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COUNTING (ARRIVAL) PROCESS

N;(w)
{N;(w):1>0} defined on some 0 o—
sample space Q is called a -
counting process provided ——
that: o——
t, t, fit, |

(1) it is non-decreasing
(2) it increases by jumps only

(3) it is right continuous
(4) No(w)=0
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POISSON PROCESS

A counting process that satisfies:

1. Each jump is of unit magnitude

2. (independent increments) For any t,s =20, N,,.-N, is
independent of {N, (w);ust}

3. (stationarity) For any t,s 20, the distribution of
N,,.-N; is independent of t

Lemma 1 : For every + 20, P{N,=0}=e* for some A 20
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Proof : {O arrivals in [0,t+s]} &
< {0 arrivals in [0,t]} and {O arrivals in [t,t+s]}, or

{N;,.=0} < {N,=0} and {N,,.~N, =0}
P {N,..=0}= P{N,=0} P{N;,.~N, =0} (indep. increments)
P {N,.s=0}= P{N,=0} P{N,=0}  (stationary increments) (*)

Let N,=f(t) , then
(*) f(t+s)=f()f(s) , Osf(t) <1, 1,520
the only non-zero f(1) satisfying (*) is e’ , A=0

Thus P{N,=0}= et , A20
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Lemma 2: |IrTO] P{N >2}=0
t—0 f

t—0

l.e., Prob{> 2 arrivalsover a small t} — O faster that ¢

Lemma 3: IlngtP{N =1}=A4 (arrivalrate 1)
t—>

Proof : P{N, =1}=1-P{N, =0}-P{N, 22}=

1 e 1
lim= P{N —1}—I|m S ———ZP{N,>2}
=0 ¢ { A 4
-t
_limize " _,
t—0 {
t—0

l.e., Prob{larrivalsoverasmallt} — 1¢
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Theorem : If {N,;t=0} is Poisson then

P{N,=k}=e (At)</kl , k=0,12,... forsomeA=0

Notice on short term behavior : (& small)
P{O arrivals in (t,t+0)} = 1-Ad+0(5?)

P{1 arrivals in (t,1+8)} = Ad+0(5?)
P{>1 arrivals in (+,1+0)} = 0(5?)
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Moments of Poisson process

o E{N }= ZnP{N =n}= in i (/’tt) i’/‘Zn(/u) i = At

(n— )
oE{Ntz}zE{Nt(Nt—1)+Nt}=in(n—l)ew(?t) + At
0 —ﬂt (ﬂ.l‘) n—2 (ﬂI) o0 —ﬂt (ﬂl‘)
nzz(;n (n =D + At =(At)? +Z + At

= (A)* + At
o Var{N }= E{N’}— (E{N })* = At (compare with Wiener's)
Note : E{N,} =Var{N,}= At (high for large¢)
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®Ry(t,,t,)=E{N,N, }=E{N’+(N, —N,)N,}=
= At +(At)° + A, —t)At, = At, + Xtt, (1, <t,)
= Amin{t,,t,}+ A°tt, (Compare with Wiener's)
o ky (t1ty) = Ry (t1,1,) — EAN, YEXN, } = Amindt,, 1,}
(Compare with Wiener's)

Note : Above moments similar to those of the Wiener process
as aresult of the independent increment property,

common to both.

Corrolary :if {N,;t > 0}is Poisson, then
P{N, —N,=k|N,u<t}y = P{N, —N, =k}

ind. incr.
—As k
_ v, =Ry= )

stationary incr. kl
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Alternative definition of Poisson Process - A

(by checking in samples the validity of the independent
increment property)

{N;;1=0} is Poisson with rate A iff

(a) N;(w) has unit magnitude jumps for almost all w
(b) vt,520 , E{N,-N;|IN_ ust}=As
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Alternative definition of Poisson Process - B

(by checking in samples the validity of the Poisson
distribution)

{N;;1=0} is Poisson with rate A iff

P(Ng=k}=e*e(Ab)</Kl , k=0,1,2,.

For any subset B of R, that is the union of a finite
number of disjoint intervals whose length sums up to
b.
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Proposition: (Uniformity of the distribution of the time of
Poisson arrival occurrences over aninterval)
Let A, UA, U...UA, =B,{A}", disjoint,| A |=a (length)
ki +k, +...+k =k,allinN,|Bl=b. Then

| ke K
P{N, =ki. N, =k;...., N, =k, INg =k} = kl (%j (a_"j

, _Plc,d} P{c} PN, =ki}..P{N, =k}
Proof :P{c|d} = o} Pid) N, — K]

{N, } independent since {A}; disjoint.
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On the estimation of A:

Strong Law of Large Numbers (SLLN) justifies: A= lim

t—ow

Proof : Use discrete unit time axis, n
(*)N, :!\ll +(N; =N +(N; =Np) + ..+ (N, _Nn—I)

are alli.i.d. with mean A=SLLN holds

On the limiting behavior of N; :
From (*)= N, is the sumofi.id.RV's=
Central Limit Theoremimplies

2

N, — At r 1 L
lim P{ — <x+=|——e 2dy (PDF forN(O,1
Hw{ = } [z v ©.1)

(good approximation for At >10 - At is the variance)
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12



Proposition: (distribution of interarrival times)
P{T..,-T. <s|T,, T;,... T.}=1-e™ >0
i.e.,itis exponentially distributed and
independent of past arrival times.

Proof :
P{Tos T >s| T, T, T3 =P{N: =Ny =0Ty, T,,..., T, }
=P{N; —N; =0|N,:u<T }=(indep.incr. of Poisson)
=P{N; N =0}=e™"
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Memorylessness of interarrival times

Since exponential, the distribution of T,,;-T, is memoryless:

P{T, .- Tot+s| T, .- T >1}=P{T, .- T,>s}

n+1 n+1

i.e., knowing that t time units have passed since the last arrival does

not affect the time when the next arrival will occur, which
remains exponential with the same parameter A.

Stated differently: No matter which time instant + I observe the
system, the evolution of future arrival times is independent of t
and past arrival times.

Thus, there is no need to maintain any record regarding past
arrivals to determine future ones (great simplification in
system modeling).
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Burstiness of Poisson arrivals
Let T be the generic RV for 1,=T,.;-T,

P{rss}=1-e*s <f (s)=Ae?s N A
Since f.(s) decreases with s = B
P{r=L,} = A>B = P{r=L,} (forL,<L,)
S S >
I‘1 L2 S

Thus, short interarrival times occur more frequently than long
ones.

it 11 1 111 f

Thus arrivals appear in bursts (clusters) (Poisson is a fairly
bursty arrival process)

Make the distinction between "burstiness of arrivals” and
“uniformity of the times of arrivals over an interval”
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Alternative definition of Poisson Process - C

A counting (arrival) process is Poisson iff the associated
interarrival tfimes are independent and identically distributed
exponential RVs,

Moments of interarrival times:

- 1

Ta—Tl=|eMdt==

E{ n+1 n} ‘(!;e A
1
E{Tn+1_Tn}:A_2
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On the arrival (not interarrival) times Poisson Process

Moments of arrival times , T,
T=Ti+(M-T)+(T -T)+..+(T, - Ty)

E{T. }= ALZ , Var{T, }= ALZ (since T, — T, , indep.)

Distribution of arrival times , T, (Erlang -n)

nl oA (AMJ(
P{T, <t}=P{N, >n}=1-P{N, <”}:1_§ ki
A le™
f(T)_ (n_1)| ! TZO
Note:

Erlang -nis the distribution of the interarrival times of groups of n Poisson arrivals
Erlang -nis the distribution of the sum of n exponential and identical RV's
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Example:
{U, },; are carinterarrival times (assumedindep.)

U, is erlang - 2 distributed,i.e.,
P{U <t}=1-e™ —Ate™ , t20

U, may be viewed as the sum of two interarrival times
in a Poisson process {N, } withrate A.Let {T, },.; be

the arrival times of that Poisson.

Then

If M, =# cars that passed by before or at t
P{M, =k} =P{2k <N, <2(k +1)} =P{N;, =2k} + P{N, =2k + 1}
e MM e M (AN

- Ke012..
2k (2k+1)
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Example: (hardware lifetime and replacement cost)
Assume exponential lifetime of a piece of hardware which is replaced

by an identical upon failure. Replacement cost is £ and the discount rate

of money is « (i.e.,1$ spent at time z has present value e ™,

a 1S the interest rate). Find the expected cost.

N, =#of failuresin [0, t]
{N, }1is Poisson due to the indep. and expon. lifetimes
T, (w) = nth failure for realization @

e @) = present value of the cost of nth replacement
C(w( = total cost for the (particular) realization @

C(w(:Zﬂe'“T"(‘“) , weQ
n=1

E(C}= E{Clo= By, Ee ™} = Y Ee ™}
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to use the i.i.d. property of inter - failures write :
T,=T1+(I,-T))+(T-T,)+..+(T,-T,,)

E{C} — ﬂz E{e_aTl e_a(Tz_Tl) .. .e_a(Tn _Tn—l) }
n=1

=) e VY Be Iy = g [E{e ™3]

o0

E{e *}= Je‘“Tl e Mdt = , thus
; A+
A

S A4 Ata _ PA

E p— —_— pu— j—

{C} ﬂ;[“a) ﬂl_L »
A+«

The result may be derived by setting £ (£) = e , f(T,)= fe "
and using the following
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Proposition : for a non - negative function f(-)on R,

if(%)}ﬁ [ £y

where 7' Is the occurrence time (arrival) of the nth
event in a Poisson process with rate A.

E

N
r N\
S

Proof :

Ef(T,)) - jf() _A

(n—
—At n—1
Ae " (At) 7

E{;f(z;)}{ j f(@) D)

n=1

_I Af (¢t )i _MW) - dt = Z'ff(t)dt

n—1)!
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dt , thus
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Stopping time of an arrival process

A RV T is a stopping time of an arrival process {N,} if
the occurrence of the event {T<t} is determined by
{N, ust}, i.e., by knowing the history of the arrival
process up to t.

Example 1: T;=the time of the 5" arrival is stopping
time since {N ust} determines if {T5<t}.

Example 2: T=first time interarrival fime exceeds some
value C. It is a stopping time.
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Poisson arrivals over [T,T+s] , for T a RV

If T=1 (a fixed random point in tfime) we know that
N+..-N+ is independent from {N,;uss} and Poisson with rate As.

If Tis not fixed but a RV then above holds if T is stopping time
and then

P{N..-N;=k| N ;usT}=es(As)</Kl , k=0.1,.

e.g., T=T,is a stopping time

T= time of occurrence of the largest interarrival is not a stopping
time since {T<t} cannot be determined by {N ;u<t} since the
future evolution of the arrival process is needed as well.
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Example: Buses arrive as Poisson with A=0.2 per minute. Inspector
arrives at time of the 5™ bus arrival after time t, and will stay
for 60 minutes. Find the distribution of buses to arrive within
these 60 minutes.

Answer:

Time of arrival of inspector 7' =T, (@)+5 @€ Q
0

Tis a stopping time. Thus,
e~ 1210k

60~ Np=k=—"  k=01,..

P{N
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Forward Recurrence Times
Vt(a)) — TM(w)+l —1

|
1, N, (w) 4 1, N, (w)+1

V, = (remaining) time between current time # and the next arrival

Theorem: P{V,<u|N s<}=1-e™ , u>0
(i.e., the distribution of V, is the same as that of an interarrival)

Proof : {V, <u}={Ty ., —t<u}={Ty ,, —t>u}
={T), , >t +u} ={N,,, - N, =0}
Thus, P{V,<u|N ;s<t}=P{{N,,, —N,=0}| N, ;s<(}
=1-P{N,, —N,=0|N,;s<t}=1-P{N,,, — N, =0}
=1-P{N, =0}=1—e"™

[MM2524: MovteAotroinon kal AvaAuon Ammodoong AikTuwy (l. ZTaupakakng - EKIIA) 25



Note: E{Vt}z% and E{TM—TH}:%

E{TN,+1 _TNt}:E{TNt+1 __t"'t_TNt}:E{Vz}‘FE{t_TN,}

1
==+ E{t-T
SHEl-Ty}

That is, the interarrival interval that we happen to observe
(that coverst) Is larger, on average, than an ordinary such
Interval between two arrivals!!!
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Example:

The time between the two consecutive arrivals

containing our time of arrival to the bus stop is almost twice
as large, on the average, as the typical bus interarrival time,
assuming Poisson bus arrivals.

(Reason why the bus is always more late than usual

- or claimed by the company -
when we arrive at the bus stop)
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Uniqueness of Poisson superposition property: If L & M
are renewal processes and their superposition N is
renewal, then all 3 are Poisson (renewal process: i.i.d.
but not necessarily exponential interarrival times).

Decomposition of a Poisson process: N={N,:1t=0} Poisson
with rate A, {X,.n=1,2,..} Bernoulli with param. p

{S,; n=1,2,..}=# of successes in n trials

N;(w) trials (i.e., arrivals that are split based on p) are
carried out in [O,1]

M (W)=S )W) is The number of successes over [0,1]

L,(w)= Ny(w)-M;(w) is the number of failures over [0,1]
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Theorem: M ={M,;t >0}y & L ={L,;t >0} are Poisson
with rate Ap and A(1— p), respectively and M & L are independent.
Proof : Suffices to show that
P{M,, . —M,=m,L,. —L =k|M,, L ;u<t}=
—Aps m —-A(1-p)s . k
_e " (ps)" e (A - p)s) kom=012..

m! kl

Y t,s>0.
{Mt+s _Mt :m’Lt+s _Lt :k}<:>(br|ng in Nt)
{Nys =N, =m+kM, —M, =m}e(bringin S, )

{Nis =N, =m+k,Sy —Sy =m}=A

[MM2524: MovteAotroinon kal AvaAuon Ammodoong AikTuwy (l. ZTaupakakng - EKIIA) 29



Now,{M,, L u <t} &>{N, u<t, X, X,,...., Xy }=B
Noticethat N, — N, &S, —S§, (andthus A)areindep.of B

P(A) :ZP{Nt =m,N,,,—N,=m+k,S, -8, =m}

n=0

P{N

t

nN, =m+k+n,S -S =m}

m+k+n

N,=n,N,  =n+m+k}P{S -S =m}

m+k+n

I
Me 1Me 1D
e

P{N,=n,N,, —N,=m+k}P{S, ., =m}

S
[l
o

N, ,—N,=m+k}P{S . =m}

e P (As)"" (m+k) .
ST P 4P
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Example: N is the Poisson arrival process of cars (rate
A). NI, N2, .., N°are the arrival processes of cars with
12,..5 passengers (0.3,0.3,0.2,0.1,0.1 are the

/] 1°°°

passenger occupancy probabilities for 1,2,...,5).

NI N2, .. N2 are Poisson
with rates 0.3A,0.3A,0.2A,0.1A,0.1A.

Expected # of passengers per unit time:

E{N1+2N2 +3N3 *4N* +5N>}=
0.3A+2*0.3A+3*0.2A+4*0.1A+5*0.1A
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Compound Poisson process

(allowing jumps of any size in a Poisson process)

Definition A: Z={Z,;t=0} is a compound Poisson provided
that:

(a) Z,(w) has only finitely many jumps in any finite
interval (a.e.)

(b) for all +,s20 , Z.,.-Z. is indep. of {Z,;ust}

(c) for all t,5=0 , the distribution of Z,,.-Z, depends on s
(indep. of t)
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Note:
+if N={N,;t=0} is the process that counts the number of jumps in
(0,1], then (b) & (c) ==> N is Poisson.

Z & N differ in the fact that jumps in Z are not all equal to one
(1) but are RV's {X;,X,..}.
(b) & (c) ==> {X;,X,,..} are i.i.d. and, thus, indep. of {T;,T,,..}.

If {T,T,,.}arePoisson arrivals times & {X;,X,,..} arei.i.d. RV's
indep. of {T;,T,,..} then the sum of all X; such that T:<t, Z,,
forms a compound Poisson process.

Definition: Z is a compound Poisson iff its jump times form a
Poisson process & the magnitudes of its jumps are i.i.d RV's
independent of the jump times.
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