
Continuous-time Markov chains

Books

- Performance Analysis of Communications Networks and Systems  

(Piet Van Mieghem), Chap. 10

- Introduction to Stochastic Processes (Erhan Cinlar), Chap. 8
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Definition 

Stationarity of the transition probabilities

is a continuous-time Markov chain if

The state vector        with components 
obeys    
from which
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For any state i

Thus, the transition probability matrix          satisfies the
Chapman-Kolmogorov equation

for all t, u > 0.

Initial condition of the transition probability matrix
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The infinitesimal generator  
Lemma The transition probability matrix P(t) is continuous   
for all t≥0.

Additional assumption: the existence of

matrix Q
– is called the infinitesimal generator of the continuous-

time Markov process 
– corresponds to P-I in discrete-time

The sum of the rows in Q is zero, with

and
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We call qij “rates”
• they are derivatives of probabilities and reflect a change in 

transition probability from state i towards state j

We define qi = - qii>0. Then,

– Q is bounded if and only if the rates qij are bounded

• It can be shown that qij is always finite. 

– For finite-state Markov processes, qj are finite (since qij are 
finite), but, in general, qj can be infinite.

We consider only CTMCs with all states non-instantaneous

If qj=¶, state j is called instantaneous (when the process 
enters j, it immediately leaves j)
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indicates that

For small h

which generalizes the Poisson process and motivates to call 
qi the rate corresponding to state i

Lemma Given the infinitesimal generator Q, the transition 
probability matrix P(t) is differentiable for all t≥0, with

the forward equation
the backward equation
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The probability sk(t) that the Markov process is in state k
at time t is completely determined by

with initial condition sk(0)

It holds that ï

from which

For and 
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The solution of                                       with initial condition    
is

If all eigenvalues of      are distinct, then

X contains as columns the right- eigenvectors of Q xk
Y contains as columns the left- eigenvectors of Q yk
Then

where                    and            is a NxN matrix

Algebraic properties of 
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Assuming (thus omitting pathological cases) that P(t) is 
stochastic, irreducible matrix for any time t, we may write 

where  is the N x N matrix with each row 
containing the steady-state vector π

spectral or eigen
decomposition 
of the transition probability matrix

Taylor expansion

matrix equivalent of 
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Exponential sojourn times
Theorem The sojourn times τj of a continuous-time Markov 

process in a state j are independent, exponential random 
variables with mean

Proof 
• The independence of the sojourn times follows from the 

Markov property.
• The exponential distribution is proved by demonstrating 

that the sojourn times τj satisfy the memoryless property. 
The only continuous distribution that satisfies the 
memoryless property is the exponential distribution.
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[Cinlar, Ch. 8]
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Steady state

A single component of π obeys

For an irreducible, finite-state Markov chain (all states 
communicate and Pij(t)>0), the steady-state π exists
By definition, the steady-state does not change over time, 
or . Thus, implies 

where

The steady (row) vector π is a solution of

Αll rows of       are proportional to the eigenvector of 
belonging to λ = 0
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Steady state

A single component of π obeys

The steady (row) vector π is a solution of

Long-run rate at which the 
process leaves state i =

balance equations

The balance equations follow also from

since                                 and  

aggregate long-run rate towards state 
(sum of the long-run rates of transitions 
towards state i from other states )
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The embedded Markov chain
The probability that, if a transition occurs, the process 

moves from state i to a different state j ≠ i is

For h∞0

Given a transition, it is a transition to another state j ≠ i 
since

Vij: transition probabilities of the embedded Markov chain
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The rate qij can be expressed in terms of the transition 
probabilities of the embedded Markov chain as

probability that a transition 
from state i to state j

occurs (By definition, Vii=0)

rate (number of transitions 
per unit time) of the process 

in state i

Vii=0 : in the embedded Markov chain specified by V there 
are no self transitions 

The steady-state vector πi of the CTMC obeys 

The embedded Markov chain
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The embedded Markov chain

The relations between the steady-state vectors of the 
CTMC  and of its corresponding embedded DTMC are 

The classification in the discrete-time case into transient and recurrent 
can be transferred via the embedded MC to continuous MCs

The steady-state vector υ of the embedded MC obeysi

and

The steady-state vector πi of the CTMC obeys 
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Uniformization
The restriction that there are no self transitions from a 
state to itself can be removed

can be rewritten as

or

where and
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Uniformization
can be regarded as a rate matrix with the 

property that

(for each state i the transition rate in any state i is precisely 
the same, equal to β)

can be interpreted as an embedded Markov chain that 
• allows self transitions and
• the rate for each state is equal to β
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Uniformization

The transition rates    follow from
The change in transition rates changes

• the steady-state vector (since the balance equations change)

•the number of transitions during some period of time

However, the Markov process                       is not modified
(a self-transition does not change         nor the distribution of the time 
until the next transition to a different state)
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Uniformization
When the transition rate qj at each state j are the same, the 
embedded Markov chain T(β) is called a uniformized chain.

Ιn a uniformized chain, the steady-state vector t(β) of T(β)
is the same as the steady-state vector π.

, where tk(β)=πk (independent of β)

since it satisfies the balance equation and the steady-state of 
a positive recurrent chain is unique
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Uniformization
{Xk(β)}: uniformized (discrete) process
N(t): total number of transitions in [0, t] in {Xk(β)}
the rates qi=β are all the same ï N(t) is Poisson rate β
(for any continuous-time Markov chain, the inter-transition or sojourn

times are i.i.d. exponential random variables)

Prob. that the number of
transitions in [0, t] in {Xk(β)} is k

k-step transition 
probability of {Xk(β)}

can be interpreted as
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Sampled time Markov chain

(are obtained by expanding Pij(t) to first order with fixed step h = Δt)

transition probabilities of the
sampled time Markov chain

Approximates the continuous time Markov process
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Sampled time Markov chain

is exactly equal to that of the CTMC for any sampling step
by sampling every Δt we miss the smaller-scale dynamics,
however the steady-state behavior is exactly captured

The steady-state vector of the sampled-time Markov chain 
with                    satisfies for each component j

or
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The transitions in a CTMC
Based on the embedded Markov chain all properties of the 
continuous Markov chain may be deduced.

Theorem Let Vij denote the transition probabilities of the 
embedded Markov chain and qij the rates of the infinitesimal
generator. The transition probabilities of the corresponding 
continuous-time Markov chain are found as 
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By a change of variable

we have

After differentiation wrt t
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Evaluating at t=0, recalling that P΄(0)=Q and P(0)=I,

backward 
equation

which is precisely

with

Hence,

can be interpreted as an integrated form of the backward 
equation and thus of the entire CTMC

and
we arrive at 
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The two-state CTMC
is defined by the infinitesimal generator

the forward equation is , or

Due to                                and

the forward equation simplifies to

Due to symmetry             it is sufficient to solve the one eq.  
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The two-state CTMC

Thus, the solution of is of the 
form 

μ λ μ
λ μ

− ++
+

( )  
( )

tc e

The solution of y'(x) + p(x)y(x) = r(x) is of the form 

where κ is the constant of integration, and

The constant c follows from the initial condition
ï

and 

Thus,
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For time reversible MCs any vector x satisfying                        
and                        is a steady state vector

Time reversibility
Ergodic MCs with non-zero steady-state distribution
Suppose the process is in the steady-state and consider the 
time-reversed process defined by the sequence 

Theorem The time-reversed Markov process is a MC. 

A MC is said to be time reversible if for all i and j

Condition for time reversibility                       for all i, j

rate from i→ j rate from j→ i
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Time reversibility
Let      be the transition probabilities of the discrete-time 
embedded MC 
Let      be the transition probabilities of the time-reversed 
embedded MC and      the rates of the corresponding CTMC

The sojourn time in state i of the time-reversed process is 
exponentially distributed with precisely the same rate ri = qi
as the forward time process.

For the continuous time rates it holds

ï

rate at which the time-reversed 
process moves from state i to j = rate at which the forward 

process moves from state j to i



Applications of Markov chains

Books

- Performance Analysis of Communications Networks and Systems  

(Piet Van Mieghem), Chap. 11
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Examples of DTMCs
: set of positive integer, independent random variables that
are identically distributed with

Examples of DTMCs



3333

Examples of DTMCs
: set of positive integer, independent random variables that
are identically distributed with

For

For
For
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Examples of DTMCs
: set of positive integer, independent random variables that
are identically distributed with

For

For
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The general random walk
Describes a “three-possibility motion” of an item

In general, the transition probabilities depend on the position

If the process is in state j it has three possibilities:
●

●

●
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The gambler’s ruin problem
A state j reflects the capital of a gambler 

– pj is the chance that the gambler wins
– qj is the probability that he looses

The gambler 
– achieves his target when he reaches state N
– is ruined at state 0

States 0 and N are absorbing states with r0 = rN = 1
In most games pj = p, qj = q and rj = 1-p-q
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The probability of gambler’s ruin

or equivalently,

The law of total probability gives
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The probability of gambler’s ruin
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The probability of gambler’s ruin
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The probability of gambler’s ruin
In the special case where qk = q and pk= p

– The probability of gambler’s ruin becomes

– The mean duration of the game becomes
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The probability of gambler’s ruin

These equations, in combination with                 , yield to
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Birth and death process

The embedded Markov chain of the birth and death process is a
random walk with transition probabilities

Differential equations that describe the BD process
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The steady-state
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The steady-state
The process is transient if and only if the embedded MC is transient.
For a recurrent chain, equals 1
(every state j is certainly visited starting from initial state i)
For the embedded MC (gambler’s ruin), it holds that

Can be equal to one for               only if

Transformed to the birth and death rates

Furthermore, the infinite series must converge
to have a steady-state distribution

•If S1<¶ and S2=¶ the BD process is positive recurrent
•If S1=¶ and S2=¶, it is null recurrent
•If S2<¶, it is transient
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{X(t), t≥0} is a pure birth process if for any state i it holds that μi = 0 
A pure birth process can only jump to higher states

In the simplest case all birth rates are equal λi = λ and

A pure birth process

The transition probabilities of a pure birth process have a Poisson
distribution

and are only function of the difference in states k = j - i

If all birth rates are equal the birth process is a Poisson process
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The general birth process
In case the birth rates λk depend on the actual state k, the pure birth 
process can be regarded as the simplest generalization of the Poisson. 
The Laplace transform difference equations
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The Yule process
Yule process

Is simplified to
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The Yule process
The Yule process has been used as a simple model for the evolution 
of a population in which 

•each individual gives birth at exponential rate λ and
•there are no deaths

X(t) denotes the number of individuals in the population at time t
(At state k there are k individuals and the total birth rate is λk = k λ)

If the population starts at t = 0 with one individual n = 1, the
evolution over time has the distribution
which is a geometric distribution with mean
Since the sojourn times of a Markov process are i.i.d. exponential
random variables, the average time Tk to reach k individuals from
one ancestor equals
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Constant rate birth and death process
In a constant rate birth and death process, both the birth rate λk = λ
and death rate μk = μ are constant for any state k
The steady-state for all states j with                   is 

only depends on the ratio of birth over death rate

If sk(0)=δkj (the constant rate BD process starts in state j) it can 
be proved that
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Constant rate birth and death process

The constant rate birth death process converges to the steady-state

Τhe higher ρ, the lower the relaxation rate and the slower the process
tends to equilibrium
Intuitively, two effects play a role
•Since the probability that states with large k are visited increases with
increasing ρ, the built-up time for this occupation will be larger
•In addition, the variability of the number of visited states increases with
increasing ρ, which suggests that larger oscillations of the sample paths
around the steady-state are likely to occur, enlarging the convergence time
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Constant rate birth and death process
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A random walk on a graph
G(N, L): graph with N nodes and L links
Suppose that the link weight wij = wji is proportional to the transition 
probability Pij that a packet at node i decides to move to node j 
Clearly, wii = 0

This constraint destroys the symmetry in link weight structure (wij = 
wji ) because, in general, since 

The sequence of nodes (or links) visited by that packet resembles a 
random walk on the graph G(N, L) and constitutes a Markov chain

This Markov process can model an active packet that monitors the
network by collecting state information (number of packets, number 
of lost or retransmitted packets, etc.) in each route
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A random walk on a graph

The condition for time reversibility becomes

The steady-state of this Markov process is readily obtained by observing   
that the chain is time reversible

For the collection of these data, the active packet should in steady-state
visit all nodes about equally frequently or πi = 1/N, implying that the
Markov transition matrix P must be doubly stochastic
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Slotted Aloha
N nodes that communicate via a shared channel using slotted Aloha
Time is slotted, packets are of the same size
A node transmits a newly arrived packet in the next timeslot
If two nodes transmit at the same timeslot (collision) packets must be 
retransmitted
Backlogged nodes (nodes with packets to be retransmitted) wait for
some random number of timeslots before retransmitting
Packet arrivals at a node form a Poisson process with mean rate λ/N, 
where λ is the overall arrival rate at the network of N nodes

We ignore queuing of packets at a node (newly arrived packets are 
discarded if there is a packet to be retransmitted)
We assume, for simplicity, that pr is the probability that a node
retransmits in the next time slot
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Slotted Aloha
Slotted Aloha constitutes a DTMC with Xke{0,  1 ,2 ,… }, where

•state j counts the number of backlogged nodes 
•k refers to the k-th timeslot

Each of the j backlogged nodes retransmits a packet in the next time 
slot with probability pr

Each of the N-j unbacklogged nodes transmits a packet in the next 
time slot iff a packet arrives in the current timeslot which occurs 
with probability

For Poissonean arrival process
The probability that n backlogged nodes in state j retransmit in the
next time slot is binomially distributed
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Slotted Aloha
Similarly, the probability that n unbacklogged nodes in state j transmit
in the next time slot is

A packet is transmitted successfully iff
(a)one new arrival and no backlogged packet or
(b)no new arrival and one backlogged packet is transmitted

The probability of successful transmission in state j and per slot is
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Slotted Aloha
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State j (j backlogged nodes) jumps to
•state j-1 if there are no new packets and one retransmission
•state j if

•there is 1 new arrival and there are no retransmissions or
•there are no new arrivals and none or more than 1 retransmissions

•state j+1 if there is 1 new arrival from a non-backlogged node and at
least 1 retransmission (then there are surely collisions)
•state j + m if m new packets arrive from m different non-backlogged
nodes, which always causes collisions for m>1

Slotted Aloha
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Slotted Aloha

Τhe drift tends to infinity, which means that, on average, the number of
backlogged nodes increases unboundedly and suggests (but does not
prove) that the Markov chain is transient for N→¶

The expected change in backlog per time slot is

For small N the steady-state equations can be solved
When N grows, slotted Aloha turns out to be instable
When N→¶, the steady-state vector π does not exist (                         )

expected number
of new arrivals

expected number
of successful transmissionsdrift = -
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Efficiency of slotted Aloha

where                                        is the expected number of arrivals and 
retransmissions in state j (=total rate of transmission attempts in state j)
and is also called the offered traffic G

for small pa and pr, the analysis shows that  ps(j) and pno(j) are closely 
approximated in terms of a Poisson random variable with rate t(j) 
ps can be interpreted as the throughput SSAloha= G e-G, maximized if G =1 
The efficiency ηSAloha of slotted Aloha with N>>1 is defined as the 
maximum fraction of time during which packets are transmitted 
successfully which is e-1 = 36%
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Pure Aloha: the nodes can start transmitting at arbitrary times 
Performs half as efficiently as slotted Aloha with ηPAloha = 18%
A transmitted packet at t is successful if no other is sent in (t-1, t+1) 
which is equal to two timeslots and thus ηPAloha = 1/2 ηSAloha

Ιn pure Aloha, because in (t-1, t+1) the expected
number of arrivals and retransmissions is twice that in slotted Aloha

The throughput S roughly equals the total rate of transmission
attempts G (which is the same as in slotted Aloha) multiplied by

Efficiency of pure Aloha
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Ranking of webpages
Websearch engines apply a ranking criterion to sort the list of pages
related to a query
PageRank (the hyperlink-based ranking system used by Google) 
exploits the power of discrete Markov theory
Markov model of the web: directed graph with N nodes

•Each node in the webgraph represents a webpage and
•the directed edges represent hyperlinks
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Ranking of webpages
Assumption:
importance of a webpage ~ number of times that this page is visited
Consider a DTMC with transition probability matrix P that 
corresponds to the adjacency matrix of the webgraph

•Pij is the probability of moving from webpage i (state i) to
webpage j (state j) in one time step
•The component si[k] of the state vector s[k] denotes the
probability that at time k the webpage i is visited

The long run mean fraction of time that webpage i is visited equals 
the steady-state probability πi of the Markov chain
This probability πi is the ranking measure of the importance of 
webpage i used in Google
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Ranking of webpages
Uniformity assumption (if web usage information is not available): 
given we are on webpage i, any hyperlink on that webpage has equal 
probability to be clicked on 
Thus, Pij = 1/ di where the di is the number of hyperlinks on page i

Problem: a node may not contain outlinks (dangling node)
⇒the corresponding row in P has only zero elements
Solution: each zero row is replaced by a non-zero row vector
that obeys  
simplest case:  (uniformity) 
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Ranking of webpages
The existence of a steady-state vector π must be ensured
If the Markov chain is irreducible, the steady-state vector exists
In an irreducible Markov chain any state is reachable from any other 
By its very nature, the WWW leads almost surely to a reducible MC 
Brin and Page have proposed 

where 0<a<1 and v is a probability vector (each component of v is 
non-zero  in order to guarantee reacability)
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Computation of the PageRank steady-state vector
A more effective way to implement the described idea is to define a 
special vector r whose component rj = 1 if row j in P is a zero-row or 
node j is dangling node
Then,                       is a rank-one update of     and so is      because

Specifically, for any starting vector s[0] (usually s[0] = ), we
iterate the equation s[k+1]=s[k] P m-times and choose m sufficiently
large such that where is a prescribed tolerance

Brin and Page propose to compute the steady-state vector from
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Computation of the PageRank steady-state vector
It holds

Thus, only the product of s[k] with the (extremely) sparse matrix P needs
to be computed and and are never formed nor storedPP
For any personalization vector, the second largest eigenvalue of     is α
λ2, where λ2 is the second largest eigenvalue of 

P
P

*

Brin and Page report that only 50 to 100 iterations of * for α= 0.85 are 
sufficient
A fast convergence is found for small α, but then the characteristics of 
the webgraph are suppressed

Langville and Meyer proposed to introduce one dummy node that is
connected to all other nodes and to which all other nodes are connected
to ensure overall reachability. Such approach changes the webgraph less
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