Markov Processes and Applications

- Discrete-Time Markov Chains
 Continuous-Time Markov Chains

* Applications
- Queuing theory

- Performance analysis

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)



Discrete-Time Markov Chains

Books

MM2524: MovteAotroinon kair AvaAuon Atmédoong AikTuwy (l. Ztaupakdkng - EKIA)

Introduction to Stochastic Processes (Erhan Cinlar), Chap. 5, 6
Introduction to Probability Models (Sheldon Ross), Chap. 4

Performance Analysis of Communications Networks and Systems
(Piet Van Mieghem), Chap. 9, 11

Elementary Probability for Applications (Rick Durrett), Chap. 5
(http://www.math.cornell edu/~durrett/ep4a/bchb.pdf)

Introduction to Probability, D. Bertsekas & J. Tsitsiklis, Chap. 6


http://www.math.cornell.edu/~durrett/ep4a/bch5.pdf

INTRODUCTION :
nth order pdf of some stoc. proc. {X,} 1s given by

(X X0 X )= TOG XX e X T O I 5K e %)
RICHESIIES
very difficult to have it in general
e [If {X,} 1s an indep. process:
i e T i)
e If {X,} 1s aprocess with indep. increments:

FX %5 % )= T(X )T O =% ) F(X =X )

Note : First order pdf's are sufficient for above special cases

o [If {X,} 1s a process whose evolution beyond t, 1s (probabilistically)

completely determined by X, and is indep. of X, , t <t,, given X, , then:

F XX X )= TOX % ) TOG %) TOX)
This 1s a Markov process (nth order pdf simplified)
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Definition of a Markov Process (MP)

A stoch.proc. { X,;t e |} that takes values from a set E 1s called
a Markov Process (MP) iff :

PO X e X )= PO X)) (E countable)
or

PO X e X )= TOX X ) (E uncountable)

forall X, andallt, <t, <...<t andalln>0.

Notice : The "next" state X, is indep. of the "past" {X, ,..., X,

h

n-2

provided that the "present" 1s known.
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Definition of a Markov Chain (MC)

(Discrete - time & discrete - value MP)
If | 1s countable and E 1s countable then a MP is called a MC

and 1s described by the transition probabilities :
p(iaj):P{XnH:j'Xn:i} iajEE
(indep. of n for a time - homogeneous MC). Assume E = {0,1,2,...} (state - space of the MC)

Transition matrix :
[ P(0,0) P(0,1) .. P(0,n)
P1,0) P@L) .. P@n)

P(n,0) P(n1) .. P(n,n)

P is non - negative, Z P({,j)=1, Vi (stochastic matrix)
j
For a given P (stoch. matrix) a MC may be constructed
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Chainrule:
If 7isaPMFon Es.t.z(1)=P{X, =1},1 € E, then
A D= LD S e I R (R L T s P (e o )
e NS AT aliie B
K - step transitions :
vV k eN,
P{Xou = 11X, =i} =P*(, J)
Vi,jeE,VkeN ; P“(,j)isthe(i, j)entry of the kth power
of the transition matrix P.

Proof :For k =3 (general n through iterations)

P{Xos = 11X, =i}=2 P@,1) 2 Pl )P(IzaJ)

l,eE beE

A (|1,J)

o J/

P> (i, })
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Chapman Kolmogorov Equations:

From previous,

P™"(, j)=> P"(i,k)P"(k,j) i, jeE

keE

In order for {X_} to be in | after m+ n steps and starting from I ,
it will have to be in some K after m steps and move then to J in

the remaining n steps.

time 0 m m 4+ n
. e .
P o TEL e S .
. e e
. g .
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Example : # of successes in Bernoulli process
{N;n=0} , N, =# ofsuccesses inn trials

N,=>Y, , n>0 .Y, indep. Bernoulli, P{Y, =1} = p

Notice: N, ., =N _ +Y,

n+1

does not depend on {N.}'\ (given N ) and thus {N_} is a M.C.

= evolution of {N_} beyond n

P{Nn+l = J | NO’ Nl’ N } I:){Yn+1 J_ Nn | NO: N]) XX Nn}
g _ O g
p ifj=N +1 Wk
B O g p O
=< q=1-p ifJj=N_ and P =
. 0 0 g p O
kO otherwise .

Notice: {N, } 1s a special M.C. whose increment is indep.

both from present and past (process with indep. increments)
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Example: Sum of i.i.d. RV's with PMF {p ;k =0,1,2,...}

0 n=0
AT R (R

Xn+1 4 ><n +Yn+1
P{Xou =11 Xpss X3 =P = 1= X | Xgseei X} = Pjx.
Thus {X} isa M.C. with P(I, J) =P{X = J| X =1} =p

Bt DY DD e

O p, P P
P=| 0 0 Po B

B i ),
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Example : Independent trials

Xy, X5 lddowith z(k) , k=0,1,2,...
I:){Xn+1 F+ J | XO""’Xn} ~ I:){Xn+1 = J} :ﬂ-(J)
{X tisa M.C.

7(0) 7(1)
7(0) 7(1)
P (A )
7(0) 7(1)

Notice that rows areidenticaland P" =P Vm>1
(If P has all rows identical then X, X ,...are1.1.d.)
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Example:{Y }arei.i.d. Y, 6 €{0,1,2,3,4} with {p,, p,, P,, Ps> P,}
Xoy=X,+Y,,, (modulos5) , {X tisaM.C.

s -SpE Sk Db
a0l o D D D) | Z rows =1 (stoch. matrix)
R =D, Pae P S P e PA Z columns =1 (here)
0 L of i o) = o S o) (double - stochastic matrix)
105 D Dl Do
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Example: Remaining lifetime
An equipment 1s replaced by an identical as soon as it fails

p, = Pr{a new equip. lasts for K time units} =15 20

X, = remaining lifetime of equip. at time n
Xn+l(w):{zxn(a))—1 1.an(a)) 2_1
(@)= ifX (@) =0
Z .. (w) 1s the lifetime of equip. installed at time n
It 1s independent of X, X,,..., X
X, 1saM.C.

n

n
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oMl

P, J) = P{X

ol —0)

n+1

:j|xn:i}:P{Xn_1:j|Xn:i}

. Y e
=P{xn=1+1|xn=n}={

0 ifj=i—1

PO, ))=PiX,., = 11X, =0}=P{Z,,, ~1=]| X, =0;
o I:){Zn+1 ¥ J +1} - pj+1
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0

1
0

Ps
0

0
1

P,
0

0
0
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Theorem : (conditional indep. of future from past given present)
Let Y be a bounded function of X ,X . Then
E{Y|X,.X,...X .} = E{Y|X}

et

Proposition :
E{f(X,, X, )X, =1} =E{(X,, X,.. )X, =1}

Corollary : f a bounded function on E x E x...

Let g(i)=E{f(X,,X,.. )X, =1}.
Then Vne N E{fOC,, X e X s X e X 3 = 9(XK))
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Stopping Times :
Previous results derived for fixed time n e N
What if time is an RV instead?

o [fforaRVT,thepast{X_ ;m<T}andthefuture{X_ ;m=>T}
are conditionally indep. given present X, then the strong Markov
property is said to hold at T.

o [f T 1sastopping time, then above hold true (T 1s a stopping time
if the event {T < n} can be determined by looking at X, X,,..., X))
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For any stopping time T :

E RO E S R T E OGP e
For g(i) = E{f (X,.X,,..) | X, =i}
E{f (XT9XT+19“')| Xn;n ST} . g(XT)

e.g.,1ff(a,,a,,...) =

{lif a = j :
JeE,meN

01if a, #]
E{T (XX, | X =i} =P{X, = j| X, =i} = P"(i, J)
B (O X ] X S IR P e | 2K =T

T+m

Strong Markov property at T:
P{X7m =11 Xsn<T}=P(X:, )

T+m
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Visits to a state

X ={X ;ne N} MC, State space E, Transition matrix P .
Notation: P{A} =P{A| X, =1} and E[Y]=E[Y | X, =1]
Let je E, weQ and Define:

N, (@) = total number of times state ] appears in X (@), X,(®),....
% N;(w) <o, X eventually leaves state j never to return.

% N;(@w)=00, X visits ] again and again.

Let T,(®), T,(®),... the successive indices N >1 for which X (@)= ].
& If An then T (@) =T,(®)-T,(®) ==
& If | appears a finite number of times m, then T (®0)-T (@) =T ., (0)-T (®)=--=o©

vne N, {T_(®)<n} is equivalent to ] appears in {X,(w),---, X (@)} atleast m times.

T., 1s a stopping time.
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Example

T(w)=4, T,(w)=6, T,(w)=7, T,(@)=09,..

O
L8]

R St st SRR :

| ' H )

i T8 -

o o o | I I o |

| i ] [

O I ' [ ] ]
LT Tt (R, G e T L
0 | 2 4 S O 7 R 9 10 n
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Proposition: VieE, km>1

P (T =T, =k|T

m+1

}__ 0 {T}]::oo}
g s Pj{lek} {Tm<oo}

Computation of P,{T, =k}. Let F (i, j) = P{T, =k}

k=1= F(i, j):P{lel}:P{X = j}=P(, )

k=22=F(1,))=P{X, £}, X # X, = ]}
=ZbeE_{J} {X =biP{X, = ], X, # L X, = ]| X, =Db}
:ZbeE—{} K =R X = e X X = 03

Thus,
PG, j) k=1
F@GD=1'Y Pa,b)F (b, ]) k22

beE-{j}
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1 0 0
Example: Let j =3 an the transition matrix p=| 1/2 1/6 1/3

15435 "3 765wl 15
Find f (1) =F(, ), =25
e k =1.In this case f, is the 3" column of matrix P.
Hence St AR(TN =t0E RO )= FI2 S ENSE AR5 =ENS i 175

P(1,b)FE (b, j
i Z (1Lb)F_ (b, j) R0
o k>2.Inthiscase f, =| F (2, j) [=]| D PQ@bF (b)) |=Q-f_, where Q=|1/2 1/6 0
FN@ P i _ 3/5 0
2. PG.bF (b))
0 0 0
After some algebra f,=| 1/3 | f,=[1/18| f,=|1/108| f,=|1/648
1/15 155 1/30 1/180
and in general
]
15

k-1
gl
F.(1,3) =0, F(2,3)= g(gj ) F.(3,3) =1

[MMZ524: MovTtehotroinon kai AvédAuon Atmodoong AIKTUwv (l. ZTaupakdkng - EKIA) 20



k-1
F.(1,3)=0, Fk(293):%(%j ’ F.(3,3) =+

Now we can state:
e Starting at state 1, X never visits 3 with probability: P{T, =400} =1
e Starting at state 2, X first visits 3 at k with probability: ()<
e Starting at state 2, X never visits 3  with probability:
Pz{Tl = +OO} =1- P2{T1 < +OO} =1%¥ Z:;l %(%)k_l = %
e Starting at state 3, X never visits 3 again with probability:
PAT, =+oof =1-PF{T, <+OO}:%
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Now, for every i, ] we define

F (0, 1) =R, <40} = Y Fi(i, )

& F(i, ]) expresses the probability: starting at 1 the MC will ever visit state .

F@, ))=P@,))+ Z P(,b)F (b, )), leE

beE-{j}

If by N; we denote the total number of visits to state ], then

Pi{N; =m}=F(j, D" (1-F(. D)

1-F, j) m=0

and for 1 # |, P{N; =m} = {F(i, HE(]. j)m—l(l_F(j’ J)) m=12,...

>From the previous we obtain the Corollary:

Pj{Nj<+oo}:{1 F(, 1)<l

ORI ) =

[MMZ524: MovTtehotroinon kai AvédAuon Atmodoong AIKTUwv (l. ZTaupakdkng - EKIA) 22



Now, for every 1, ] we define

Fi, i) = R{T, <+0} = > K (i, J)
k=1
& F(i, ]) expresses the probability: starting at i the MC will ever visit state | .

FGi,))=PG, )+ >, P@,b)F(b,j), ieE

beE—{j}

If by N; we denote the total number of visits to state |, then

P{N; =m}=F(j, )" (1-F(i, ]))

il e 1-F(, j) m=0
d bl =G DRG, ™ (-FGL D) m=12,..

>From the previous we obtain the Corollary:

PN, <+oo}:{1 F(, )<l

0 F(J, D=1
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Now, for every 1, ] we define

Fi, i) = R{T, <+0} = > R (i, J)
k=1
& F(i, ]) expresses the probability: starting at i the MC will ever visit state | .

FGi,))=PG, )+ >, PG,b)F(b,j), ieE

beE-{j}

If by N; we denote the total number of visits to state J, then

Pi{N; =m}=F(j, )" (1-F(, ]))

o by T 1-F(, ) m=0
i e, T R DRG T (1-F (L) m=12..

>From the previous we obtain the Corollary:

PN, <+oo}:{1 F(, )<l

0 F(J, D=1
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Let R(1, )= E[N;] (R is called the potential matrix of X )

hen, b gt £ s .
> R(J, 1) = 1= RO, D=F@ )R, PD+A-F@1,))0

1ECIp

R, D) =F@, DR, D . (#)

Computation of R(i, j) first and then F(i, j)
Define:

lesT k=% I, F =1
lj(k):{o k;«t;jlj(xn(w)):{o XEZL&;

Then,
N, (@)=3" 1,(%,(@))
R(SEEH DR Ol SO Dl S Ei N o (I

In matrix notation:
R=1+P+P°+.--=>RP=PR=P+P*+---=R-1|

from which we obtain
R(I1-P)=(1-P)R=1
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Classification of states

X: MC, with state space E, transition matrix P
T : The time of first visit to state |
N : The total number of visits to state ]

Definition
% State | is called recurrentif P {T <ooj=1

& State j is called transientif P {T =00} >0
& A recurrent state j is called nullif E;[T]=
% A recurrent state j is called non-nullif E;[T] <

& A recurrent state | is called periodic with period o, if §>2 is the greatest
integer for which

P,{T =no for somen>1} =1

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA) 26



e If j isrecurrent then starting at | the probability of returning to j is 1.

F(j,j)=1:>R(j,j):Ej[Nj]:+oo<:> Pj{Nj = +oo} =1

e If j is transient then there exists a positive probability 1—-F(j, ) of never
returning to j .

In this case R(l, J)=F(, J)R(J,J)<R(]J,]) <o and since R(i,j):Z‘m P"(i, j)

we conclude that

lim P"(i, j) — 0
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Theorem:
& If j transient or recurrent null then

VieE, lim P"(i, j) — 0

& If j recurrent non-null then

7(j))=1mP"(j,j)>0 and VieE, lim P"(i, j) = F(, j)z())

& If j periodic with period &, then a retutrn to | is possible only at steps numbered
O w2OF 305, ..k

P"(j, ) =P,{X, = j} > 0 only if ne{0,8,25,..}
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Recurrent non-null

Recurrent null

Transient

Pj{T ool

Pj{T=00}>O

E,[T]<w

Ej[T]:oo

F(j,)=1=R(j, ) = E,[N,] = +00 & P {N, = +o0} =1

F(1,)<1=R(},))=Ej[N;]<e

< P,{N; <o} =1

2(j)=1imP"(j,j)>0 and VieE,
%iE}OP”(i,j): F(, PDz())

N B

lim P"(i, j) — 0

n—oo

& A recurrent state | is called periodic with periodd, if 6 >2 is the greatest integer

for which
P,{T =no for some n>1} =1

& If j periodic with period 6, then a return to j is possible only at steps numbered

0,25,30,..

P"(j,j)=P,{X, = j}>0onlyif n{0,5,25,..}
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We say that state j can be reached from state i i — j, if In>0:P"(i, j)>0
1> j, iff F(i,j)>0

Definition:

A set of states is closed if no state outside it can be reached from any state in it.

e A state forming a closed set by itself is called an absorbing state

e A closed set is called irreducible if no proper subset of it is closed.

e A MC is called irreducible if its only closed set is the set of all states
Comments:

& If j is absorbing then P(j,j)=1.

& If MC is irreducible then all states can be reached from each other.

 If C={c,C,,-~-}eE is a closed set and Q(,])=P(c,c;), ¢,C;€C, then Q is a
Markov matrix.

& Ifi—> jand j >k theni—>Kk.

To find the closed set C that contains i we work as follows:

Starting with 1 we include in C all states j that can be reached from i: P(i, ) >0.
We next include in C all states k that can be reached from j: P(j,k)>0.
We repeat the previous step
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Example: MC with state space E ={a,b,c,d,e} and transition matrix

o
2
0

1
4
1
3

e
2
1
— 0
4
o
3
1
— 0
2
0"~ =
3

- 8

S"2 VRN Lo

S A=

) W | N

W | —

Comments:

e Closed sets: {a,c,e} and {a,b,c,d,e}

e There are two closed sets. Thus, the MC is not
irreducible.

b
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Example: MC with state space E ={a,b,c,d,e} and transition matrix

B
X i
0" (

-

L
3
0

1

3

S N

If we relabel the states 1=a, 2=c, 3=¢e, 4=b and

5=d we get

)

S bW

S K=

0

S W N

W | —

Comments:

e Closed sets: {a,c,e} and {a,b,c,d,e}

e There are two closed sets. Thus, the MC is not
irreducible.

e If we delete the 2™ and 4™ rows we obtain the
Markov matrix:

s
V. gy ).
Q=0 %% T O T
— = 0 0 0
L LSSl 2
I I3 3
01200
S s
5:11100
3 o S
OOOli
4 4
1
g e Iy Tl
4 Gy i
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Lemma If j recurrentand j >k =k — j. Thus, F(k, j)=1.

Proof: If j — k then k is reached without returning to | with probability a. Once k

is reached, the probability that | is never visited again is 1— F (K, j) . Hence,
I-F(l,D=zal-F(k,])=0

But j is recurrent, so that F(j,j)=1= F(k, j)=1

A Asaresult: If ] >k but k 5 J, then J must be transient.

Theorem: From recurrent states only recurrent states can be reached.
Theorem: In a Marcov chain the recurrent states can be divided in a unique manner,

into irreducible closed sets C,, C,, ..., and after an appropriate arrangement:
BL -0 O 0
O TR (R
= UE OFRPR". .. =0
Ql Qz Q3 " Q
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Theorem: Let X an irreducible MC. Then, one of the following holds:
e All states are transient.
e All states are recurrent null
e All states are recurrent non-null
[ J

Either all aperiodic or if one is periodic with period 6, all are periodic
with the same period.

Proof: Since X 1is irreducible then j—>k and k — j, which means that 3r,s:
P'(j,k)>0 and P°(k, j)> 0. Pick the smallest r,s and let S=P"(],K)P°(k, j).
e If k recurrent = j recurrent.
e If k transient = | transient. (If it was recurrent then k would be recurrent)
e If k recurrent null then P"(k,k) — 0 as m — oo . But
P™ (k. k)= gP"(j, ) = P (], 1) >0
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Corollary: If C irreducible closed set of finitely many states, then 7 recurrent null
states.

Proof: If one is recurrent null then all states are recurrent null.
Thus, lim___ P"(i, j) =0, Vi, jeC . But,
VieC,n>0,> P"(i,j)=1=1lim > P"(,j)=1
jeC e 2 jeC
Because, we have finite number of states
lim» P"(i,j)=)> lmP"(, j)=0
n—oo jeC N—o0

jeC

Corollary: If C is an irreducible closed set with finitely many states then there are no
transient states
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Algorithm - Finite number of states

Identify irreducible closed sets.

All states belonging to an irreducible closed set are recurrent positive
The rest of the states are transient

Periodicity is checked to each irreducible set
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Example:

The irreducible closed sets are {1,3}, {2,7,9} and {6}. The states {4,5,8,10} are

transient. If we relabel the states we obtain

1
11
e
1 0
W= 8= ©
L,
E e )
3 3
o L 3
- 7
1%8010
00000 0 0
O OSRNG0y e
3 3
4, 1) 0 T T
4 4
1
DVl = ATl

MM2524: MovteAotroinon kair AvaAuon Atmédoong AikTuwy (l. Ztaupakdkng - EKIA)
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Example: Let N the number of successes in the first n Bernoulli trials. As we have

seen
p j=1+1
PA,))=P{N,,=]JIN, =i}=4q j=Ii
0 otherwise
Thus,

0 () Sy O]
ol (@ D), T
O T O

Vj we have j— j+1 but j+1-5» j. This means that | is not recurrent. Since the
MC is irreducible all states are transient.
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Example: Remaining lifetime

X (@)-1 X (w)=1
Remember: X, . ()=
Z,(@)-1 X, (@)=0
from which we obtain:
. 3 : . : . 1 j=i-1
[ PO, N=PiX\u =1 X, = =PiX, -1= ]| X, = J}={O o
J=I1-1
1=0 PO,)=P{X,, =1|X,=0}=P{Z ., —-1=]| X, =0}

¥ I:){Zn+1 - J +1} i pj+1

P B B

1 S0
P=10 1 0

O"0k 8l
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pl p2 p3
5 00
P =m0 M-gs0
0O 0 1
>From state 0 we reach state j in one step. From j we canreach j—1, j—2, .., 1,

0. Thus, all states can be reached from each other, which means that the MC is

irreducible. Since, P(0,0) >0 the MC is aperiodic. Return to state 0 occurs if the
lifetime 1s finite:

2. P =1=F(0,0=> p; =1
J J

Since state 0 is recurrent, all states are recurrent.
If the expected lifetime:
Z ip T
j

then state 0 1s null and all states are recurrent null.
If the expected lifetime:
Z jp e
J

then state 0 1s non-null and all states are recurrent non-null.
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Algorithm - Infinite number of states

Theorem: Let X an irreducible MC, and consider the system of linear equations:
v(i)=D v()PG,j), jeE
icE
Then all states are recurrent non-null iff there exists a solution v with

2 v(i)=1

jeE

Theorem: Let X an irreducible MC with transition matrix P, and let Q be the

matrix obtained from P by deleting the k -row and k -column for some k € E. Then
all states are recurrent if and only if the only solution of

h(i)=> QG,jph(j), 0<h@)<1, ieE,

j€E,
is h(i)=0 forall ieE,. E,=E —{k}.
e Use first theorem to determine whether all states are recurrent non-null or not.

e In the latter case, use the second theorem to determine whether the states are
transient or not.

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Example: Random walks.

)
oy S
St

e All states can be reached from each other, and thus the chain is irreducible.
e A return to state 0 can occur only at steps numbered 2,4,6,... Therefore, state 0 is
periodic with period 6 =2.
e Since X is irreducible all states are periodic with period 2.
e Either all states are recurrent null, or all are recurrent non-null, or all the states are
transient.
Check for a solution of v =vP.
Vo = Qv
V=V, +Qv,
v, = pv, +qv;

vy = pr, +Qv,
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Hence,

s
T 1T L.
Voks E(EVO Voj A0
)
e (WD T 2D e

Any solution is of the form

If p<(,then p/q<1 and

ivj_{uli(pj“}vo_ 2

i=0 (0

If we choose v, = then D v.=1and

J
I >
a-ehe) -
200 qlqg

In this case all states are recurrent non null

V)=
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If p>q either all states are recurrent null or all states are transient. Consider the
matrix

e O O o
e BN

O o
©

The equation h =Qh gives (h. =h(i))

i i—1
h, = (ng{ﬂj oy, h,
P P P

o If p=q then h =ih forall i>1 and the only way to have 0 <h. <1 for all i is by
choosing h, =0 which implies h. =0 that is all states are recurrent null.
o If p>q, then choosing h, =1-(q/p), we get

=)

which also satisfies 0 <h. <1. In this case all states are transient.
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Calculation of R and F

% R(, ])=E[N;] Expected number of visits to state ].
& F(i, J) = The probability of ever reaching state j starting at i.

J Recurrentstate: F(j,j))=1=R(},])=x

0 F(i,j)=0

R(, j) = F(@i, DR(, ) R(i»j):{+oo F(i, j) > 0

J Transient/ i Recurrentstate: F(,j)=0=R(,})=0

I, ] Transient

Let D = { the transient states }, Q(i, J))=P(, ), S, J))=R(,}), 1,JeD.

Then Pz[K Oj: Pm:{Km 0}
RO L Qn
2 DRl ©

Hence, RE ) Al =5S=M0"=1+Q+0Q%+--
R 51 Syl e

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Computation of S

S=l+Q+0" +: 0=
BOI= OS= O e Sior® | =5
(I1-Q)sS=1, S(I1-Q)=1I

Proposition: If there are finitely many transient states S = (1 — Q)™

% When the set D of transient states is infinite, it i1s possible to have more than one
solution to the system.

Theorem: S is the minimal solution of (I = Q)Y =1,Y >0

Theorem: S is the unique solution of (I —Q)Y =1 if and only if the only bounded
solution of h=Qh 1s h=0, or equivalently

h=Qh,0<h<l<=h=0
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Example: Let X a MC with state space E ={1,2,3,4,5,6,7,8}

0.4
0.
0.5

0.4
0.1

0.3 0.3 | |

0.6 04 | | = {1,2,3} are recurrent positive

0.5 0. | | aperiodic.

LU Sl o S Ut e = {4 5} are recurrent positive
SR U I | aperiodic.
| 0.8 0.2 | _

P Al M Sl A = {6,7,8} are transient

07 - J0 | | 04 06 O.

04 0. | | 0T DSR2

05 U5 (1964 0. W 0.

0.6 0. 016, B 076! WU

0. 02|=S=(1-0Q)"'=| O =02

0. O. -0.6 0. I
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J recurrent, can be reached from |

J transient, I recurrent

J recurent cannot b reached from i . 1 transion

j recurrent J trajnksient
A

- N
([0 © o | O, 0 0
® © © | ORE e=0)
. 0 o 00 | ORS00
| recurrent< E APV i b i
| OINE00 0
L | 0 0 0
R | . e
§ 195" o~ TN 5

00 00 00 | |
66 66 66
i transient < | o o | | IS o=
66 66 66
79" 5wk 75

00 00 0O | |
N 66 66 66

MMZ524: MovteAhotroinon kal Avaluon Atmédoong AikTuwy (I. ZTaupakdkng - EKIMA)
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Computation of F(i, j)
& i, ] recurrent belonging to the same irreducible closed set

F@,j)=1
& i, ] recurrent belonging to different irreducible closed sets
F@{,j)=0
& i, ] transient Then R(i, j) <o and
» 1 B e
FD=l-——, (i, =)
R(J,)) R(J,))

& | transient, j recurrent ????

Lemma: If C is irreducible closed set of recurrent states, then for any transient state 1 :

F@, ) =F(.k)
forall j, k €C.

Proof: For j,k e C = F(j,k)=F(k, j)=1. Thus, once the chain reaches any one of the
states of C , it also visits all the other states. Hence, F (i, J) = F(i,k) is the probability of

entering the set C from 1.

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)



Let Lump all states of C; together to make one absorbing state:

1

h 1

P2
: 1 : T
P= P, p= , bj(=)_ P(i,k),ieD
. keCj
Q Q Q | Q ;
: : : bl b2 b3 bm Q

The probability of ever reaching the absorbing state j from the transient state i by the

chain with the transition matrix P is the same as that of ever reaching C ; from 1.

rap ([0 X '
P:[B Qj’ B:[b1 bm}, B(|,J):kezcj P@,k), 1eD

An I O L ¥ 2 n-1
p—[Bn Qn], B, =(1+Q+Q*+-+Q"")B

B, (i, J) is the probability that starting from i, the chain enters the recurrent class C,

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Define:

nN—o0

G =1limB, :{ZQ"JB:SB
k=0

% G(l, J) is the probability of ever reaching the set C; from the transient state I:

(F@, 1)

Proposition: Let Q the matrix obtained from P by deleting all the rows and columns
corresponding to the recurrent states, and let B be defined as previously, for each
transient I and recurrent class C;.

o Compute S

o Compute G = SB

o G(, j)=F(,k), vkeC,.
e If there is only one recurrent class and finitely many transient states, then things are
different.

In this case, it can be proved that:
Gl =B, =1, VjeC
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Example: Let X a MC with state space E ={1,2,3,4,5,6,7,8}

0.4

0.5

0.4
0.1

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)

0.3
0.6
0.5

0.3
0.4

04 0.6
0. 0.
0.6 0.

0.
0.2
0.
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I, ] recurrent belonging to the same irreducible closed set

J transient
i

] recurrent
A

e I
- (o R
11 1 | (.
11 1 | .
irecurrent< B = LW [ s
-

e
I | 1 1
\ N S, ST

P

I | 0 O
| transient < N 0 0
& B | 0 0

=2 @ «

0
0

0.472

A" =

= @

l.

=T o, il 4

0
0

0.20

Q128"+ Uy L2200 ()
0.60 0.60 0.12

J transient, | recurrent

J, | transient

1

F(j, 1) =1- ;
R(J. J)

R(, )

F@,J) =
R(J, 1)

one (reachable) recurrent class and finitely many transient states
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Example:
0.5

0.8

0.1
0.1

Thus,

o0k
S=(1-0Q) =(

0.5
0.2

0.1

—0.1

-0.2 0.6

1.50 0.25)(0
5= - B'=
0.50 1.75){ 0

0. 04 0.6
IO O
1 ). )
02, wO"2! SOM=40=3% 0.7
071205 0.1 0:2F S04

(860,023
R R 5l T

S0lsh 4025803
2 02/ 04 06

0.1 05 03 0.1
02 02 02 04

02 02 08 08 0.8

04 04 06 06 0.6
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Recurrent states and Limiting probabilities

& Consider only an irreducible set of states.
Theorem: Suppose X is irreducible and aperiodic. Then all states are recurrent non-
null if and only if

z(J)=2, 7P, i) jeE, D 7(j)=1

icE jeE

has a solution 7. If there exists a solution 7, then it is strictly positive, there are no
other solutions, and we have

7(J)=1lmP"(i, j),Vi, jeE

Corollary: If X in an irreducible aperiodic MC with finitely many states (no-null
states, no transient states), then

i =1, - =l

has a unique solution. The solution 7 1s strictly positive, and
7())=lim, __P"(,]J), Vi, j.
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& A probability distribution 7 which satisfies 7 =7-P, is called an invariant

distribution for X .
& If 7 is the initial distribution of X, thatis, P{X, = J} =7(]), J€E
then P{X,=j}=> #())P"(i,j)=7(j) forany ne E

Proof: 7=n-P=x-P*=-..=7-P"

Algorithm: for finding lim,__ P"(i, j)

e Consider the irreducible closed set containing |
e Solve for z(j). Thus, we find lim___ P"(j,))

e Forevery I (not necessarily in E)

lim P'(i, j) = F (i, )) im P"(], j)
Compute F(i, j) first. Then, find lim,__ P"(i, j)

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Example:
03 0.5 0.2

E={1,2,3}, P=|06 0. 04
0. 04 0.

7z1) = =»(1)0.3 + x(2)0.6
BP-=vRt=> < TR =m0, 5¥ T2 + 7(3)0.4
73) = n(1)0.2 + =204 + =(3)0.6

Tl =l

System’s Solution:
O al il0

23825 )3

= L /D =SR2 = Sl Sl
2 S ) 3 n—> 23R ) 33

O ¥ Ll 0
2w sl .3
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Example:
0.2 0.8

0.7 0.3
0.3 05 0.2
E=N2E SR A8er- Gas /i = 0.6 0. 04
0. 04 0.6
05 0580 OCTF S 0° 2085024410 8% 0%
0.1 0.1 01 0. 0.1 02 04

085 a5 02

02 0.8 1
p= T | QU e s g
0.7 0.3 15 15 23 23 23

0. 04 0.6

{F(6,1) F(6,5)}_{O.Z 0.2 0.8 0.8 0.8}

F(7,) - F(7,5)| |04 04 06 06 0.6
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Thus,

58 15
5t 15
6 =10
200~ e
P i, Pae= s i
Mg 23 3, 23
6 Tl |14
23 ¥ =23
140 g 76, 448 - 5961 4+
ISAE 15r ) P 3 D3
8" 80 IO D" 46
TS ) SR "2 383 903

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Example:

q p (X .irile.ducible aperiodic (since state 0 is
i 2 el 't aperiodic))
Random walks: P =
0 g 0 p
= W8S ; »
T, = mPp+7mQ 5% p? o’ o] op
g g q

& If p>g:nosolutionof 7=7-P, 7-1=1

& If p<q: lim_ Pn(iaj):(l_g)(g)J
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Example: Remaining lifetime

P P, B
1 0 O
P=

0 1 0
T, = 78 O i ) v, = 1
i = s 0T +7z2$”0:1v1 - 1-p,

3 =i T AT

T, = TyP;t +7y Vo s P, — P,

Thus,
ZVJ. = (p1+ p2+ p3—|-...)+(p2—|- p3+...)+(p3+...)_|_...
j=0
=P, +2p,+3p,+---=m

% m=E[Z ] 1s the expected lifetime.

& If m=oo then all states are recurrent null and lim,__ P"(i, j) =0
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Interpretation of Limiting Probabilities
Proposition: Let j be an aperiodic recurrent non-null state, and let m(j) be the

expected time between two returns to | . Then,

#()=lm P (), = s

The limiting probability 7(]) of being in state j is equal to the rate at which | is

visited.
Proposition: Let | be an aperiodic recurrent non-null and let z(]) defined as

previously. Then, for almost all @ € Q

hn1————§:1,(x (@) =7(]))

. If f isabounded function on E , then

ZNX)EﬁUQﬁM)

jeE

Corollary: X irreducible recurrent MC, with limiting probability 7. Then, for any
bounded function f on E:

11m—Zf(X) r-f,  #m-f=> 7))

= [l icE
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Similar results hold for expectations
Corollary: Suppose X is an irreducible recurrent MC with limiting distribution 7.
Then for any bounded function f on E

hm—z ERCCH=

0ok RIES

independent of 1.
o If f(j) isthe reward received whenever X isin |, then both the expected average

reward in the long run and the actual average reward in the long run converge to the
constant 7 - f .

The ratio of the total reward received during the steps 0,1,...,n by using function f to
the corresponding amount by using function ¢ is

(X :
hmz (Xy) 7z f
”*”Zmzomxm) 79

& The same holds even in the case that X 1s only recurrent (can be null or periodic or
both)
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Theorem: Let X be an irreducible recurrent chain with transition matrix P . Then,
the system

v=v-P
has a strictly positive solution; any other solution is a constant multiple of that one.
Theorem: Suppose X is irreducible recurrent, and let v be a solution of v=v-P.
Then for any two functions f and g on E for which the two sums

v-f=>vi)f@, v-g=> v()g()

icE icE

converge absolutely and at least one is not zero we have

D BLEX)] v

m=0

lim ==

R B A
independently of I, | € E. Moreover we also have

D f K@) v

it =

i -9 A OGN () g Y

for almost all @ € Q
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Any non-negative solution of v =v - P is called an invariant measure of X .
Comments:

» Any irreducible recurrent chain X has an invariant measure, and this is unique up
to a multiplication by a constant.

» Furthermore, if X is also non-null, then V°1=Zjv(j) is finite, and v 1is a

constant multiple of the limiting distribution 7 satisfying 7P =7, 7-1=1
» The existence of an invariant measure v for X does not imply that X is
recurrent.

» For f=1,,9g=1,and i=]

A s DR e v

= DD

> ii'j; is the ratio of the expected number of visits to k during the first n steps to
the expected number of returns to j during the same period as N — oo

> % is the expected number of visits to k between two visits to state |

MMZ524: MovTteAotroinon kai AvaAuon Atmédoong AikTowv (I. ZTtaupakdkng - EKIMA) 65



Periodic States

It is sufficient to consider only an irreducible MC with periodic recurrent states.

Lemma: Let X be an irreducible MC with recurrent periodic states with period o .
Then, the states can be divided into J disjoint sets B, B,,..., B, such that P(i, j)=0

unless
ieB,jeB,, orieB, jeB, or:--ieB,, jeBb,.
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Example: X MC with E ={1,2,3,4,5,6,7}

W= N~
(o e/ SN —
W A=

Alw D=

All states are periodic with period 3. The sets are B, ={1,2}, B, ={3,4,5} and
B,=1{6,7}.

>From B, in one step the MC reaches B, , in two steps B, and in three steps B, .
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% R T2l
48 48 192 192
29 43
18 18 o 1D,
[ 1443 alls
By 5, 36 36 36
D | 5 gl 19 3 49
g 8 48 32 96
e 18 2 %GR3
o8 16 32 64 64
5= 1] 155 B
W e oL 288 288
ke | 111 81
8 16 16 192 192
R
Note: P=P, P= P,
P

3

e Chain corresponding to P has three closed sets B,, B,, B, and each one of these is irreducible,

recurrent and aperiodic.

e The previous limiting theory applies to compute lim  P", lim_P", lim_P" separately.
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Theorem: Let P the transition matrix of an irreducible MC with recurrent periodic
states of period &, and let B, B,,... B; be as previously. Then, in the MC with

transition matrix P =P, the classes B,, B,,... B, are irreducible closed sets of
aperiodic states.

0|
Il
\S]

, PG D=P°Gj) LjeB,

Comments:
> IfieB,, then P{X eB,}=1, b=a+m(modd)

» P"(i, j) does not have a limit as N — oo except when all the states are null

(in which case P"(i,j) >0, Vi,j, n—ow)
> The limits P"™*"(i, j) exist as n — oo, but are dependent on the initial
state 1.
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Theorem: Let P and B, as previously and suppose that the chain is non-null. Then,

for any m € {0,1,...,0 — 1}

lim P"*" (i, j) = ‘

nN—o0

#(j) 1eB,, jeB, b=a+m(modo)
0 otherwise
The probabilities 7(J), J € E form the unique solution of

2())=2 #OPG, ), D #()=6

icE icE

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Example: Let X be a MC with state space E ={1,2,3,4,5}, P =

0.8 0. 0.2
Ol ¥ o).

The chain is irreducible, recurrent non-null periodic with period 6 =2.

lim P*" =

nN—o0

0.4
0.32
0.

0.32
0.32
0.32

0.5 0.1
0.6 0.08
| )

0.60 0.08
0.60 0.08
0.60 0.08

04 0.6
04 0.6

04 0.6
0.4 0.6

0.5 05
04 0.6
g W

7,=(032 0.60 0.08), z,=(04 0.6)

hm P2n+1 -

n—o0

0.32 0.60 0.08
0.32 0.60 0.08
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Example: Random Walks (p<q) P=

e Cyclic Classes B, =1{0,2,4,..4, B, ={1,3,5,..}
e Invariant solution v=v-P

VOZ]" V2:q2’ V4:q2,
1 2 4
Vl:a’ V3:?, ]/5:$,
2
Normalize: Zvi:1+l{1+£+p—2+..1:1+l lp: 2p
e & ql-2 1-2

Multiply each term by 1- <. (Z:vi =)

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Hence,

lim P*" =

n—o0

nN—o0

lim P2 = ( £y

[MM2524: MovTteAotroinon kal AvaAuon Atmodoong AikTowy (l. ZTaupakdkng - EKTIA)
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Transient States

» If a MC has only finitely many transient states, then it will eventually leave the
set of transient states never to return.

» If there are infinitely many transient states, it is possible for the chain to remain
in the set of transient states forever.

Example:
Po B B B
0O P P B
P=|0 0 p, B
0% 50 “%R0 %D,

» All states are transient
> If initial state is i, then the chain stays forever in the set {i,i+1i+2,...}.
Asn—>oo, X (w) > ©
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Let Ac E, Q the matrix obtained from P by deleting all the rows and columns
corresponding to states which are not in A. Then, for I, j € A

Q' J)= ZileA"'Zin_leAQ(i’il)Q(ilaiz)'“Q(in—p ) = Pi{xl €A IEVES A A= J}
5 oy B o A

jeA

The event {X, € A,..., X, ,, € A} 1sasubset of {X, € A,.., X € A}, therefore

2. Q"0 )=, Q"(, )

jeA jeA

n+1

Let
f(i)=1im» Q"G,j), ieA
= jeA

& f (i) is the probability that starting at i € A, the chain stays in the set A forever.
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Proposition: The function f is the maximal solution of the system
h=Qh, 0<h<l1
Either f =0 or sup,_, f(i)=1
&% An application of the previous proposition was given in a theorem on the
classification of states:
Theorem: Let X an irreducible MC with transition matrix P, and let Q be the
matrix obtained from P by deleting the k -row and k -column for some k € E. Then
all states are recurrent if and only if the only solution of
h(i)= > QG, Hh(j), 0<h(i)<l, ieE,
j<E,

is h(i)=0 forallieE,. E,=E —{k}.
Proof:

» Fix a perticular state and name it 0.

» Since X is irreducible it is possible to go from 0 to some i€ A=E —{0}.

» If the probability f (i) of remaining in A foreveris f(i)=0 forall i€ A,

then with probability 1, the chain will leave A and enter 0 again.

» Hence, if the only solution of the system is h =0, then state 0 is recurrent
, and that in turn implies that all states are recurrent.

» Conversely, if all states are recurrent, then the probability of remaining in
the set A forever must be zero, since 0 will be reached with probability one
from any state i € A
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Example: (Random Walk)

), =
O O T
S o

e [f p>q all states are transient.

f(i):l—(g], Tyl
p

This is the maximal solution since sup, f (i) =1.
Interpretation:
» Starting at a state k (e.g. k =7) the probability of staying forever within the set

{1,2,3,..} is equal to 1—(%)7.

> If k' >k, the probability of remaining in {1,2,3,..} is greater.
» From the shape of P : the restriction of P to the set {k,k +1,..} is the same as the
matrix Q. Hence, for all k € {1,2,3,..}

i+1
P iX 2K X, >k,..} :1—[%)
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For any subset A of E, let f,(i) the probability of remaining forever in A given the

initial state i € A. Then,
» If A isan irreducible recurrentclass, f, =1.

» If A is a proper subset of an irreducible recurrent class, f, =0.
» If A isa finite set of transient states, f, =0.
» If A is an infinite set of transient states, then either f, =0 or f, #0.

In the latter case the chain travels through a sequence of sets (A > A, D A---) to
“infinite”.
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