible legitimate patterns. There are:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 Call them $\Pi_1, \Pi_2, ..., \Pi_{\binom{n}{k}}$

(Binomial coefficients)

Answer:

 $P\{\text{outcome has k successes in n trials}\} = P\left(\bigcup_{i=1}^{\binom{n}{k}} \Pi_i\right) = 1$

(mutually disjoint) =
$$\sum_{i=1}^{\binom{n}{k}} P(\Pi_i) = \binom{n}{k} p^k q^{n-k} = b(k, n, p)$$

POISSON PROBABILITY LAW

Assume $n\rightarrow\infty$, $p\rightarrow0$ such that np=a (a=rate of success)

$$P\{k \text{ successes}\} = \lim_{\substack{n \to \infty \\ p \to 0, np = a}} b(k, n) = \frac{a^k}{k!} e^{-a}$$

Comment:

- If n large and p<<1 approximate b(k,n,p)≈e(-np) (np)k /k!</p>
- Cummulative arrivals contributed by a large # of independent sources can be modeled as Poisson
- Above plus other properties of Poisson process, make it a good traffic model

RANDOM VARIABLES (RV)

A mapping X from Ω into the real numbers satisfying:

(1)
$$X^{-1}\{(-\omega, x)\} = C \in F$$

(2)
$$P(X = \pm \infty) = 0$$

Measures:

$$PDF: F_X(x) = P\{X \le x\}$$

pdf:
$$f_X(x) = \frac{dF_X(x)}{dx}$$
, $F_X(x) = \int_{-\infty}^x f_X(y) dy$

PMF: $P\{X = x_i\}$ $\forall i$ for discrete - value RV

SOME PROPERTIES OF PDF

- $\bullet F_X(\infty) = 1, F_X(-\infty) = 0$
- $F_X(x)$ non decreasing
- $F_X(x)$ is right continuous
- $P\{x_1 < X \le x_2\} = F_X(x_2) F_X(x_1)$
- $P\{X = x\} = F_X(x) F_X(x^-)$ $(P\{X = x\} = 0 \text{ unless } F_X(x) \neq F_X(x^-), F_X(x) \text{ has a jump})$
- $P\{x_1 \le X \le x_2\} = F_X(x_2) F_X(x_1^-)$

EXAMPLE-PDF

SOME PROPERTIES OF pdf

$$\bullet \int_{-\infty}^{\infty} f_X(x) dx = 1 \quad (= F_X(+\infty))$$

• $f_x(x) \ge 0$ (since $F_X(x)$ is non-decreasing)

•
$$P\{x_1 < X \le x_2\} = \int_{x_1}^{x_2} f_X(t) dt$$
 Area $P\{x_1 < X \le x_2\}$

MORE ON RVs

Conditional & joint PDF/pdf/PMF; expectations; moments, moment generating functions & characteristic functions

EXAMPLE:

Given $F_X(x)$ and $B=\{X \le 10\}$ calculate $F_{X/B}(x/B)$

ANSWER:

$$F_{X/B}(x/B) = P\{X \le x \mid B\} = \frac{P\{X \le x, B\}}{P\{B\}} = \frac{P\{X \le x, X \le 10\}}{P\{X \le 10\}}$$

(i) if
$$x \ge 10$$
 : $F_{X/B}(x/B) = \frac{P\{X \le 10\}}{P\{X \le 10\}} = 1$

(ii) if
$$x < 10$$
: $F_{X/B}(x/B) = \frac{P\{X \le x\}}{P\{X \le 10\}} = \frac{1}{P\{X \le 10\}} F_X(x)$

Note:

Given X≤10, cond. PDF must reach 1 at x=10 P{X>10} is "distributed" to values of X≤10 by increasing the original mass by 1/P{X≤10}

EXAMPLE: memoryless property of exponential RV

$$F_X(x) = 1 - e^{-cx}, x \ge 0$$

$$f_X(x) = ce^{-cx} \quad , x \ge 0$$

Consider that duration of calls is exp

QUESTION: Given that a call is still on t units after initiation (i.e., $X \ge t$), calculate the probability it will still be on after s time units (i.e., find $A=P\{X>t+s|X>t\}$)

ANSWER:

$$A = \frac{P\{X > t + s, X > t\}}{P\{X > t\}} = \frac{P\{X > t + s\}}{P\{X > t\}} = \frac{1 - (1 - e^{-c(s+t)})}{1 - (1 - e^{-ct})} = \frac{e^{-cs}e^{-ct}}{e^{-ct}} = e^{-cs} = P\{X > s\}$$

That is:

$$P\{X > t + s \mid X > t\} = P\{X > s\}$$

(the history factor (i.e. already on for *t* units) does not alter the result)

SEQUENCES OF RVs {X₁, X₂,...,X_n,...}

SOME KEY QUESTIONS:

- \triangleright What is the behavior as X_n as $n->\infty$ or n is very large?
- \triangleright What is \Rightarrow \Rightarrow as $\sum_{i=1}^{n} X_{i} \Rightarrow \Rightarrow$ \Rightarrow ?

USEFUL IN:

- Determining a behavior in steady-state (i.e. X_n, n->∞); also existence
- Dealing with averages of large number of samples

SENSES OF CONVERGENCE OF $\{X_n(\omega)\} - X(\omega)$

- (a) Everywhere (e.): iff it holds ; $\omega[\Omega]$
- (b) Almost Everywhere or with probability 1 (a.e./wp1): iff it does not hold ONLY for $\omega[A]$ with P(A)=0
- (c) In Probability: iff $\lim_{n\to\infty} P\{|X_n(\omega)-X(\omega)|\geq \epsilon\}=0$; $\epsilon>0$
- (d) Mean Square (M.S.): iff $\lim_{n\to\infty} E\{|X_n(\omega)-X(\omega)|^2\}=0$
- (e) In distribution: iff $\lim_{n\to\infty} F_{Xn}(x) = F_X(x)$; point x of continuity

COMPARISON OF SENSES OF CONVERGENCE

COMPARISON OF SENSES OF CONVERGENCE

EXAMLE/APPLICATION: LAW OF LARGE NUMBERS: (Averaging)

• WLLN: $\{X_i\}$ indep. RVs, $E\{X_n\} < \infty$, $\sigma^2 < \infty$; $S_n = \sum_{i=1}^n X_i$; then

 $Y_n = \frac{S_n - E\{S_n\}}{n} \rightarrow Y = 0$ in prob. (weak Law of Large Numbers - WLLN)

(if $\{X_i\}$ are i.i.d., $\frac{S_n}{n} \to E\{X_n\}$ in prob;

could be used to estimate the mean of unknown RV)

• SLLN: $\{X_i\}$ indep. and (a) i.i.d. with $E\{X_i\} < \infty$ or (b) $\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2} < \infty$; then

$$Y_n = \frac{S_n - E\{S_n\}}{n} \xrightarrow[n \to \infty]{} \text{a.e.} \text{ (Strong Law of Large Numbers - SLLN)}$$

EXAMPLE: Proof of WLLN for i.i.d. RVs {Xi}

Using Chebyshev's inequality for $Y_n = S_n/n$:

$$A = P\{|Y_n - E\{Y_n\}| \ge \delta\} \le \frac{Var\{Y_n\}}{\delta^2}$$

$$E\{Y_n\} = E\{X_i\}$$

$$Var\{\frac{1}{n}S_n\} = \frac{1}{n^2}Var\{S_n\} = \frac{1}{n}Var\{X_i\}$$

$$= \frac{1}{n}Var\{X_i\}$$
Thus: $A \le \frac{Var\{X_i\}}{n\delta^2} \xrightarrow[n \to \infty]{} 0$
and $\frac{S_n}{n} \to E\{X_i\}$ in prob.

EXAMPLE/APPLICATION: CENTRAL LIMIT THEOREM (normalizing)

 $\{X_i\}$ indep. RVs; μ_i ; σ_i^2

$$Y_{n} = \frac{\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mu_{i}}{\left[\sum_{i=1}^{n} \sigma_{i}^{2}\right]^{\frac{1}{2}}}, \quad E\{Y_{n}\} = 0, Var\{Y_{n}\} = 1$$

under general conditions $F_{Y_n}(x) \to N(0,1)$ (Normal PDF) (iff X_i i.i.d. and $\sigma < \infty$, it always holds)

COMMENT ON CLT

To hold look for a lot of RVs with good variability

$$X_i \text{ indep.} \Rightarrow w_i = \frac{X_i - E\{X_i\}}{\left(\sum \sigma_i^2\right)^{\frac{1}{2}}} \quad \text{indep.}$$

$$Y_n = \sum w_i \Longrightarrow f_{Y_n} = f_{w_1} \otimes f_{w_2} \otimes ... \otimes f_{w_n}$$

$$\Rightarrow \Phi_{Y_n}(\omega) = \Phi_{w_1}(\omega)\Phi_{w_2}(\omega)...\Phi_{w_n}(\omega)$$

$$\Phi_{w_i}(\omega) = E\{e^{j\omega z}\} = \text{characteristic function of } w_i$$

(for normal
$$Y: \Phi_Y = e^{-\frac{\omega^2}{z}}$$
)

• if $f_{w_i}(\cdot)$ are delta fns (0 variance) $\Rightarrow \Phi_{w_i}(\omega) = 1$

$$\Rightarrow \Phi_{Y_n}(\omega) = 1 \neq e^{-\frac{\omega^z}{z}} \quad \text{(CLT cannot hold)}$$

• if only *m* RVs have variance and rest have almost zero,

$$\Phi_{Y_n}(\omega) \approx \Phi_{w_1}(\omega)...\Phi_{w_m}(\omega) \cdot 1 \cdot 1 \cdot 1 \cdot ... \cdot 1 \neq e^{-\frac{\omega^2}{z}}$$

• Same conclusions in time domain as well:

Alternatively, the above variance requirement can be stated as:

$$\sigma_i^2 \ll \sum_{i=1}^n \sigma_i^2$$

STOCHASTIC PROCESSES

Prob space $\{\Omega, F, P\}$

A mapping $X(t, \omega), \omega \in \Omega, t \in I$

(index set e.g. time
(discrete or continuous))

is a stochastic process iff $X(t_0, \omega)$ is a RV for any fixed t_0

Interpretation 1:

It is a collection of RVs $\{X_t(\omega); t \in I\}$ defined on common prob space

Interpretation 2:

It is a mapping $\Omega \to X(t)$

X(t) contain time functions instead of real numbers (case of RV)

For fixed t_0 , $X(t_0)$ is a RV

Oscilloscope "view"
Freeze image -> Sample path
Block screen except a slit

DESCRIPTION OF A STOCH PROCESS

Joint PDF : $F_{\overline{X}}(X_1, X_2, ..., X_n, ...)$

Mean: $\mu_X(n) = E\{X_n\}$

Autocorrelation fn: $R_X(k,l) = E\{X_k X_l^*\}$

Autocovariance fn: $K_X(k,l) = E\{(X_k - \mu_X(k))(X_l - \mu_X(l)^*)\}$ = $R_Y(k,l) - \mu_Y(k)\mu_Y(l)$

Can be facilitated by:

- > Taking advantage of special structure of some processes (indep. increments, Markov, etc.)
- Stationarity
- > Ergodicity

PROCESS WITH INDEPENDENT INCREMENTS

$$\forall N > 1$$
, all $n_1 < n_2 < ... < n_N$

$$Y_{n_1}, Y_{n_2} - Y_{n_1}, ..., Y_{n_N} - Y_{n_{N-1}}$$
 are indep.

then for $\{Y_n\}_n$ with indep. increments:

$$F_{\overline{Y}}(y_1, y_2, ..., y_N) = F_{Y_1}(y_1)F_{Y_2 - Y_1}(y_2 - y_1)...F_{Y_1}(y_1)F_{Y_N - Y_{N-1}}(y_N - y_{N-1})$$

Example: BINOMIAL COUNING PROCESS

$$S_n = \sum X_i$$
 , X_i i.i.d. wp p

$$E\{S_n\} = np \quad (S_n \text{ not WSS})$$

Let
$$I_{k_n} = S_n - S_k = X_{k+1} + ... + X_n$$
, $n > k$

 I_{k_n} indep. of S_n

Stationarity

Strict Sense Stationarity (SSS):

$$f_X(x_0,...,x_{n-1}) = f_X(x_k,...,x_{k+(n-1)}) \quad \forall k, \forall n \ge 1$$

(Neither prob behavior of each x_k

nor interdependencies change with k)

WideSenseStationarity (WSS):

$$\mu_X(n) = \text{constant} \quad \forall n \ge 1$$

$$K_X(k,l) = K_X(k+\rho,l+\rho) \quad \forall \rho \ge 1$$

(both mean and covariance are time-shift invariant)

Note: if $\{x_n\}$ is not WSSit is also not SSS

THE WIENER PROCESS

$$\Omega = \{s, f\} , p_f = 1 - p_s$$

$$\text{Let } w: \Omega \to \{+\delta, -\delta\}$$

$$\text{where } w = \begin{cases} +\delta & \text{if } w = s \\ -\delta & \text{if } w = f \end{cases}$$

Let $X_n = w_1 + w_2 + ... + w_1$

 $\{X_n(\omega)\}\$ is a random sequence which increases

by $+\delta$ or decreases by δ in each step. (Random walk)

THE WIENER PROCESS

For fixed n, $X_n(\omega)$ is a RV with prob. : $P\{X_n = r\delta\} = \Pr\{\# successes - \# failures = r\} =$ $= P\{k - (n - k) = r\} = P\{k = \frac{n + r}{2}\}\$ $= \binom{n}{(n+r)/2} p_s^{(n+r)/2} p_f^{n-(n+r)/2} = p_f = p_s = 1/2$ $= \binom{n}{(n+r)/2} 2^{-n} \qquad (\frac{n+r}{2} \text{ integer})$

$$E\{X_n\} = \sum_{k=1}^n E\{W_k\} = 0$$

$$E\{X_n^2\} = \sum_{k=1}^n E\{W_k^2\} = \sum_{k=1}^n \left\{ \frac{1}{2} \delta^2 + \frac{1}{2} \delta^2 \right\} = n \delta^2$$

Let $X_T(t)$ be the piecewise constant version of X_n . That is,

$$X_T(t) = \sum_{k=1}^{\infty} W_k \cdot u(t - kT)$$
 , $W_k = \begin{cases} +\delta & wp & 1/2 \\ -\delta & wp & 1/2 \end{cases}$

Clearly

Let $X_T(t)$ be the piecewise constant version of X_n . That is,

$$X_T(t)\bigg|_{t=kT} = X_k = \sum_{i=1}^k w_i$$

The PMF and moments of $X_T(t)$ can be obtained from those of X_k

Definition of Wiener Process

The Wiener process (or Wiener-Levy or Brownian motion) is the process whose distribution is the limiting distribution of $X_T(t)$ as T->0; the jump size δ goes to zero as well and X(t) is a continuous state continuous time stochastic process.

$$E\{X_T(nT)\} = E\{X_n\} = 0$$

$$E\{X_T^2(nT)\} = E\{X_n^2\} = n\delta^2 \Rightarrow Var\{X_T(nT)\} = n\delta^2$$
and $Var\{X_T(t)\} = \frac{t}{T}\delta^2$ for $t = nT$

Suppose that $\delta^2 = aT$ so that the variance does not vanish as T- > 0. Then

$$X(t) = \lim_{T \to 0} X_T(t) \text{ and } Var\{X(t)\} = at$$

$$S^2 = aT$$

Wiener process models the chaotic motion of gas molecules.

Note:

 $\{X_n\}_n$ is the sum of n i.i.d. RVs w_i

 \bigcup

(Central Limit Theorem) limiting process (as n increases) would be Gaussian, and the same would be expected for X(t), the Wiener process (as t->0).

$$E\{X(t)\} = \mu_X(t) = 0 , \quad Var\{X(t)\} = \sigma_x^2(t) = at$$

$$f_{X_t}(x_t) = \frac{1}{\sqrt{2\pi at}} e^{-\frac{x_t}{2at}} \quad t > 0$$

(notice that X(t) is not SSS since $f_{X_t}(x_t)$ changes with time)

The Wiener process is an example of Gaussian process since all nth-order pdf's are Gaussian. This can be seen intuitively as follows:

Let $\Delta = X(t) - X(s)$, t > s. By considering the infinite number of i.i.d. RVs between X(s) and X(t) and applying the CLT we have:

$$f_{\Delta}(y;t-s) = \frac{1}{\sqrt{2\pi a(t-s)}} e^{-\frac{y^2}{2a(t-s)}}$$

since $E\{X(t) - X(s)\} = E\{\Delta\} = 0$

and
$$E\{(X(t)-X(s))^2\} = a(t-s)$$
 $t > s$

Dusing the pdf for the increment ∆ and the independent increment property of the Wiener process we can derive the nth-order pdfs and show they are Gaussian.

$$(f_{X_{t_1}X_{t_2}}(x_{t_1},x_{t_2}) = f_{X_{t_1}}(x_{t_1}) \cdot f_{X_{t_2}-X_{t_1}}(x_{t_2}-x_{t_1}))$$

> Covariance or autocorrelation function:

$$K_X(t,s) = E\{X(t)X^*(s)\} = E\{[X(t) - X(s) + X(s)]X^*(s)\}$$
$$= E\{[X(t) - X(s)]X^*(s)\} + E\{X^2(s)\} = as$$

Thus

$$K_X(t,s) = a \cdot \min(t,s)$$

MEAN SQUARE CALCULUS & ERGODICITY

- CALCULUS: Define limits, integrals & derivatives for SPs
- \triangleright ERGODICITY: Condition under which time averages=ensemble (over Ω) averages

Mean Square Continuity

A SP X(t) is continuous at $t \Leftrightarrow E\{|X(t+\varepsilon)-X(t)|^2\} \underset{\varepsilon \to 0}{\longrightarrow} 0$

N & S condition : $R_X(t,t)$ is continuous at t

$$(E\{|X(t+\varepsilon)-X(t)|^2\} =$$

$$R_X(t+\varepsilon,t+\varepsilon) + R_X(t,t) - R_X(t,t+\varepsilon) - R_X(t+\varepsilon,t) \underset{\varepsilon \to 0}{\longrightarrow} 0$$

Note: N & S condition for WSS SP: $R_X(\tau)$ continuous at $\tau = 0$

Mean Square Derivative at t

Condition:

$$E\left\{\left|\frac{X(t+\varepsilon_1)-X(t)}{\varepsilon_1}-\frac{X(t+\varepsilon_2)-X(t)}{\varepsilon_2}\right|^2\right\} \underset{\varepsilon_1\to 0}{\longrightarrow} 0$$

N & S condition: $\frac{d^2R_X(t_1, t_2)}{dt_1dt_2} \text{ exists at } t = t_1 = t_2$

Note: N & S condition for WSS SP: $\frac{d^2 R_X(\tau)}{d\tau^2}$ exists at $\tau = 0$.

Moments of the Derivative SP

$$E\{X'(t)\} = \frac{d\mu_X(t)}{dt}$$
 , $R_{X'}(t_1, t_2) = \frac{d^2R_X(t_1, t_2)}{dt_1dt_2}$

Example - Wiener SP

$$R_X(t_1, t_2) = a \min(t_1, t_2) = \begin{cases} at_1 & \text{if } t_1 < t_2 \\ at_2 & \text{if } t_2 < t_1 \end{cases}$$

$$\frac{dR_X(t_1, t_2)}{dt_2} = \begin{cases} 0 & \text{if } t_1 < t_2 \\ a & \text{if } t_2 < t_1 \end{cases} = a \cdot u(t_1 - t_2)$$

 $\frac{d^2 R_X(t_1, t_2)}{dt_1 dt_2} = \frac{d \ a \cdot u(t_1 - t_2)}{dt_1} a \delta(t_1 - t_2) \quad \text{i.e. it is white (uncorrelated) and since Gaussian} \Rightarrow \text{indep.}$

(as expected for a SP with indep. increments)

Mean Square Integral

Note:
$$\int_{a}^{b} X(t)dt = Y \quad (a \text{ R.V.})$$

$$\int_{a}^{b} X(t, \omega_{0})dt = Y(\omega) = \text{value of } Y \text{ at } \omega_{0} = \text{a number}$$

N & S condition:
$$\int_{a}^{b} \int_{a}^{b} R_{X}(t_{1}, t_{2}) dt_{1} dt_{2}$$
 exists

Note:
$$\int_{a}^{b} X(t)dt = Y \quad (a \text{ R.V.})$$

$$\int_{a}^{b} X(t, \omega_{0})dt = Y(\omega) = \text{value of } Y \text{ at } \omega_{0} = \text{a number}$$

N & S condition:
$$\int_{a}^{b} \int_{a}^{b} R_X(t_1, t_2) dt_1 dt_2$$
 exists

For
$$Y = \int_{a}^{b} X(t)dt$$

$$\mu_Y = \int_a^b \mu_X(t)dt$$
 , $E\{Y^2\} = \int_a^b \int_a^b R_X(t_1, t_2)dt_1dt_2$

Example for
$$X(t)$$
 WSS SP $\left(Y = \int_{-T}^{T} X(t)dt\right)$:

$$\sigma_Y^2 = \int_{-T-T}^{T} K_X(t_1 - t_2) dt_1 dt_2 = \dots = \int_{-2T}^{2T} K_X(\tau) [2T - |\tau|] d\tau$$

Example for n(t) zero mean, white $SP\left(X(t) = \int_{0}^{t} n(\tau)d\tau\right)$:

$$K_n(t_1, t_2) = A\delta(t_1 - t_2)$$

$$\sigma_X^2 = \int_0^t \int_0^t A \delta(t_1 - t_2) dt_1 dt_2 = A \int_0^t dt_1 = At$$

(if n(t) is also Gaussian, then X(t) is Wiener)

ERGODICITY

X(t) is a SP, $X(t, \omega_0)$ = a sample path/realiztion

Time Averages $(A\{\cdot\})$ of (functions of) $X(t,\omega_0)$ are possible

Ensemble Averages $(E\{\cdot\})$ are typically not possible but needed

Question:

$$A\{\cdot\} = E\{\cdot\}$$

Answer:

Yes if X(t) ergodic in some sense.

Definitions:

$$A\{\cdot\} = \lim_{T \to \infty} A_T\{\cdot\} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \bullet dt$$

 $E\{\cdot\}$ = an average of \bullet over all ω

with the corresponding probability as weights

Examples:

For
$$\bullet = X(t, \omega_0)$$

$$A\{X(t,\omega_0)\} = E\{X(t,\omega_0)\} = E_{\omega_0}\{X(t,\omega_0)\} = \mu_X$$

For
$$\bullet = X(t, \omega_0)X(t + \tau, \omega_0)$$

$$A\{X(t,\omega_0)X(t+\tau,\omega_0)\} = E\{X(t,\omega_0)X(t+\tau,\omega_0)\} = R_X(\tau)$$

IMPORTANTOBSERVATION A (need for some stationarity)

For X(t) to be POSSIBLE to be ergodic it must be stationary (time shift invariant) to a certain extent

Argument : Since $A\{\cdot\}$ is indep. of time,

if $E\{\cdot\} = A\{\cdot\}$ then

 $E\{\cdot\}$ must also be indep. of time (constant E)

IMPORTANTOBSERVATION B (need for some regularity)

For X(t) to be POSSIBLE to be ergodic it must be regular (i.e. time averages be indep. of ω)

Argument : Since $E\{\cdot\}$ is indep. of ω ,

if
$$A\{\cdot\} = E\{\cdot\}$$
 then

 $A\{\cdot\}$ must also be indep. of ω (constant A)

Comment on need for regularity:

- ▶ For any ω_0 , $X(t, \omega_0)$ should behave over time like any other $X(t, \omega_i)$ so that ω is NOT identifiable by a time average
- ▶ For any ω_0 , $X(t, \omega_0)$ should exhibit over time all kinds of behavior and with the proper "frequency & duration" as for any ω , so that the time average becomes equivalent to ensemble average

DEFINITION: X(t) is ergodic if:

- (a) It is stationary to some extent $(E\{\cdot\} = E \text{ (constant)})$
- (b) It is regular $(A\{\cdot\} = A \text{ (constant)})$
- (c) Constants *E* and *A* are equal
- ((c) is met if $E\{\}$ & $A\{\}$ operators are interchangeable Fubinni's theorem)

EXAMPLE:
$$\Omega = \{-2, -1, 1, 2\}$$
 , $X(t, \omega) = \omega$ for $-\infty < t < \infty$

$$P(\omega) = \frac{1}{4} \text{ for } \omega \in \Omega$$

Ensemble Average: $E\{X(t,\omega)\} = E\{\omega\} = 0$ (time shift - invariant)

Ensemble Average: $A\{X(t,\omega)\} = \omega$ (not regular)

 $X(t,\omega)$ not ergodic.

M.S. ERGODICITY IN THE MEAN

Def:
$$A_T\{X(t)\} = \frac{1}{2T} \int_{-T}^{T} X(t) dt \underset{T \to \infty}{\longrightarrow} \mu_X$$
 (m.s.) (*)

N & S condition:

$$\lim_{T \to \infty} \left\{ \frac{1}{2T} \int_{-2T}^{2T} (1 - \frac{|\tau|}{2T}) K_X(\tau) d\tau \right\} = 0$$
 (**)

Proof: $(*) \Leftrightarrow E\{|A_T\{X(t)\} - \mu_X|^2\} \underset{T \to \infty}{\longrightarrow} 0 \Leftrightarrow \sigma_{A_T}^2 \underset{T \to \infty}{\longrightarrow} 0$

$$\sigma_{A_T}^2 = \frac{1}{(2T)^2} \int_{-T-T}^{T} K_X(t_1 - t_2) dt_1 dt_2 = (**)$$

Examples:

- (a) if $\int_{-\infty}^{\infty} |K_X(\tau)| d\tau < \infty$ then $(**) < \frac{1}{2T} \int_{-\infty}^{\infty} |K_X(\tau)| d\tau \to 0$ and X(t) is ergodic in the mean
- (b) if $K_X(0) < \infty \& K_X(\tau) \xrightarrow[\tau \to \infty]{}$ then X(t) is ergodic in the mean

Proof: (**)
$$< \frac{1}{2T} \left\{ \int_{-\alpha}^{\alpha} |K_X(\tau)| d\tau + \int_{a < |\tau| < 2T} |K_X(\tau)| d\tau \right\} \quad (a:|K_X(\tau)| < \varepsilon, |\tau| > a)$$

$$< \frac{1}{2T} \left\{ 2a \cdot K_X(0) d\tau + 4T \cdot \varepsilon \right\} = \frac{2aK_X(0)}{2T} + 2\varepsilon$$

$$= \text{arbitrarily small as } T \to \infty$$

M.S. ERGODICITY IN THE AUTOCORRELATION

Def:
$$A_T\{X(t)X^*(t+\lambda)\} \underset{T\to\infty}{\longrightarrow} R_X(\lambda)$$
 (m.s.)

[Equivalent:
$$A_T \{ \Phi_{\lambda}(t) \} \underset{T \to \infty}{\longrightarrow} E \{ \Phi_{\lambda}(t) \}$$
 (m.s.)

for SP
$$\Phi_{\lambda}(t) = X(t)X^*(t+\lambda)$$

N & S condition:

$$(**) \Rightarrow \frac{1}{2T} \int_{-2T}^{2T} (1 - \frac{|\tau|}{2T}) K_{\Phi_{\lambda}}(\tau) d\tau \xrightarrow[T \to \infty]{} 0$$

M.S. ERGODICITY IN DISTRIBUTION

Index function:
$$I_X(x,t) = \begin{cases} 1 & \text{if } X(t) \le X \\ 0 & \text{otherwise} \end{cases}$$

Def:
$$A_T\{I_X(x,t)\} = \frac{1}{2T} \int_{-T}^T I_X(x,t) dt \underset{T \to \infty}{\longrightarrow} F_X(x)$$

N & S condition:

$$(**) \Rightarrow \frac{1}{2T} \int_{-2T}^{2T} (1 - \frac{|\tau|}{2\tau}) K_{I_X}(x, \tau) d\tau \xrightarrow[T \to \infty]{} 0$$

where
$$K_{I_X}(x,\tau) = E\{I_X(x,t)I_X^*(x,t+\tau)\} - [E\{I_X(x,t)\}]^2$$

= $F_{X,X,z}(x,x) - [F_{X,z}(x)]^2$ (***)

Note: (**) implies that $K_{I_x}(x,\tau)$ should vanish to 0 as $T \to \infty$,

i.e.
$$F_{X_t X_{t+\tau}}(x, x) \xrightarrow[T \to \infty]{} F_{X_t}(x) \cdot F_{X_t}(x)$$

or X_t , $X_{t+\tau}$ should be asymptotically independent intuitively expected for $A\{I_X\}$ to be equal to $E\{I_X\}$