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PART A
BASICS OF STOCHASTIC PROCESS

»Probability and random variables:
Bernoulli trials; Poisson

» Stochastic Processes: independent

increments; Wiener & Poisson
Processes; stationarity & ergodicity

> Markov Processes




RELATIVE FREQUENCY-BASED
probability

# experiments in which A occurs

P(A) =lm :
n—>o total # of experiment

Comments:

1. Requires experimentation
2. nis usually finite = approximation




3. Convergence implies that as n->o:

° { Pa P(A)| >0 } occurs less & less

n

e Not that : n—A—P(A) <0 Vn>n(0)
n




AXIOMATIC DEFINITION OF
PROBABILITY - PROBABILITY SPACE

» Probability Space: {{2,F P}
> (): Sample space
> F: o-field generated by ()

> P: A probability measure. It is a set
function on F satisfying:

eP(A)>0 VAecF

e P(Q2) =1
e P(AU B)=P(A)+ P(B)VA,Be F,ANnB =9




BERNOULLI TRIALS

> Consider a simple experiment with Q2={s,f},
P(s)=p & P(f)=1-p=q

» Consider 2 indep. experiments:
€,=Q)x()={ss ff sf fs}, 22 possible
outcomes

» Consider n indep. experiments:
€.=0x..x0={..}, 2" possible outcomes

0=(w,0,,..0 ) ,0 €3S,[}




Joint Probability:

P(w)=P(o,,,...0)=P(@)P(®,)..P(®)
(indep. experiments)

Question: Prob. of k successes in n trials = ?

(A) Consider a pattern TT (outcome in (1,) counting k successes

M=ss.sffsff..f This prob. is the same for
k-1 ANY pattern with k successes

P(IT) = P{ss..sff5ff...f} = p"q" " AR U T

(B) Consider all possible legitimate patterns. There are:

n n!
- - IT,,I1,.,..., 11,
B - -

(Binomial coefficients)




Answer:

P{outcome has k successes 1 n trials} = P |

Lo Nk nk
(mutually disjoint ) = E PII1,)= (k]p g " =b(k,n,p)

i=1




POISSON PROBABILITY LAW

Assume n->oo, p->0 such that np=a
(a=rate of success)

k

P{k successes} = li_r)n b(k,n)= %e“’

p—0,np=a

Comment:

> If nlarge and p<«<1 approximate b(k,n,p)=e(-np) (np)k /k!

» Cummulative arrivals contributed by a large # of
independent sources can be modeled as Poisson

» Above plus other properties of Poisson process, make it
a good traffic model




RANDOM VARIABLES (RV)

A mapping X from () into the real numbers satisfying:

1) X Y(~wo,x)}=CeF
(2) P(X =20)=0

Measures:

PDF:F, (x)=P{X < x}
dFy (x)

X

pdf : fy (x) =

()= [ fr(0)dy

PMF: P{X =x,} Vi {fordiscrete-valueRV




SOME PROPERTIES OF PDF

o [ (0)=1,F,(-0)=0
e . (x) non-decreasing
e . (x) 1sright continuous
o Pix, < X <x,}=F,(x,)—F,(x,)
o PLX =x} = Fy ()~ Fy (x)
(P{X =x} =0unless I, (x) # F,(x ), F,(x) has a jump)
o Plx, < X <x,}=F,(x,)-F,(x, )




EXAMPLE-PDF

PX=x}=F(x)-F(x)=0

\ PX=x,}=F,(x)-F0g)=4

e

0 X X ;
F, (x) non -decreasing




SOME PROPERTIES OF pdf

*Area=1

o [hd=1 Ry T

s

o 1L (x)=0 (since F', (x)1s non - decreasing)

Area=P{x, < X<x,}




MORE ON RVs

» Conditional & joint PDF/pdf/PMF;
expectations; moments, moment generating
functions & characteristic functions

EXAMPLE:
Given Fy(x) and B={X<10} calculate Fy (x/B)
ANSWER:

P{X <x,B} P{X<x,X<I0}
P{BY  P{X<10}

F. ,(x/B)=P{X <x|B}=




PLX <10}

i) ifx210 : Fy,(x/B)= =
() xi5(X/ B) PX <10}

P{X <x}; 1
P{X <10} P{X <10}

Gi) ifx<10 : F,,(x/B)=

Fy(x)

Note:
Given X<10, cond. PDF must reach 1 at x=10

P{X>10} is "distributed” to values of X<10 by
increasing the original mass by 1/P{X<10}




EXAMPLE: memoryless property of
exponential RV

Consider that duration of calls is exp

QUESTION: Given that a call is still on t units after
initiation (i.e., X2t), calculate the probability it will still
be on after s time units (i.e.,find A=P{X>t+s|X>1} )




ANSWER:

CPIX>t+s5,X >t PX>t+s)
P{X >t} P{X >t}

- 1 . (1 . e—C(S+t)) - e—cse—ct

A

— ——=e "~ =P{X >}
1-(1-e) e’

That 1s :
P{X >t+s| X >t} =P{X > s}
(the history factor (1.€. already on for # units)

does not alter the result)




SEQUENCES OF RVs {X;, X,,..,X.,..}

SOME KEY QUESTIONS:
» What is the behavior as X, as n->e or n is very large?

» What is » >» as In_ X, >» » >> > ?

USEFUL IN:

> Determining a behavior in steady-state (i.e. X,,, n->e);
also existence

> Dealing with averages of large number of samples




SENSES OF CONVERGENCE OF
{xn(w)}' > x(w)

(a) Everywhere (e.): iff it holds ;w[Q

(b) Almost Everywhere or with probability 1
(a.e./wpl): iff it does not hold ONLY for w[A with
P(A)=0

(c) In Probability:

iff lim,,.P{IX,(w)-X(w)|2€}=0 ;>0
(d) Mean Square (M.S.):

iff lim, .. E{| X, (w)-X(w)|2}=0

(e) Indistribution: iff lim, .. Fy,(Xx)=Fx(x)
; point x of continuity




COMPARISON OF SENSES OF
CONVERGENCE




COMPARISON OF SENSES OF
CONVERGENCE

EXAMLE/APPLICATION: LAW OF LARGE NUMBERS: (Averaging)

e WLLN: {X,} indep.RVs, E{X } <0,0° <0;S, :ZXl.;then

Y = %{S} — Y =0 1in prob. (weak Law of Large Numbers - WLLN)

(f {X,}are1.1.d., S — E{X }1n prob;
n

could be used to estimate the mean of unknown RV)
2

e SLLN:{X,} indep.and (a)i.i.d. with E{X.} < o or (b) Z—k < o0; then
k=1

5, ~ES,) — a.e.(Strong Law of Large Numbers - SLLN)

n n—»0

Y =

n




EXAMPLE: Proof of WLLN for i.i.d. RVs {X}

Using Chebyshev's inequality for Y, =S,/n:

Var{Y,)}

52

A=P{|Y,~E{Y,} |26} <

E{Yn f= E{Xz}
1 uncorrelated { X } 1

Var{lSn} =—VaryS,} = —Var{X,}
n n n

and Sy — E{X,} 1n prob.
n




EXAMPLE/APPLICATION: CENTRAL
LIMIT THEOREM (normalizing)

{X.}indep. RVs; u,;0°

Z Xi _Z H;
— i=1 i=1

Y E{Y }=0,Var{Y } =1

under general conditions  F, (x) > N(0,1) (Normal PDF)
(ff X, 1.1.d. and o < o, 1t always holds )




COMMENT ON CLT

To hold look for a lot of RVs with good variability
Xl' o E{Xz}

(Z o; );

X, indep. = w, = indep.

Y,=>w=f =1 ®f ®.8f
=0, (0)=0, (), (0)..0, (0)

O (w)=E {ej “*} = characteristic function of w,

2
@

(fornormal Y:®, =¢ °)




e 1if f, () aredeltafns (0 variance)= @, () =1

a)Z

= O, (w)=1#e * (CLT cannot hold)

e if only m RVs have variance and rest have almost zero,

a)Z

(DYn (w) = (le (a))...CDWm (w)-1-1-1-...-1# e 7

e Same conclusions in time domain as well:

Alternatively, the above
variance requirement
can be stated as:




STOCHASTIC PROCESSES

Prob space {Q2, F, P}
(index set e.g. time

A mapping X(t, C()), weldtel (discrete or continuous))

1s a stochastic process ift X (¢,,w)1s a RV for any fixed ¢,

Interpretationl:
[t1s a collection of RVs {X,(w);t € [}

defined on common prob space




Interpretation 2:
[t 1s a mapping Q — X(?)

X(t) contain time functions instead of real numbers (case of RV)
For fixed ¢, , X(¢,) 1IsaRV

sample path 1
or realization 1

X (f)




X (1)

N\

X(2),2)

/c
X (%,3)

a real number for fixed w and t,

for fixed w, is a
A
/ realization w=1 deterministic tine function

/W X(t,))

N\ X(t’z)

\/\/\/ X(Z,3)

Oscilloscope "view"
Freeze image -> Sample path

Block scre

t X(to,a))Z)(to for fixed t,, is a RV associated with T

Q o O O

en except a slit




DESCRIPTION OF A STOCH PROCESS

Joint PDF: F (X, X,,...X,,...)

Mean: u,(n)=E{X }

Autocorrelation tn: R, (k,/)=E{X, X l*}

Autocovariance fn: K, (k,]) = E{(X, — u, ()} X, — 11, (1))

=Ry (k, 1) = g (k) g (1)

Can be facilitated by:

> Taking advantage of special structure of some
processes (indep. increments, Markov, etc.)

» Stationarity
> Ergodicity




PROCESS WITH INDEPENDENT INCREMENTS

VN>1,all n<n,<...<n,
Y Y -Y Y -Y are indep.

n 2o n, n 2ttt Ty Ny

then for (Y, } with indep.increments:

Fs (Vs Yoo V) = Ey (W Fy oy (V) = V) By (VDY oy (V= Vi)

Example : BINOMIAL COUNING PROCESS
Sn=ZXl. , X, 11.d.wp p

E{S }=np (S, not WSS)

Letl, =§,-§, =X, ,+.+X, ,n>k

[, ndep.ot §,




Stationarity
e Strict Sense Stationarity (SSS):

T (Xgseees X)) = Fy (Xpsees X py) Vb, V21
(Neither prob behavior of each x,

nor interdependencies change with k)
e WideSenseStationarty (WSS):

U, (n)=constant Vn2=>1
K.(k,)=K,(k+p,[+p) Vp=1
(both mean and covarianceare time- shift invariant)
Note:1f {x } 1snot WSSit1s alsonot SSS




THE WIENER PROCESS

Q:{Saf} ) ple_ps
Let w:Q — {+0,—-0}

(15 if w=s
where w =+

-0 if w=f

Let X =w +w,+...+w,
{X ()} 1s a random sequence which increases

by + 0 or decreases by o in each step. (Random walk)




THE WIENER PROCESS




For fixed n, X (w) i1s a RV with prob. :
P{X =ro} = Pr{#successes —# failures

n—+r

= Plk—(n—k)=r}=Pik ="

\
_ n (n+r)/2 n—(n+r)/2
pfzps=1/2

(n+ryi2)fs .

\
= ! 27" (n 7 integer )
(n+r)/2) 2




ELX,} =Y EQW,} =0

E{X}=> E{W}}= 2%52 +%52} =nd’
k=1 k=1

Let X, (¢) be the piecewise constant version of X .That s,
° +0 wp 1/2
X, )=> W _ -uit—-kT) , W, =
=3 w70
Clearly

Let X, (¢) be the piecewise constant version of X .That s,

k
X (t =X, =) w
T()t:kT k ZZZI: i

The PMF and momentsof X .(¢) can be obtained from those of X,




Definition of Wiener Process

» The Wiener process (or Wiener-Levy
or Brownian motion) is the process
whose distribution is the limiting

distribution of X.(t) as T->0; the
jump size 0 goes to zero as well and
X(t) is a continuous state continuous
time stochastic process.




E{iX,(nT)}=E{X,}=0
E{X (nT))=E{X’}=n6>=Var{X,(nT)} =ns"

and Var{XT(t)}:%52 for t =nT

Suppose that &° = a7 so that the variance does not
vanish as T- > 0. Then
X(6)= lim X,(¢) and Var{X(1)} = at

T—>0
S?=aT




Wiener process models the chaotic motion of gas molecules.




Note:
{X,}, is the sum of ni.i.d. RVs w,

4

(Central Limit Theorem) limiting process (as n
increases) would be Gaussian, and the same

would be expected for X(t), the Wiener
process (as t->0).

E{X(t)}=puy®)=0 , Var{X(®)}=0,()=at

th (xt) — \/21772'611‘

e

(notice that X (¢) 1s not SSSsince f, (x,) changes with time)




> The Wiener process is an example of Gaussian
process since all nt"-order pdf's are Gaussian.
This can be seen intuitively as follows:

Let A=X(t)—X(s),t>s.Byconsidering the infinite
number of 1.1.d. RVs between X(s) and X (¢) and applying

the CLT we have:

2

1 Yy
( ,t . S) — e 2a(t-s)
faly \/27za(t —5)

since E{X({)—-X(s)}=E{A}=0
and E{(X{®)-X(s)Y=a(t—s) t>s




»Using the pdf for the increment A
and the independent increment
property of the Wiener process we
can derive the n™-order pdfs and
show they are Gaussian.

(thlth (’xtl > Xy, ) — thl (xtl ) ' f)(t2 -X, (xt2 — X ))




> Covariance or autocorrelation function:

>s

K (t,5)=E{X (X (s)} = E{{X ()= X (s)+ X ()]X (s)}

= E{[X (1)~ X ()X ()} + E{X"(s)} = as

Thus
K, (t,s)=a-min(t,s)




MEAN SQUARE CALCULUS &
ERGODICITY

»CALCULUS: Define limits, integrals &
derivatives for SPs

»ERGODICITY: Condition under which
time averages=ensemble (over ()
averages




Mean Square Continuity

ASP X(t) iscontinuousatt < E{| X(t+&)— X))’} = 0

c—0

N & S condition : R, (¢,1) is continuous at t
(E{J X(t+e)- X'} =
R,(t+et+e)+ R, (t,t)-R, (t,t+5)— R, (t+¢&,t) > 0)

c—0

Note : N & S condition for WSS SP: R, (7) continuous at 7z =0




Mean Square Derivative at t

Condition :

-

X(t+€1)—X(t)_X(t+82)—X(t) \
& )

EX

d 2IQX (tl > t2 )
dt dt,

N & S condition :

existsatt =t =1,

dzRX (7)
dr’

Note : N & S condition for WSS SP: exists at 7 = 0.




Moments of the Derivative SP

, du, (t) d’Ry (1),1,)
E{X <z)}=% Ry (t,1;) = =112
1 2

9

Example - Wiener SP

at, if t <t,

RX(t1=t2):amin(tlat2):{

at, 1if t,<¢

R, (,t 0 if ¢ <t
d X(laz): . 1 2:a~u(t1—l‘2)
dt, a 1if t, <t
dzRX(tlatz) _ da-u(t, —t,)
dt,dt, dt,
(as expected for a SP with indep. increments)

ad(t, —t,) 1.e.itis white (uncorrelated) and since Gaussian = indep.




Mean Square Integral

deterministic
signal

{

Note : j X(@)dt=Y (aR.V.)

b
jX(t, @,)dt =Y (w) = valueof Y at @, =a number

b b
N & S condition : j j R, (¢,,t,)dt,dt, exists




b

Note : j X(@)dt=Y (aR.\V)

b

jX(t, @, )dt =Y (w) = valueof Y at @, =a number

b b
N &Scondition: [ [ Ry (¢,t,)dtdt, exists
b

For Y = j X (t)dt

b b b
uy = ue@dr , E{Y*}=[[Re(t,.t,)dtdt,

T
Example for X(r) WSS SP (Y = j. X (t)dtj ;
T

T T 2T
oy = | [Ko(t,—t)dtdt, =...= [K, (D277 ldz

-T-T =27




Example for n(¢) zero mean, white SP [X (1) = I n(r)d rj ;

0

K, (t,t,)=4o(t —t,)

ol = j;jAé(tl —1,)dt,dt, = Aj dt, = At
0 0

(if n(z)1s also Gaussian, then X (¢) is Wiener)




ERGODICITY

X(t)1saSP, X(t,w,) = a sample path/realiztion
Time Averages (A4{-}) of (functions of) X (7, @, ) are possible
Ensemble Averages (E{:}) are typically not possible but needed

Question :

A{}=E{}
Answer :

Yesif X (¢) ergodic in some sense.




Definitions :
1 T
A —hmA —hm— o dt
g = lim sz
E{} =an averageof e overall
with the corresponding probability as weights

Examples:
For e=X(t,w,)

AX (o)t =ELX (t.0,)) = E, (X(6,0,)} = p1y
For e=X(t,w,)X(t+7,0,)

A{X (t,w)) X (t+ 7, a)o)};E{X(t,a)O)X(z‘+r,a)O)} =R (7)




IMPORTANTOBSERVATION A (need for some stationarity)

For X (¢) to be POSSIBLE to be ergodic it must be stationary

(time shift invariant) to a certain extent

Argument : Since A{-} is indep. of time,
if £{} = A{} then
E{-} must also be indep. of time (constant E)




IMPORTANTOBSERVATION B (need for some regularity)

For X (¢) to be POSSIBLE to be ergodic it must be regular
(i.e. time averages be indep. of )

Argument : Since £{-} 1s indep. of o,
if A{-} = E{} then
A{-} must also be indep. of @ (constant A)
Comment on need for regularity :
> For any o, , X (¢, ®,) should behave over time like any other
X (¢, w;) so that @1s NOT 1dentifiable by a time average
> For any @, , X (¢, ®, ) should exhibit over time all kinds
of behavior and with the proper " frequency & duration" as for
any w, so that the time average becomes equivalent to ensemble average




DEFINITION : X (¢)1s ergodicif :
(a) It 1s stationary to some extent (£{-} = £ (constant))

(b) Itis regular (A{-} = A (constant))
(c) Constants £ and A are equal

((c)ismetif E{} & A{} operators are interchangeable - Fubinni's theorem )

EXAMPLE: Q={-2-112' , X({,w)=w for —o<f<wm

P(a)):i for w e Q

>

Ensemble Average: E{X(t,w)}=E{w}=0 (time shift -1invariant)
Ensemble Average: A{X(t,w)}=w (not regular)

X(t,w) not ergodic.




M.S. ERGODICITY IN THE MEAN

Def: A4,{X(¢)} :% j X (t)dtT:)ooﬂX (m.s.) ()

N & S condition:

\

- 7|
lim< — ——— YK (Ddrt+=0 %
limio7 | A=3pKa) (%)

Proof :  (*) & E{| 4 {X (1)} - [} > 0 05 — 0

T—x

1 I T
2 _ _ _
7% = Gy { Kt =ttty = ()




Examples:

. 0.0] 1 o0
1f__[o| K, (t)|dr <o then (**)<E_jw| Ky (7)|dz >0

and X (¢) is ergodic in the mean

(b) if K,(0)<o& K, (r)— 0 then X(#)1s ergodicin the mean

T—>©0

Proof : (**) < %{ ja 1K, (7)|dr+ L<|T|<2T| K, () dr} @K, (D) <e|z]>a)

1

2aK , (0
<E{261'KX(O)CZT+4T'€}= ak x(0)

+2¢&

= arbitrarily smallas 7" — oo




M.S. ERGODICITY IN THE
AUTOCORRELATION

Def: A { XX (t+1)} >Ry (ms)
[Equivalent: A.{® ()} > E{®, ()} (m.s)
for SPD,(1)= X ()X (t+ 1) |

N & S condition :

(**):»— j (1- '”)K%(f)df -0

T—o0

—2T




M.S. ERGODICITY IN DISTRIBUTION
1 if X@)<X

0 otherwise

Index function: 7,(x,t)= {

1 T
Def = Ay {1, (600} =—— jT I (x,0)dt = F (%)

N & S condition :

|T|)K (x,7)dr > 0
27; T—

=L [ -
2T =,
where K, (x,7)=E{l,(x,0)(x,t+7)}—[E{l,(x,0)} ]’
= Fy y, (6,%)=[Fy ()] (**%)
Note: (**) impliesthat K, (x,7)should vanishtoOas7 — o,

Le. Fyy (x,x) —>FX (x)- Fy (x)

or X,,X,  shouldbeasymptotically independent
intuitively expexted for A{l,} tobeequalto £{/,}




