Markov Processes and Applications

- · Discrete-Time Markov Chains
- · Continuous-Time Markov Chains
- Applications
 - Queuing theory
 - Performance analysis

Discrete-Time Markov Chains

Books

- Introduction to Stochastic Processes (Erhan Cinlar), Chap. 5, 6
- Introduction to Probability Models (Sheldon Ross), Chap. 4
- Performance Analysis of Communications Networks and Systems (Piet Van Mieghem), Chap. 9, 11
- Elementary Probability for Applications (Rick Durrett), Chap. 5
 (http://www.math.cornell.edu/~durrett/ep4a/bch5.pdf)
- Introduction to Probability, D. Bertsekas & J. Tsitsiklis, Chap. 6

INTRODUCTION:

nth order pdf of some stoc. proc. $\{X_t\}$ is given by

$$f(x_{t_1}, x_{t_2}, ..., x_{t_n}) = f(x_{t_n} | x_{t_n}, x_{t_{n-1}}, ..., x_{t_1}) f(x_{t_{n-1}} | x_{t_{n-2}}, x_{t_{n-3}}, ..., x_{t_1})$$

$$... f(x_{t_2} | x_{t_1}) f(x_{t_1})$$

very difficult to have it in general

• If $\{X_t\}$ is an indep. process:

$$f(x_{t_1}, x_{t_2}, ..., x_{t_n}) = f(x_{t_n}) f(x_{t_{n-1}}) ... f(x_{t_1})$$

• If $\{X_t\}$ is a process with indep. increments:

$$f(x_{t_1}, x_{t_2}, ..., x_{t_n}) = f(x_{t_1}) f(x_{t_2} - x_{t_1}) ... f(x_{t_n} - x_{t_{n-1}})$$

Note: First order pdf's are sufficient for above special cases

• If $\{X_t\}$ is a process whose evolution beyond t_0 is (probabilistically) completely determined by x_{t_0} and is indep. of x_t , $t < t_0$, given x_{t_0} , then:

$$f(x_{t_1}, x_{t_2}, ..., x_{t_n}) = f(x_{t_n} | x_{t_{n-1}}) ... f(x_{t_2} | x_{t_1}) f(x_{t_1})$$

This is a Markov process (nth order pdf simplified)

Definition of a Markov Process (MP)

A stoch. proc. $\{X_t; t \in I\}$ that takes values from a set E is called a Markov Process (MP) iff:

$$f(x_{t_n} | x_{t_{n-1}}, ..., x_{t_1}) = P(x_{t_n} | x_{t_{n-1}})$$
 (E countable)

or

$$f(x_{t_n} | x_{t_{n-1}}, ..., x_{t_1}) = f(x_{t_n} | x_{t_{n-1}})$$
 (E uncountable)

for all x_{t_n} and all $t_1 < t_2 < ... < t_n$ and all n > 0.

Notice: The "next" state x_{t_n} is indep. of the "past" $\{x_{t_1},...,x_{t_{n-2}}\}$ provided that the "present" is known.

Definition of a Markov Chain (MC)

(Discrete - time & discrete - value MP)

If *I* is countable and *E* is countable then a MP is called a MC and is described by the transition probabilities:

$$p(i, j) = P\{X_{n+1} = j \mid X_n = i\}$$
 $i, j \in E$

(indep. of *n* for a time - homogeneous MC). Assume $E = \{0,1,2,...\}$ (state - space of the MC)

Transition matrix:

$$P = \begin{bmatrix} P(0,0) & P(0,1) & \dots & P(0,n) & \dots \\ P(1,0) & P(1,1) & \dots & P(1,n) & \dots \\ \vdots & \vdots & & \vdots & & \vdots \\ P(n,0) & P(n,1) & \dots & P(n,n) & \dots \\ \vdots & \vdots & & \vdots & & \vdots \end{bmatrix}$$

P is non-negative, $\sum_{i} P(i, j) = 1$, $\forall i$ (stochastic matrix)

For a given P (stoch. matrix) a MC may be constructed

Chain rule:

$$P\{X_0 = i_0, X_1 = i_1, X_2 = i_2, ..., X_n = i_n\} = \pi(i_0)P(i_0, i_1)...P(i_{n-1}, i_n)$$

$$\forall n \in \mathbb{N} \quad , \quad i_0, i_1, ..., i_n \in E$$

k - step transitions:

 $\forall k \in \mathbb{N},$

$$P\{X_{n+k} = j \mid X_n = i\} = P^k(i, j)$$

 $\forall i, j \in E, \forall k \in \mathbb{N}$; $P^k(i, j)$ is the (i, j) entry of the kth power of the transition matrix P.

Proof: For k = 3 (general *n* through iterations)

$$P\{X_{n+3} = j \mid X_n = i\} = \sum_{l_1 \in E} P(i, l_1) \sum_{l_2 \in E} P(l_1, l_2) P(l_2, j)$$

$$P^{2}(l_1, j)$$

$$P^{3}(i, j)$$

Chapman Kolmogorov Equations:

From previous,

$$P^{m+n}(i,j) = \sum_{k \in E} P^m(i,k) P^n(k,j)$$
 $i, j \in E$

In order for $\{X_n\}$ to be in j after m+n steps and starting from i, it will have to be in some k after m steps and move then to j in the remaining n steps.

Example: # of successes in Bernoulli process

$$\{N_n; n \ge 0\}$$
 , $N_n = \#$ of successes in n trials

$$N_n = \sum_{i=0}^n Y_i$$
, $n \ge 0$, Y_i indep. Bernoulli, $P\{Y_i = 1\} = p$

Notice: $N_{n+1} = N_n + Y_{n+1} \Rightarrow$ evolution of $\{N_n\}$ beyond n

does not depend on $\{N_i\}_{i=0}^{n-1}$ (given N_n) and thus $\{N_n\}$ is a M.C.

$$P\{N_{n+1} = j \mid N_0, N_1, ..., N_n\} = P\{Y_{n+1} = j - N_n \mid N_0, N_1, ..., N_n\}$$

$$= \begin{cases} p & \text{if } j = N_n + 1 \\ q = 1 - p & \text{if } j = N_n \\ 0 & \text{otherwise} \end{cases} \text{ and } P = \begin{bmatrix} q & p & 0 & \dots \\ 0 & q & p & 0 & \dots \\ 0 & 0 & q & p & 0 & \dots \\ \vdots & & & & \vdots \end{cases}$$

Notice: $\{N_n\}$ is a special M.C. whose increment is indep. both from present and past (process with indep. increments)

Example: Sum of i.i.d. RV's with PMF $\{p_k; k = 0, 1, 2, ...\}$

$$X_{n} = \begin{cases} 0 & n = 0 \\ Y_{1} + Y_{2} + \dots + Y_{n} & n \ge 1 \end{cases}$$

$$\begin{split} X_{n+1} &= X_n + Y_{n+1} \\ P\{X_{n+1} &= j \mid X_0, ..., X_n\} = P\{Y_{n+1} = j - X_n \mid X_0, ..., X_n\} = p_{j-X_n} \\ \text{Thus } \{X_n\} \text{ is a M.C. with } P(i,j) = P\{X_{n+1} = j \mid X_n = i\} = p_{j-i} \end{split}$$

$$P = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 & \dots \\ 0 & p_0 & p_1 & p_2 & \dots \\ 0 & 0 & p_0 & p_1 & \dots \\ 0 & 0 & 0 & p_0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Example: Independent trials

$$X_0, X_1,...$$
 i.i.d. with $\pi(k)$, $k = 0,1,2,...$
$$P\{X_{n+1} = j \mid X_0,...,X_n\} = P\{X_{n+1} = j\} = \pi(j)$$
 $\{X_n\}$ is a M.C.

$$P = \begin{bmatrix} \pi(0) & \pi(1) & \cdots \\ \pi(0) & \pi(1) & \cdots \\ \vdots & \vdots & \vdots \\ \pi(0) & \pi(1) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Notice that rows are identical and $P^m = P \quad \forall m \ge 1$ (If P has all rows identical then X_0, X_1, \dots are i.i.d.) **Example**: $\{Y_n\}$ are i.i.d. $Y_n \in \{0,1,2,3,4\}$ with $\{p_0, p_1, p_2, p_3, p_4\}$ $X_{n+1} = X_n + Y_{n+1} \pmod{5}$, $\{X_n\}$ is a M.C.

$$P = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 & p_4 \\ p_4 & p_0 & p_1 & p_2 & p_3 \\ p_3 & p_4 & p_0 & p_1 & p_2 \\ p_2 & p_3 & p_4 & p_0 & p_1 \\ p_1 & p_2 & p_3 & p_4 & p_0 \end{bmatrix}$$
 \quad \text{Trows} = 1 \text{ (stoch. matrix)} \\ \text{Columns} = 1 \text{ (here)} \\ \text{(double - stochastic matrix)} \end{array}

$$\sum rows = 1 \text{ (stoch. matrix)}$$

$$\sum columns = 1 \text{ (here)}$$

$$(double - stochastic matrix)$$

Example: Remaining lifetime

An equipment is replaced by an identical as soon as it fails $p_k = \Pr\{\text{a new equip. lasts for } k \text{ time units}\}$ k = 1, 2, ...

 X_n = remaining lifetime of equip. at time n

$$X_{n+1}(\omega) = \begin{cases} X_n(\omega) - 1 & \text{if } X_n(\omega) \ge 1 \\ Z_{n+1}(\omega) - 1 & \text{if } X_n(\omega) = 0 \end{cases}$$

 $Z_{n+1}(\omega)$ is the lifetime of equip. installed at time nIt is independent of $X_0, X_1, ..., X_n$ X_n is a M.C. • $i \ge 1$:

$$P(i,j) = P\{X_{n+1} = j \mid X_n = i\} = P\{X_n - 1 = j \mid X_n = i\}$$

$$= P\{X_n = j + 1 \mid X_n = i\} = \begin{cases} 1 & \text{if } j = i - 1 \\ 0 & \text{if } j \neq i - 1 \end{cases}$$

• i=0:

$$P(0, j) = P\{X_{n+1} = j \mid X_n = 0\} = P\{Z_{n+1} - 1 = j \mid X_n = 0\}$$
$$= P\{Z_{n+1} = j + 1\} = p_{j+1}$$

$$P = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Theorem: (conditional indep. of future from past given present)

Let Y be a bounded function of X_n, X_{n+1}, \dots Then

$$E\{Y|X_0,X_1,...,X_n\} = E\{Y|X_n\}$$

Proposition:

$$E\{f(X_n, X_{n+1},...)|X_n = i\} = E\{f(X_0, X_1,...)|X_0 = i\}$$

Corollary: f a bounded function on $E \times E \times ...$

Let
$$g(i) = E\{f(X_0, X_1, ...) | X_0 = i\}.$$

Then
$$\forall n \in \mathbb{N}$$
 $E\{f(X_n, X_{n+1}, ...) | X_0, X_1, ..., X_n\} = g(X_n)$

Stopping Times:

Previous results derived for fixed time $n \in \mathbb{N}$ What if time is an RV instead?

- If for a RV T, the past $\{X_m; m \le T\}$ and the future $\{X_m; m \ge T\}$ are conditionally indep. given present X_T , then the strong Markov property is said to hold at T.
- If T is a stopping time, then above hold true (T is a stopping time if the event $\{T \le n\}$ can be determined by looking at $X_0, X_1, ..., X_n$)

For any stopping time T:

- $E\{f(X_T, X_{T+1}, ...) \mid X_n, n \le T\} = E\{f(X_T, X_{T+1}, ...) \mid X_T\}$
- For $g(i) = E\{f(X_0, X_1, ...) | X_0 = i\}$ $E\{f(X_T, X_{T+1}, ...) | X_n; n \le T\} = g(X_T)$

e.g., if
$$f(a_0, a_1, ...) = \begin{cases} 1 & \text{if} \quad a_m = j \\ 0 & \text{if} \quad a_m \neq j \end{cases}$$
 $j \in E, m \in N$

$$E\{f(X_0, X_1, ...) \mid X_0 = i\} = P\{X_m = j \mid X_0 = i\} = P^m(i, j)$$

$$E\{f(X_T, X_{T+1}, ...) \mid X_n, n \leq T\} = P\{X_{T+m} = j \mid X_n; n \leq T\}$$

Strong Markov property at T:

$$P\{X_{T+m} = j \mid X_n; n \le T\} = P^m(X_T, j)$$

Visits to a state

 $X = \{X_n : n \in N\}$ MC, State space E, Transition matrix P.

Notation: $P_i\{A\} = P\{A \mid X_0 = i\}$ and $E_i[Y] = E[Y \mid X_0 = i]$

Let $j \in E$, $\omega \in \Omega$ and Define:

 $N_{i}(\omega)$ = total number of times state j appears in $X_{0}(\omega), X_{1}(\omega), \dots$

- $N_i(\omega) < \infty$, X eventually leaves state j never to return.
- $N_i(\omega) = \infty$, X visits j again and again.

Let $T_1(\omega), T_2(\omega), \dots$ the successive indices $n \ge 1$ for which $X_n(\omega) = j$.

- If $\exists n$ then $T_1(\omega) = T_2(\omega) T_1(\omega) = \cdots = \infty$
- If j appears a finite number of times m, then $T_{m+1}(\omega) T_m(\omega) = T_{m+2}(\omega) T_m(\omega) = \cdots = \infty$

 $\forall n \in \mathbb{N}$, $\{T_m(\omega) \le n\}$ is equivalent to j appears in $\{X_1(\omega), \dots, X_n(\omega)\}$ at least m times.

 T_m is a stopping time.

Example

$$T_1(\omega) = 4$$
, $T_2(\omega) = 6$, $T_3(\omega) = 7$, $T_4(\omega) = 9$,...

Proposition: $\forall i \in E, k, m \ge 1$

$$P_{i}\left\{T_{m+1}-T_{m}=k\left|T_{1},...,T_{m}\right.\right\} = \begin{cases} 0 & \{T_{m}=\infty\}\\ P_{j}\{T_{1}=k\} & \{T_{m}<\infty\} \end{cases}$$

Computation of $P_j\{T_1=k\}$. Let $F_k(i,j)=P_i\{T_1=k\}$

$$\begin{aligned} k &= 1 \Longrightarrow F_k(i,j) = P_i\{T_1 = 1\} = P_i\{X_1 = j\} = P(i,j) \\ k &\geq 2 \Longrightarrow F_k(i,j) = P_i\{X_1 \neq j, \cdots, X_{k-1} \neq j, X_k = j\} \\ &= \sum_{b \in E - \{j\}} P_i\{X_1 = b\} P_i\{X_2 \neq j, \cdots, X_{k-1} \neq j, X_k = j \mid X_1 = b\} \\ &= \sum_{b \in E - \{j\}} P_i\{X_1 = b\} P_b\{X_1 \neq j, \cdots, X_{k-2} \neq j, X_{k-1} = j\} \end{aligned}$$

Thus,

$$F_{k}(i,j) = \begin{cases} P(i,j) & k=1\\ \sum_{b \in E - \{j\}} P(i,b) F_{k-1}(b,j) & k \ge 2 \end{cases}$$

Example: Let
$$j = 3$$
 and the transition matrix $P = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1/6 & 1/3 \\ 1/3 & 3/5 & 1/15 \end{pmatrix}$

Find $f_k(i) = F_k(i, j)$, i = 1, 2, 3

• k = 1. In this case f_1 is the 3^{rd} column of matrix P. Hence, $f_1(1) = F_1(1, j) = 0$, $f_1(2) = F_1(2, j) = 1/3$, $f_1(3) = F_1(3, j) = 1/15$

•
$$k \ge 2$$
. In this case $f_k = \begin{pmatrix} F_k(1,j) \\ F_k(2,j) \\ F_k(3,j) \end{pmatrix} = \begin{pmatrix} \sum_{b \in E - \{j\}} P(1,b) F_{k-1}(b,j) \\ \sum_{b \in E - \{j\}} P(2,b) F_{k-1}(b,j) \\ \sum_{b \in E - \{j\}} P(3,b) F_{k-1}(b,j) \end{pmatrix} = Q \cdot f_{k-1} \text{ where } Q = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1/6 & 0 \\ 1/3 & 3/5 & 0 \end{pmatrix}$

After some algebra
$$f_1 = \begin{pmatrix} 0 \\ 1/3 \\ 1/15 \end{pmatrix}$$
 $f_2 = \begin{pmatrix} 0 \\ 1/18 \\ 1/5 \end{pmatrix}$ $f_3 = \begin{pmatrix} 0 \\ 1/108 \\ 1/30 \end{pmatrix}$ $f_4 = \begin{pmatrix} 0 \\ 1/648 \\ 1/180 \end{pmatrix}$...

and in general

$$F_{k}(1,3) = 0, F_{k}(2,3) = \frac{1}{3} \left(\frac{1}{6}\right)^{k-1}, F_{k}(3,3) = \begin{cases} \frac{1}{15} & k = 1\\ \frac{3}{5} \left(\frac{1}{6}\right)^{k-2} \frac{1}{3} & k \ge 2 \end{cases}$$

$$F_k(1,3) = 0,$$
 $F_k(2,3) = \frac{1}{3} \left(\frac{1}{6}\right)^{k-1},$ $F_k(3,3) = \begin{cases} \frac{1}{15} & k = 1\\ \frac{3}{5} \left(\frac{1}{6}\right)^{k-2} \frac{1}{3} & k \ge 2 \end{cases}$

Now we can state:

- Starting at state 1, X never visits 3 with probability: $P_1\{T_1 = +\infty\} = 1$
- Starting at state 2, X first visits 3 at k with probability: $\frac{1}{3}(\frac{1}{6})^{k-1}$
- Starting at state 2, X never visits 3 with probability: $P_2\{T_1 = +\infty\} = 1 P_2\{T_1 < +\infty\} = 1 \sum_{k=1}^{\infty} \frac{1}{3} \left(\frac{1}{6}\right)^{k-1} = \frac{3}{5}$
- Starting at state 3, X never visits 3 again with probability: $P_3\{T_1 = +\infty\} = 1 P_3\{T_1 < +\infty\} = \frac{52}{75}$

Now, for every i, j we define

$$F(i,j) = P_i\{T_1 < +\infty\} = \sum_{k=1}^{\infty} F_k(i,j)$$

+ F(i, j) expresses the probability: starting at i the MC will ever visit state j.

$$F(i,j) = P(i,j) + \sum_{b \in E - \{j\}} P(i,b)F(b,j), \qquad i \in E$$

If by N_i we denote the total number of visits to state j, then

$$P_{j}\{N_{j}=m\}=F(j,j)^{m-1}(1-F(j,j))$$

and for
$$i \neq j$$
,
$$P_{i}\{N_{j} = m\} = \begin{cases} 1 - F(i, j) & m = 0 \\ F(i, j)F(j, j)^{m-1} (1 - F(j, j)) & m = 1, 2, \dots \end{cases}$$

>From the previous we obtain the Corollary:

$$P_{j}\{N_{j} < +\infty\} = \begin{cases} 1 & F(j,j) < 1 \\ 0 & F(j,j) = 1 \end{cases}$$

Now, for every i, j we define

$$F(i,j) = P_i\{T_1 < +\infty\} = \sum_{k=1}^{\infty} F_k(i,j)$$

+ F(i, j) expresses the probability: starting at i the MC will ever visit state j.

$$F(i,j) = P(i,j) + \sum_{b \in E - \{j\}} P(i,b)F(b,j), \qquad i \in E$$

If by N_i we denote the total number of visits to state j, then

$$P_{j}\{N_{j}=m\}=F(j,j)^{m-1}(1-F(j,j))$$

and for
$$i \neq j$$
,
$$P_{i}\{N_{j} = m\} = \begin{cases} 1 - F(i, j) & m = 0 \\ F(i, j)F(j, j)^{m-1} (1 - F(j, j)) & m = 1, 2, \dots \end{cases}$$

>From the previous we obtain the Corollary:

$$P_{j}\{N_{j} < +\infty\} = \begin{cases} 1 & F(j,j) < 1 \\ 0 & F(j,j) = 1 \end{cases}$$

Now, for every i, j we define

$$F(i,j) = P_i \{T_1 < +\infty\} = \sum_{k=1}^{\infty} F_k(i,j)$$

 \bullet F(i, j) expresses the probability: starting at i the MC will ever visit state j.

$$F(i,j) = P(i,j) + \sum_{b \in E - \{j\}} P(i,b)F(b,j), \qquad i \in E$$

If by N_i we denote the total number of visits to state j, then

$$P_{j}\{N_{j}=m\}=F(j,j)^{m-1}(1-F(j,j))$$

and for
$$i \neq j$$
,
$$P_i\{N_j = m\} = \begin{cases} 1 - F(i,j) & m = 0 \\ F(i,j)F(j,j)^{m-1} (1 - F(j,j)) & m = 1,2,... \end{cases}$$

>From the previous we obtain the Corollary:

$$P_{j}\{N_{j} < +\infty\} = \begin{cases} 1 & F(j,j) < 1 \\ 0 & F(j,j) = 1 \end{cases}$$

Let $R(i, j) = E_i[N_i]$ (R is called the **potential** matrix of X)

Then,

$$R(j,j) = \frac{1}{1 - F(j,j)}$$

$$R(i,j) = F(i,j) R(j,j) + (1 - F(i,j)) 0$$

$$R(i,j) = F(i,j) R(j,j), \quad (i \neq i)$$

Computation of R(i, j) first and then F(i, j)

Define:

$$1_{j}(k) = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases} \Rightarrow 1_{j}(X_{n}(\omega)) = \begin{cases} 1, & X_{n}(\omega) = j \\ 0, & X_{n}(\omega) \neq j \end{cases}$$

Then,

$$N_{j}(\omega) = \sum_{n=0}^{\infty} 1_{j}(X_{n}(\omega))$$

$$R(i,j) = E_{i} \left[\sum_{n=0}^{\infty} 1_{j}(X_{n}) \right] = \sum_{n=0}^{\infty} E_{i} \left[1_{j}(X_{n}) \right] = \sum_{n=0}^{\infty} P_{i}\{X_{n} = j\} = \sum_{n=0}^{\infty} P^{n}(i,j)$$

In matrix notation:

$$R = I + P + P^2 + \cdots \Rightarrow RP = PR = P + P^2 + \cdots = R - I$$

from which we obtain

$$R(I-P) = (I-P)R = I$$

Classification of states

X: MC, with state space E, transition matrix P

T: The time of first visit to state j

 N_j : The total number of visits to state j

Definition

- ♣ State *j* is called **recurrent** if $P_j\{T < \infty\} = 1$
- ♣ State j is called **transient** if $P_j\{T = \infty\} > 0$
- A recurrent state j is called **null** if $E_j[T] = \infty$
- ♣ A recurrent state j is called **non-null** if $E_j[T] < \infty$
- \clubsuit A recurrent state j is called **periodic** with period δ , if $\delta \ge 2$ is the greatest integer for which

$$P_{i}\{T = n\delta \text{ for some } n \ge 1\} = 1$$

• If j is recurrent then starting at j the probability of returning to j is 1.

$$F(j,j) = 1 \Rightarrow R(j,j) = E_j[N_j] = +\infty \iff P_j\{N_j = +\infty\} = 1$$

• If j is transient then there exists a positive probability 1-F(j,j) of never returning to j.

$$F(j,j) < 1 \Rightarrow R(j,j) = E_j[N_j] < \infty \iff P_j\{N_j < \infty\} = 1$$

In this case $R(i,j) = F(i,j)R(j,j) < R(j,j) < \infty$ and since $R(i,j) = \sum_{n} P^{n}(i,j)$ we conclude that

$$\lim_{n\to\infty}P^n(i,j)\to 0$$

Theorem:

♣ If *j* transient or recurrent <u>null</u> then

$$\forall i \in E,$$
 $\lim_{n \to \infty} P^n(i,j) \to 0$

♣ If *j* recurrent <u>non-null</u> then

$$\pi(j) = \lim_{n \to \infty} P^n(j, j) > 0$$
 and $\forall i \in E$, $\lim_{n \to \infty} P^n(i, j) = F(i, j)\pi(j)$

 \clubsuit If j periodic with period δ , then a return to j is possible only at steps numbered δ , 2δ , 3δ , ...

$$P^{n}(j, j) = P_{j} \{X_{n} = j\} > 0 \text{ only if } n \in \{0, \delta, 2\delta, ...\}$$

Recurrent non-null	Recurrent null	Transient
$P_{j}\{T<\infty\}=1$		$P_{j}\{T=\infty\}>0$
$E_{j}[T] < \infty$	$E_{j}[T] = \infty$	
$F(j,j) = 1 \Rightarrow R(j,j) = E_j[N_j] = +\infty \iff P_j\{N_j = +\infty\} = 1$		$F(j,j) < 1 \Rightarrow R(j,j) = E_j[N_j] < \infty$ $\iff P_j\{N_j < \infty\} = 1$
$\pi(j) = \lim_{n \to \infty} P^{n}(j, j) > 0 \text{and} \forall i \in E,$ $\lim_{n \to \infty} P^{n}(i, j) = F(i, j)\pi(j)$ $\forall i \in E,$		$\lim_{n\to\infty} P^n(i,j)\to 0$

A recurrent state j is called **periodic** with period δ , if $\delta \ge 2$ is the greatest integer for which

$$P_{j}\{T = n\delta \text{ for some } n \ge 1\} = 1$$

* If j periodic with period δ , then a return to j is possible only at steps numbered δ , 2δ , 3δ , ...

$$P^{n}(j, j) = P_{j}\{X_{n} = j\} > 0 \text{ only if } n \in \{0, \delta, 2\delta, ...\}$$

We say that state j can be <u>reached</u> from state i $i \rightarrow j$, if $\exists n \ge 0 : P^n(i, j) > 0$ $i \rightarrow j$, iff F(i, j) > 0

Definition:

- A set of states is **closed** if no state outside it can be reached from any state in it.
- A state forming a closed set by itself is called an **absorbing** state
- A closed set is called **irreducible** if no proper subset of it is closed.
- A MC is called irreducible if its only closed set is the set of all states

Comments:

- If j is absorbing then P(j, j) = 1.
- ♣ If MC is irreducible then all states can be reached from each other.
- ♣ If $C = \{c_1, c_2, \dots\} \in E$ is a closed set and $Q(i, j) = P(c_i, c_j)$, $c_i, c_j \in C$, then Q is a Markov matrix.
- If $i \to j$ and $j \to k$ then $i \to k$.

To find the closed set C that contains i we work as follows:

- Starting with i we include in C all states j that can be reached from i: P(i, j) > 0.
- We next include in C all states k that can be reached from j: P(j,k) > 0.
- We repeat the previous step

Example: MC with state space $E = \{a, b, c, d, e\}$ and transition matrix

$$P = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{4} & 0 & \frac{3}{4} & 0\\ 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3}\\ \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} & 0\\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \end{pmatrix}$$

Comments:

- Closed sets: $\{a,c,e\}$ and $\{a,b,c,d,e\}$
- There are two closed sets. Thus, the MC is not irreducible.

Example: MC with state space $E = \{a, b, c, d, e\}$ and transition matrix

$$P = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \end{pmatrix}$$

Comments:

- Closed sets: $\{a,c,e\}$ and $\{a,b,c,d,e\}$
- There are two closed sets. Thus, the MC is not irreducible.
- If we delete the 2^{nd} and 4^{th} rows we obtain the

• If we delete the 2th and 4th r
Markov matrix:
$$Q = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

If we relabel the states 1 = a, 2 = c, 3 = e, 4 = b and 5 = d we get

$$5 = \begin{vmatrix}
0 & \frac{1}{3} & \frac{2}{3} & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & \frac{3}{4} \\
\frac{1}{4} & 0 & 0 & \frac{1}{2} & \frac{1}{4}
\end{vmatrix}$$

<u>Lemma</u> If j recurrent and $j \rightarrow k \Rightarrow k \rightarrow j$. Thus, F(k, j) = 1.

<u>Proof:</u> If $j \to k$ then k is reached without returning to j with probability \mathbf{a} . Once k is reached, the probability that j is never visited again is 1 - F(k, j). Hence,

$$1 - F(j, j) \ge a(1 - F(k, j)) \ge 0$$

But j is recurrent, so that $F(j, j) = 1 \Rightarrow F(k, j) = 1$

 \blacktriangle As a result: If $j \to k$ but $k \not\to j$, then j must be transient.

Theorem: From recurrent states only recurrent states can be reached.

Theorem: In a Marcov chain the recurrent states can be divided in a unique manner, into irreducible closed sets C_1 , C_2 , ..., and after an appropriate arrangement:

$$P = \begin{pmatrix} P_1 & 0 & 0 & \cdots & 0 \\ 0 & P_2 & 0 & \cdots & 0 \\ 0 & 0 & P_3 & \cdots & 0 \\ \cdots & \cdots & \cdots & \ddots & \vdots \\ Q_1 & Q_2 & Q_3 & \cdots & Q \end{pmatrix}$$

Theorem: Let X an <u>irreducible</u> MC. Then, one of the following holds:

- All states are transient.
- All states are recurrent null
- All states are recurrent non-null
- Either all aperiodic or if one is periodic with period δ , all are periodic with the same period.

<u>Proof:</u> Since X is irreducible then $j \to k$ and $k \to j$, which means that $\exists r, s : P^r(j,k) > 0$ and $P^s(k,j) > 0$. Pick the smallest r, s and let $\beta = P^r(j,k)P^s(k,j)$.

- If k recurrent \Rightarrow j recurrent.
- If k transient \Rightarrow j transient. (If it was recurrent then k would be recurrent)
- If k recurrent null then $P^m(k,k) \to 0$ as $m \to \infty$. But $P^{n+r+s}(k,k) \ge \beta P^n(j,j) \Rightarrow P^n(j,j) \to 0$

Corollary: If C irreducible closed set of **finitely** many states, then ∄ recurrent null states.

Proof: If one is recurrent null then all states are recurrent null.

Thus,
$$\lim_{n\to\infty} P^n(i,j) = 0$$
, $\forall i,j \in C$. But,

$$\forall i \in C, n \ge 0, \sum_{j \in C} P^n(i, j) = 1 \Rightarrow \lim_{n \to \infty} \sum_{j \in C} P^n(i, j) = 1$$

Because, we have finite number of states

$$\lim_{n\to\infty}\sum_{j\in C}P^n(i,j)=\sum_{j\in C}\lim_{n\to\infty}P^n(i,j)=0$$

Corollary: If C is an irreducible closed set with finitely many states then there are **no** transient states

Algorithm - Finite number of states

- Identify irreducible closed sets.
- All states belonging to an irreducible closed set are recurrent positive
- The rest of the states are transient
- Periodicity is checked to each irreducible set

Example:

The irreducible closed sets are $\{1,3\}$, $\{2,7,9\}$ and $\{6\}$. The states $\{4,5,8,10\}$ are transient. If we relabel the states we obtain

Example: Let N_n the number of successes in the first n Bernoulli trials. As we have seen

$$P(i, j) = P\{N_{n+1} = j \mid N_n = i\} = \begin{cases} p & j = i+1 \\ q & j = i \\ 0 & \text{otherwise} \end{cases}$$

Thus,

$$P = \begin{pmatrix} q & p & 0 & \cdots \\ 0 & q & p & \cdots \\ 0 & 0 & q & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $\forall j$ we have $j \rightarrow j+1$ but $j+1 \not\rightarrow j$. This means that j is **not** recurrent. Since the MC is irreducible all states are **transient**.

Example: Remaining lifetime

Remember:

$$X_{n+1}(\omega) = \begin{cases} X_n(\omega) - 1 & X_n(\omega) \ge 1 \\ Z_{n+1}(\omega) - 1 & X_n(\omega) = 0 \end{cases}$$

from which we obtain:

$$i \ge 1 \qquad P(i,j) = P\{X_{n+1} = j \mid X_n = j\} = P\{X_n - 1 = j \mid X_n = j\} = \begin{cases} 1 & j = i - 1 \\ 0 & j \ne i - 1 \end{cases}$$

$$i = 0 \qquad P(0,j) = P\{X_{n+1} = j \mid X_n = 0\} = P\{Z_{n+1} - 1 = j \mid X_n = 0\}$$

$$= P\{Z_{n+1} = j + 1\} = p_{j+1}$$

$$P = \begin{pmatrix} p_1 & p_2 & p_3 & \cdots \\ 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$P = \begin{pmatrix} p_1 & p_2 & p_3 & \cdots \\ 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

>From state 0 we reach state j in one step. From j we can reach j-1, j-2, ..., 1, 0. Thus, all states can be reached from each other, which means that the MC is irreducible. Since, P(0,0) > 0 the MC is aperiodic. Return to state 0 occurs if the lifetime is finite:

$$\sum_{j} p_{j} = 1 \Longrightarrow F(0,0) = \sum_{j} p_{j} = 1$$

Since state 0 is recurrent, all states are recurrent. If the expected lifetime:

$$\sum_{j} j p_{j} = +\infty$$

then state 0 is null and all states are recurrent null. If the expected lifetime:

$$\sum_{i} j p_{j} < \infty$$

then state 0 is non-null and all states are recurrent non-null.

Algorithm - Infinite number of states

Theorem: Let X an irreducible MC, and consider the system of linear equations:

$$v(j) = \sum_{i \in E} v(i)P(i,j), \qquad j \in E$$

Then all states are **recurrent non-null** iff there exists a solution ν with

$$\sum_{j \in E} \nu(j) = 1$$

Theorem: Let X an irreducible MC with transition matrix P, and let Q be the matrix obtained from P by deleting the k-row and k-column for some $k \in E$. Then all states are **recurrent** if and only if the only solution of

$$h(i) = \sum_{j \in E_0} Q(i, j)h(j), \qquad 0 \le h(i) \le 1, \qquad i \in E_0$$

is h(i) = 0 for all $i \in E_0$. $E_0 = E - \{k\}$.

- Use first theorem to determine whether all states are recurrent non-null or not.
- In the latter case, use the second theorem to determine whether the states are transient or not.

Example: Random walks.

$$P = \begin{pmatrix} 0 & 1 & & & \cdots \\ q & 0 & p & & \cdots \\ 0 & q & 0 & p & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- All states can be reached from each other, and thus the chain is irreducible.
- A return to state 0 can occur only at steps numbered 2,4,6,... Therefore, state 0 is periodic with period $\delta = 2$.
- Since X is irreducible all states are periodic with period 2.
- Either all states are recurrent null, or all are recurrent non-null, or all the states are transient.

Check for a solution of v = vP.

$$v_0 = qv_1$$

$$v_1 = v_0 + qv_2$$

$$v_2 = pv_1 + qv_3$$

$$v_3 = pv_2 + qv_4$$

Hence,

$$v_{1} = \frac{1}{q} v_{0}$$

$$v_{2} = \frac{1}{q} \left(\frac{1}{q} v_{0} - v_{0} \right) = \frac{p}{q^{2}} v_{0}$$

$$v_{3} = \frac{1}{q} \left(\frac{p}{q^{2}} - \frac{p}{q} \right) v_{0} = \frac{p^{2}}{q^{3}} v_{0}$$

Any solution is of the form

$$v_{j} = \frac{1}{q} \left(\frac{p}{q}\right)^{j-1} v_{0}, \qquad j = 1, 2, \dots$$

If p < q, then p/q < 1 and

$$\sum_{j=0}^{\infty} v_{j} = \left(1 + \frac{1}{q} \sum_{j=1}^{\infty} \left(\frac{p}{q}\right)^{j-1}\right) v_{0} = \frac{2q}{q-p} v_{0}$$

If we choose $v_0 = \frac{q-p}{2q}$ then $\sum v_j = 1$ and

$$v(j) = \begin{cases} \frac{1}{2} \left(1 - \frac{p}{q} \right), & j = 0 \\ \frac{1}{2q} \left(1 - \frac{p}{q} \right) \left(\frac{p}{q} \right)^{j-1}, & j \ge 1 \end{cases}$$

In this case all states are recurrent non null

If p > q either all states are recurrent null or all states are transient. Consider the matrix

$$Q = \begin{pmatrix} 0 & p & & \cdots \\ q & 0 & p & \cdots \\ 0 & q & 0 & p & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

The equation h = Qh gives $(h_i = h(i))$

$$h_{i+1} = \left[\left(\frac{q}{p} \right)^i + \left(\frac{q}{p} \right)^{i-1} + \dots + \frac{q}{p} + 1 \right] h_1$$

- If p = q then $h_i = ih_1$ for all $i \ge 1$ and the only way to have $0 \le h_i \le 1$ for all i is by choosing $h_1 = 0$ which implies $h_i = 0$ that is all states are **recurrent null**.
- If p > q, then choosing $h_1 = 1 (q/p)$, we get

$$h_i = 1 - \left(\frac{q}{p}\right)^i$$

which also satisfies $0 \le h_i \le 1$. In this case all states are **transient**.

Calculation of R and F

- $R(i, j) = E_i[N_i]$ Expected number of visits to state j.
- * F(i, j) = The probability of **ever** reaching state j starting at i.

j Recurrent state: $F(j, j) = 1 \Rightarrow R(j, j) = \infty$

$$R(i,j) = F(i,j)R(j,j) \quad R(i,j) = \begin{cases} 0 & F(i,j) = 0 \\ +\infty & F(i,j) > 0 \end{cases}$$

j Transient / *i* Recurrent state: $F(i, j) = 0 \Rightarrow R(i, j) = 0$

i, j Transient

Let $D = \{$ the transient states $\}$, Q(i, j) = P(i, j), S(i, j) = R(i, j), $i, j \in D$.

Then
$$P = \begin{pmatrix} K & 0 \\ L & Q \end{pmatrix} \Rightarrow P^m = \begin{pmatrix} K^m & 0 \\ L_m & Q^m \end{pmatrix}$$

Hence,
$$R = \sum_{m=0}^{\infty} P^m = \begin{pmatrix} \sum K^m & 0 \\ \sum L_m & \sum Q^m \end{pmatrix} \Rightarrow S = \sum_{m=0}^{\infty} Q^m = I + Q + Q^2 + \cdots$$

Computation of S

$$S = I + Q + Q^{2} + \cdots \Rightarrow$$

$$SQ = QS = Q + Q^{2} + \cdots = S - I \Rightarrow$$

$$(I - Q)S = I, \quad S(I - Q) = I$$

Proposition: If there are finitely many transient states $S = (I - Q)^{-1}$

 \clubsuit When the set D of transient states is infinite, it is possible to have more than one solution to the system.

Theorem: S is the minimal solution of (I - Q)Y = I, $Y \ge 0$

Theorem: S is the unique solution of (I - Q)Y = I if and only if the only bounded solution of h = Qh is h = 0, or equivalently

$$h = Qh, 0 \le h \le 1 \iff h = 0$$

Example: Let X a MC with state space $E = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$$P = \begin{pmatrix} 0.4 & 0.3 & 0.3 & | & & & & & \\ 0. & 0.6 & 0.4 & | & & & & & \\ 0.5 & 0.5 & 0. & | & & & & \\ - & - & - & | & - & - & | & - & - & - \\ & & | & 0. & 1. & | & & \\ - & - & - & | & - & - & | & - & - & - \\ 0. & 0. & 0. & | & | & 0.4 & 0.6 & 0.\\ 0.4 & 0.4 & 0. & | & | & 0. & 0.2\\ 0.1 & 0. & 0.3 & | & | & 0.6 & 0. \end{pmatrix}$$

$$= \{1, 2, 3\} \text{ are recurrent positive aperiodic.}$$

$$= \{4, 5\} \text{ are recurrent positive aperiodic.}$$

$$= \{6, 7, 8\} \text{ are transient}$$

$$Q = \begin{pmatrix} 0.4 & 0.6 & 0. \\ 0. & 0. & 0.2 \\ 0.6 & 0. & 0. \end{pmatrix} \Rightarrow S = (I - Q)^{-1} = \begin{pmatrix} 0.6 & -0.6 & 0. \\ 0. & 1. & -0.2 \\ -0.6 & 0. & 1. \end{pmatrix}^{-1}$$

- j recurrent, can be reached from i
- j recurrent, cannot be reached from i

- j transient, i recurrent
- j, i transient

Computation of F(i, j)

* i, j recurrent belonging to the same irreducible closed set

$$F(i,j) = 1$$

* i, j recurrent belonging to different irreducible closed sets

$$F(i,j) = 0$$

• i, j transient Then $R(i, j) < \infty$ and

$$F(j,j) = 1 - \frac{1}{R(j,j)}, \qquad F(i,j) = \frac{R(i,j)}{R(j,j)}$$

♣ *i* transient, *j* recurrent ????

Lemma: If C is irreducible closed set of recurrent states, then for any transient state i: F(i, j) = F(i, k)

for all $j, k \in C$.

<u>Proof:</u> For $j,k \in C \Rightarrow F(j,k) = F(k,j) = 1$. Thus, once the chain reaches any one of the states of C, it also visits all the other states. Hence, F(i,j) = F(i,k) is the probability of entering the set C from i.

Let

Lump all states of C_i together to make one absorbing state:

$$P = \begin{pmatrix} P_1 & & & & \\ & P_2 & & & \\ & & P_3 & & \\ & & & \ddots & \\ Q_1 & Q_2 & Q_3 & & Q \end{pmatrix} \hat{P} = \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & 1 & \\ b_1 & b_2 & b_3 & \cdots & b_m & Q \end{pmatrix}, b_j(i) = \sum_{k \in C_j} P(i,k), i \in D$$

The probability of ever reaching the absorbing state j from the transient state i by the chain with the transition matrix \hat{P} is the same as that of ever reaching C_i from i.

$$\hat{P} = \begin{pmatrix} I & 0 \\ B & Q \end{pmatrix}, \qquad B = \begin{bmatrix} b_1 & \cdots & b_m \end{bmatrix}, \qquad B(i,j) = \sum_{k \in C_j} P(i,k), \quad i \in D$$

$$\hat{P}^{n} = \begin{pmatrix} I & 0 \\ B_{n} & Q^{n} \end{pmatrix}, \qquad B_{n} = (I + Q + Q^{2} + \dots + Q^{n-1})B$$

 $B_n(i,j)$ is the probability that starting from i, the chain enters the recurrent class C_j

Define:

$$G = \lim_{n \to \infty} B_n = \left(\sum_{k=0}^{\infty} Q^k\right) B = SB$$

• G(i, j) is the probability of ever reaching the set C_j from the transient state i: (F(i, j))

Proposition: Let Q the matrix obtained from P by deleting all the rows and columns corresponding to the recurrent states, and let B be defined as previously, for each transient i and recurrent class C_i .

- Compute S
- Compute G = SB
- $G(i,j) = F(i,k), \forall k \in C_j$.
- If there is only one recurrent class and finitely many transient states, then things are different.

In this case, it can be proved that:

$$G = 1 \Rightarrow F(i, j) = 1, \quad \forall j \in C$$

Example: Let *X* a MC with state space $E = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$$P = \begin{pmatrix} 0.4 & 0.3 & 0.3 & | & & & | & & & | & & & | & & & | & & & & | & & & | & & & | & & & | & & & | & & | & & & | & & & | & & | & & | & & & | & & & | & & & | & & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & | & & |$$

i, j recurrent belonging to the same irreducible closed set

i, j recurrent belonging to different irreducible closed sets

j transient, i recurrent

$$F(j,j) = 1 - \frac{1}{R(j,j)},$$

$$F(i,j) = \frac{R(i,j)}{R(i,j)}$$

R(j, j)

one (reachable) recurrent class and finitely many transient states

Example:

$$P = \begin{pmatrix} 0.5 & 0.5 \\ 0.8 & 0.2 \\ & & 0. & 0.4 & 0.6 \\ & & 1. & 0. & 0. \\ & & 1 & 0. & 0. \\ & & 1 & 0. & 0. \\ 0.1 & 0. & 0.2 & 0.2 & 0.1 & 0.3 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0. & 0.1 & 0.2 & 0.4 \end{pmatrix} \Rightarrow \hat{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0.1 & 0.5 & 0.3 & 0.1 \\ 0.2 & 0.2 & 0.2 & 0.4 \end{pmatrix}$$

$$S = (I - Q)^{-1} = \begin{pmatrix} 0.7 & -0.1 \\ -0.2 & 0.6 \end{pmatrix}^{-1} = \begin{pmatrix} 1.50 & 0.25 \\ 0.50 & 1.75 \end{pmatrix}$$

$$G = S \cdot B = \begin{pmatrix} 1.50 & 0.25 \\ 0.50 & 1.75 \end{pmatrix} \begin{pmatrix} 0.1 & 0.5 \\ 0.2 & 0.2 \end{pmatrix} = \begin{pmatrix} 0.2 & 0.8 \\ 0.4 & 0.6 \end{pmatrix}$$

Recurrent states and Limiting probabilities

Consider only an irreducible set of states.

Theorem: Suppose X is irreducible and aperiodic. Then all states are recurrent non-null if and only if

$$\pi(j) = \sum_{i \in E} \pi(i) P(i, j), \ j \in E, \quad \sum_{j \in E} \pi(j) = 1$$

has a solution π . If there exists a solution π , then it is strictly positive, there are no other solutions, and we have

$$\pi(j) = \lim_{n \to \infty} P^{n}(i, j), \forall i, j \in E$$

Corollary: If X in an irreducible aperiodic MC with finitely many states (no-null states, no transient states), then

$$\pi \cdot P = \pi$$
, $\pi \cdot 1 = 1$

has a unique solution. The solution π is strictly positive, and $\pi(j) = \lim_{n \to \infty} P^n(i, j), \ \forall i, j$.

- **A probability** distribution π which satisfies $\pi = \pi \cdot P$, is called an **invariant** distribution for X.
- If π is the initial distribution of X, that is, $P\{X_0 = j\} = \pi(j), \quad j \in E$

then
$$P\{X_n = j\} = \sum_i \pi(i) P^n(i, j) = \pi(j)$$
, for any $n \in E$

Proof:
$$\pi = \pi \cdot P = \pi \cdot P^2 = \cdots = \pi \cdot P^n$$

Algorithm: for finding $\lim_{n\to\infty} P^n(i,j)$

- Consider the irreducible closed set containing j
- Solve for $\pi(j)$. Thus, we find $\lim_{n\to\infty} P^n(j,j)$
- For every *i* (not necessarily in E)

$$\lim_{n\to\infty} P^n(i,j) = F(i,j) \lim_{n\to\infty} P^n(j,j)$$

Compute F(i, j) first. Then, find $\lim_{n\to\infty} P^n(i, j)$

Example:

E={1, 2, 3},
$$P = \begin{pmatrix} 0.3 & 0.5 & 0.2 \\ 0.6 & 0. & 0.4 \\ 0. & 0.4 & 0. \end{pmatrix}$$

$$\pi(1) = \pi(1)0.3 + \pi(2)0.6$$

$$\pi P = \pi \implies \pi(2) = \pi(1)0.5 + \pi(3)0.4$$

$$\pi(3) = \pi(1)0.2 + \pi(2)0.4 + \pi(3)0.6$$

 $\pi 1 = 1$

System's Solution:

$$\pi = \begin{pmatrix} \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \end{pmatrix} \Rightarrow P^{\infty} = \lim_{n \to \infty} P^{n}(i, j) = \begin{pmatrix} \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \\ \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \\ \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \end{pmatrix}$$

Example:

$$P_{1} = \begin{pmatrix} 0.2 & 0.8 \\ 0.7 & 0.3 \end{pmatrix} \Rightarrow \pi_{1} = \begin{pmatrix} \frac{7}{15} & \frac{8}{15} \end{pmatrix}, \quad P_{2} = \begin{pmatrix} 0.3 & 0.5 & 0.2 \\ 0.6 & 0. & 0.4 \\ 0. & 0.4 & 0.6 \end{pmatrix} \Rightarrow \pi_{2} = \begin{pmatrix} \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \end{pmatrix}$$

$$\begin{bmatrix} F(6,1) & \cdots & F(6,5) \\ F(7,1) & \cdots & F(7,5) \end{bmatrix} = \begin{bmatrix} 0.2 & 0.2 & 0.8 & 0.8 & 0.8 \\ 0.4 & 0.4 & 0.6 & 0.6 & 0.6 \end{bmatrix}$$

Thus,

$$P^{\infty} = \lim_{n \to \infty} P^{n} = \begin{bmatrix} \frac{7}{15} & \frac{8}{15} \\ \frac{7}{15} & \frac{8}{15} \\ \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \\ \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \\ \frac{6}{23} & \frac{7}{23} & \frac{10}{23} \\ \frac{1.4}{15} & \frac{1.6}{15} & \frac{4.8}{23} & \frac{5.6}{23} & \frac{8}{23} & 0. & 0. \\ \frac{2.8}{15} & \frac{3.2}{15} & \frac{3.6}{23} & \frac{4.2}{23} & \frac{6}{23} & 0. & 0. \end{bmatrix}$$

Example:

Random walks:
$$P = \begin{pmatrix} q & p & & \cdots \\ q & 0 & p & & \cdots \\ 0 & q & 0 & p & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
 (X irreducible aperiodic (since state 0 is aperiodic))

$$\pi_{1} = \frac{p}{q}$$

$$\pi_{0} = \pi_{0}q + \pi_{1}q$$

$$\pi_{1} = \pi_{0}p + \pi_{2}q$$

$$\pi_{2} = \pi_{1}p + \pi_{3}q$$

$$\vdots \qquad \vdots$$

$$\pi_{3} = \left(\frac{p^{2}}{q^{2}} - \frac{p^{2}}{q}\right)/q = \frac{p^{3}}{q^{3}}$$

$$\vdots \qquad \vdots$$

$$\pi_{1} = \frac{p}{q}$$

$$\frac{p^{2}}{q} - \frac{p^{2}}{q^{2}} \rightarrow \pi_{1}q = \frac{p^{3}}{q^{3}}$$

$$\pi_{2} = \left(\frac{p^{2}}{q^{2}} - \frac{p^{2}}{q}\right)/q = \frac{p^{3}}{q^{3}}$$

$$\vdots \qquad \vdots$$

- \clubsuit If $p \ge q$: no solution of $\pi = \pi \cdot P$, $\pi \cdot 1 = 1$
- If p < q: $\lim_{n \to \infty} P^n(i, j) = \left(1 \frac{p}{a}\right) \left(\frac{p}{a}\right)^j$

Example: Remaining lifetime

$$P = \begin{pmatrix} p_1 & p_2 & p_3 & \cdots \\ 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Thus,

$$\sum_{j=0}^{\infty} v_j = (p_1 + p_2 + p_3 + \dots) + (p_2 + p_3 + \dots) + (p_3 + \dots) + \dots$$
$$= p_1 + 2p_2 + 3p_3 + \dots = m$$

- $= m = E[Z_n]$ is the expected lifetime.
- If $m = \infty$ then all states are recurrent null and $\lim_{n \to \infty} P^n(i, j) = 0$

61

Interpretation of Limiting Probabilities

Proposition: Let j be an aperiodic recurrent non-null state, and let m(j) be the expected time between two returns to j. Then,

$$\pi(j) = \lim_{n \to \infty} P^{n}(j, j) = \frac{1}{m(j)}$$

The limiting probability $\pi(j)$ of being in state j is equal to the **rate** at which j is visited.

Proposition: Let j be an aperiodic recurrent non-null and let $\pi(j)$ defined as previously. Then, for almost all $\omega \in \Omega$

$$\lim_{n\to\infty}\frac{1}{n+1}\sum_{m=0}^n 1_j(X_m(\omega))=\pi(j)$$

 \clubsuit . If f is a bounded function on E, then

$$\sum_{m=0}^{n} f(X_m) = \sum_{j \in E} f(j) \sum_{m=0}^{n} 1_j(X_m)$$

Corollary: X irreducible recurrent MC, with limiting probability π . Then, for any bounded function f on E:

$$\lim_{n\to\infty}\frac{1}{n+1}\sum_{m=0}^n f(X_m) = \pi \cdot f, \qquad \pi \cdot f = \sum_{j\in E} \pi(j)f(j)$$

Similar results hold for expectations

Corollary: Suppose X is an irreducible recurrent MC with limiting distribution π . Then for any bounded function f on E

$$\lim_{n\to\infty}\frac{1}{n+1}\sum_{m=0}^n E_i[f(X_m)]=\pi\cdot f$$

independent of i.

• If f(j) is the reward received whenever X is in j, then both the expected average reward in the long run and the actual average reward in the long run converge to the constant $\pi \cdot f$.

The **ratio** of the total reward received during the steps 0,1,...,n by using function f to the corresponding amount by using function g is

$$\lim_{n\to\infty} \frac{\sum_{m=0}^{n} f(X_m)}{\sum_{m=0}^{n} g(X_m)} = \frac{\pi \cdot f}{\pi \cdot g}$$

 \clubsuit The same holds even in the case that X is only recurrent (can be null or periodic or both)

Theorem: Let X be an irreducible recurrent chain with transition matrix P. Then, the system

$$v = v \cdot P$$

has a strictly positive solution; any other solution is a constant multiple of that one. **Theorem:** Suppose X is irreducible recurrent, and let ν be a solution of $\nu = \nu \cdot P$. Then for any two functions f and g on E for which the two sums

$$v \cdot f = \sum_{i \in E} v(i) f(i), \qquad v \cdot g = \sum_{i \in E} v(i) g(i)$$

converge absolutely and at least one is not zero we have

$$\lim_{n\to\infty} \frac{\sum_{m=0}^{n} E_i[f(X_m)]}{\sum_{m=0}^{n} E_i[g(X_m)]} = \frac{v \cdot f}{v \cdot g}$$

independently of $i, j \in E$. Moreover we also have

$$\lim_{n\to\infty} \frac{\sum_{m=0}^{n} f(X_m(\omega))}{\sum_{m=0}^{n} g(X_m(\omega))} = \frac{v \cdot f}{v \cdot g}$$

for almost all $\omega \in \Omega$

Any non-negative solution of $v = v \cdot P$ is called an **invariant measure** of X.

Comments:

- \triangleright Any irreducible recurrent chain X has an invariant measure, and this is unique up to a multiplication by a constant.
- Furthermore, if X is also non-null, then $v \cdot 1 = \sum_{j} v(j)$ is finite, and v is a constant multiple of the limiting distribution π satisfying $\pi P = \pi$, $\pi \cdot 1 = 1$
- \triangleright The existence of an invariant measure ν for X does not imply that X is recurrent.
- \triangleright For $f = 1_k$, $g = 1_i$ and i = j

$$\lim_{n \to \infty} \frac{E_j \left[\sum_{m=0}^n 1_k(X_m) \right]}{E_j \left[\sum_{m=0}^n 1_j(X_m) \right]} = \frac{\nu(k)}{\nu(j)}$$

- $\triangleright \frac{v(k)}{v(j)}$ is the ratio of the expected number of visits to k during the first n steps to the expected number of returns to j during the same period as $n \to \infty$
- $\triangleright \frac{v(k)}{v(j)}$ is the expected number of visits to k between two visits to state j

Periodic States

It is sufficient to consider only an irreducible MC with periodic recurrent states.

Lemma: Let X be an irreducible MC with recurrent periodic states with period δ . Then, the states can be divided into δ disjoint sets B_1 , B_2 ,..., B_{δ} such that P(i,j) = 0 unless

$$i \in B_1, j \in B_2, \quad \text{or } i \in B_2, j \in B_3, \quad \text{or } \dots i \in B_\delta, j \in B_1.$$

Example: *X* MC with $E = \{1, 2, 3, 4, 5, 6, 7\}$

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

All states are periodic with period 3. The sets are $B_1 = \{1,2\}$, $B_2 = \{3,4,5\}$ and $B_3 = \{6,7\}$.

>From B_1 in one step the MC reaches B_2 , in two steps B_3 and in three steps B_1 .

$$P^{2} = \begin{bmatrix} \frac{23}{48} & \frac{25}{48} \\ \frac{11}{18} & \frac{7}{18} \\ \frac{3}{8} & \frac{5}{8} \\ \frac{7}{16} & \frac{9}{16} \\ \frac{3}{8} & \frac{1}{16} & \frac{9}{16} \end{bmatrix}, P^{3} = \begin{bmatrix} \frac{71}{192} & \frac{121}{192} \\ \frac{29}{72} & \frac{43}{72} \\ \frac{29}{72} & \frac{43}{72} \\ \frac{19}{36} & \frac{3}{36} & \frac{19}{36} \\ \frac{19}{48} & \frac{3}{32} & \frac{49}{96} \\ \frac{13}{32} & \frac{7}{64} & \frac{31}{64} \\ \frac{157}{288} & \frac{131}{288} \\ \frac{111}{192} & \frac{81}{192} \end{bmatrix}$$

Note:
$$\overline{P} = P^3$$
, $\overline{P} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}$

• Chain corresponding to \overline{P} has three closed sets B_1 , B_2 , B_3 and each one of these is irreducible, recurrent and aperiodic.

- The previous limiting theory applies to compute $\lim_{m} P_1^m$, $\lim_{m} P_2^m$, $\lim_{m} P_3^m$ separately.
- ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης ΕΚΠΑ)

Note:

Theorem: Let P the transition matrix of an irreducible MC with recurrent periodic states of period δ , and let B_1 , B_2 ,... B_{δ} be as previously. Then, in the MC with transition matrix $\overline{P} = P^{\delta}$, the classes B_1 , B_2 ,... B_{δ} are irreducible closed sets of aperiodic states.

Comments:

- ightharpoonup If $i \in B_a$, then $P_i\{X_m \in B_b\} = 1$, $b = a + m \pmod{\delta}$
- $ightharpoonup P^n(i,j)$ does not have a limit as $n \to \infty$ except when all the states are null (in which case $P^n(i,j) \to 0$, $\forall i,j, n \to \infty$)
- The limits $P^{n\delta+m}(i,j)$ exist as $n\to\infty$, but are dependent on the initial state i.

Theorem: Let P and B_a as previously and suppose that the chain is non-null. Then, for any $m \in \{0,1,...,\delta-1\}$

$$\lim_{n \to \infty} P^{n\delta + m}(i, j) = \begin{cases} \pi(j) & i \in B_a, \quad j \in B_b, \quad b = a + m \pmod{\delta} \\ 0 & \text{otherwise} \end{cases}$$

The probabilities $\pi(j)$, $j \in E$ form the unique solution of

$$\pi(j) = \sum_{i \in E} \pi(i)P(i,j), \qquad \sum_{i \in E} \pi(i) = \delta$$

Example: Let X be a MC with state space
$$E = \{1, 2, 3, 4, 5\}$$
, $P = \begin{pmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.8 & 0. & 0.2 \\ 0. & 1. & 0. \end{pmatrix}$

The chain is irreducible, recurrent non-null periodic with period $\delta = 2$.

$$P^{2} = \overline{P} = \begin{pmatrix} 0.4 & 0.5 & 0.1 \\ 0.32 & 0.6 & 0.08 \\ 0. & 1. & 0. \\ & & 0.4 & 0.6 \\ & & 0.4 & 0.6 \end{pmatrix}$$

$$\pi_{1} = (0.32 & 0.60 & 0.08), \quad \pi_{2} = (0.4 & 0.6)$$

$$\lim_{n \to \infty} P^{2n} = \begin{pmatrix} 0.32 & 0.60 & 0.08 \\ 0.32 & 0.60 & 0.08 \\ 0.32 & 0.60 & 0.08 \end{pmatrix} \qquad \lim_{n \to \infty} P^{2n+1} = \begin{pmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \\ 0.4 & 0.6 \\ 0.32 & 0.60 & 0.08 \\ 0.32 & 0.60 & 0.08 \end{pmatrix}$$

Example: Random Walks
$$(p < q)$$
 $P = \begin{pmatrix} 0 & 1 & & \\ q & 0 & p & \\ & q & 0 & p \\ & & \ddots & \ddots \end{pmatrix}$

- Cyclic Classes $B_1 = \{0, 2, 4, ...\}$, $B_2 = \{1, 3, 5, ...\}$
- Invariant solution $v = v \cdot P$

$$v_0 = 1$$
, $v_2 = \frac{p}{q^2}$, $v_4 = \frac{p}{q^2}$, ...
 $v_1 = \frac{1}{q}$, $v_3 = \frac{p^2}{q^3}$, $v_5 = \frac{p^4}{q^5}$, ...

Normalize:
$$\sum v_i = 1 + \frac{1}{q} \left[1 + \frac{p}{q} + \frac{p^2}{q^2} + \dots \right] = 1 + \frac{1}{q} \frac{1}{1 - \frac{p}{q}} = \frac{2}{1 - \frac{p}{q}}$$

Multiply each term by
$$1 - \frac{p}{q}$$
. $(\sum v_i = 2)$ $(\pi_0, \pi_2, \pi_4, \dots) = (1 - \frac{p}{q})(1, \frac{p}{q^2}, \frac{p^3}{q^4}, \dots)$ $(\pi_1, \pi_3, \pi_5, \dots) = (1 - \frac{p}{q})(\frac{1}{q}, \frac{p^2}{q^3}, \frac{p^4}{q^5}, \dots)$

Hence,

$$\lim_{n \to \infty} P^{2n} = \left(1 - \frac{p}{q}\right) \begin{pmatrix} 1 & 0 & \frac{p}{q^2} & 0 & \frac{p^3}{q^4} & \cdots \\ 0 & \frac{1}{q} & 0 & \frac{p^2}{q^3} & 0 & \cdots \\ 1 & 0 & \frac{p}{q^2} & 0 & \frac{p^3}{q^4} & \cdots \\ 0 & \frac{1}{q} & 0 & \frac{p^2}{q^2} & 0 & \frac{p^3}{q^4} & \cdots \\ 0 & \frac{1}{q} & 0 & \frac{p^2}{q^3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \lim_{n \to \infty} P^{2n+1} = \left(1 - \frac{p}{q}\right) \begin{pmatrix} 0 & \frac{1}{q} & 0 & \frac{p^2}{q^3} & 0 & \cdots \\ 1 & 0 & \frac{p}{q^2} & 0 & \frac{p^3}{q^4} & \cdots \\ 0 & \frac{1}{q} & 0 & \frac{p^2}{q^3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Transient States

- ➤ If a MC has only **finitely** many transient states, then it will eventually leave the set of transient states never to return.
- ➤ If there are **infinitely** many transient states, it is possible for the chain to remain in the set of transient states forever.

Example:

$$P = \begin{pmatrix} p_0 & p_1 & p_2 & p_3 & \cdots \\ 0 & p_0 & p_1 & p_2 & \cdots \\ 0 & 0 & p_0 & p_1 & \cdots \\ 0 & 0 & 0 & p_0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- > All states are transient
- \triangleright If initial state is i, then the chain stays forever in the set $\{i, i+1, i+2,...\}$.

As
$$n \to \infty$$
, $X_n(\omega) \to \infty$

Let $A \subset E$, Q the matrix obtained from P by deleting all the rows and columns corresponding to states which are **not** in A. Then, for $i, j \in A$

$$Q^{n}(i,j) = \sum_{i_{1} \in A} \cdots \sum_{i_{n-1} \in A} Q(i,i_{1})Q(i_{1},i_{2})\cdots Q(i_{n-1},j) = P_{i} \{X_{1} \in A, \cdots, X_{n-1} \in A, X_{n} = j\}$$

$$\sum_{j \in A} Q^{n}(i,j) = P_{i} \{X_{1} \in A, \cdots, X_{n-1} \in A, X_{n} \in A\}$$

The event $\{X_1 \in A, ..., X_{n+1} \in A\}$ is a subset of $\{X_1 \in A, ..., X_n \in A\}$, therefore

$$\sum_{j\in A} Q^n(i,j) \ge \sum_{j\in A} Q^{n+1}(i,j)$$

Let

$$f(i) = \lim_{n \to \infty} \sum_{j \in A} Q^{n}(i, j), \qquad i \in A$$

* f(i) is the probability that starting at $i \in A$, the chain stays in the set A forever.

Proposition: The function f is the maximal solution of the system

$$h = Qh$$
, $0 \le h \le 1$

Either f = 0 or $\sup_{i \in A} f(i) = 1$

An application of the previous proposition was given in a theorem on the classification of states:

Theorem: Let X an irreducible MC with transition matrix P, and let Q be the matrix obtained from P by deleting the k-row and k-column for some $k \in E$. Then all states are **recurrent** if and only if the only solution of

$$h(i) = \sum_{j \in E_0} Q(i, j)h(j), \qquad 0 \le h(i) \le 1, \qquad i \in E_0$$

is h(i) = 0 for all $i \in E_0$. $E_0 = E - \{k\}$.

Proof:

- Fix a perticular state and name it 0.
- Since X is irreducible it is possible to go from 0 to some $i \in A = E \{0\}$.
- ➤ If the probability f(i) of remaining in A forever is f(i) = 0 for all $i \in A$, then with probability 1, the chain will leave A and enter 0 again.
- \triangleright Hence, if the only solution of the system is h=0, then state 0 is recurrent, and that in turn implies that all states are recurrent.
- \triangleright Conversely, if all states are recurrent, then the probability of remaining in the set A forever must be zero, since 0 will be reached with probability one from any state $i \in A$

Example: (Random Walk)

$$Q = \begin{pmatrix} 0 & p & & & \\ q & 0 & p & & \\ & q & 0 & p & \\ & & & \ddots \end{pmatrix}$$

• If p > q all states are transient.

$$f(i) = 1 - \left(\frac{q}{p}\right)^{i}, \qquad i = 1, 2, 3, \dots$$

This is the maximal solution since $\sup_{i} f(i) = 1$.

Interpretation:

- Starting at a state k (e.g. k = 7) the probability of staying forever within the set $\{1, 2, 3, ...\}$ is equal to $1 \left(\frac{q}{p}\right)^7$.
- \triangleright If k' > k, the probability of remaining in $\{1, 2, 3, ...\}$ is greater.
- From the shape of P: the restriction of P to the set $\{k, k+1,...\}$ is the same as the matrix Q. Hence, for all $k \in \{1, 2, 3,...\}$

$$P_{k+i}\left\{X_1 \ge k, X_2 \ge k, ...\right\} = 1 - \left(\frac{q}{p}\right)^{i+1}$$

For any subset A of E, let $f_A(i)$ the probability of remaining forever in A given the initial state $i \in A$. Then,

- ightharpoonup If A is an irreducible recurrent class, $f_A = 1$.
- \triangleright If A is a proper subset of an irreducible recurrent class, $f_A = 0$.
- \triangleright If A is a **finite set of transient** states, $f_A = 0$.
- ightharpoonup If A is an **infinite set of transient** states, then either $f_A = 0$ or $f_A \neq 0$.

In the latter case the chain travels through a sequence of sets $(A_1 \supset A_2 \supset A_3 \cdots)$ to "infinite".