Applications to Queueing Theory

Introduction to Stochastic Processes (Erhan Cinlar) Ch. 5.5, 5.6

 $N_t(\omega)$: number of arrivals during the time interval [0,t].

 $Z_1(\omega), Z_2(\omega), \dots$: service times of customers who depart first, second, ...

 $Y_t(\omega)$: number of customers in the system (waiting or being served at time t) <u>Assumptions:</u>

- $N = \{N_t; t \ge 0\} \sim P(a)$
- * Z_1, Z_2, \dots i.i.d. ~ ϕ
- Consider the future of Y from a time T of a departure onward.
- Define X_n as the number of customers in the system just after the instant of the nth departure.

Theorem: X is a MC with the transition matrix

$$P = \begin{pmatrix} q_0 & q_1 & q_2 & q_3 & \cdots \\ q_0 & q_1 & q_2 & q_3 & \cdots \\ & q_0 & q_1 & q_2 & \cdots \\ & & q_0 & q_1 & \cdots \\ & & & q_0 & \cdots \\ & & & & \ddots \end{pmatrix}, \quad q_k = \int_0^\infty \frac{e^{-at}(at)^k}{k!} d\phi(t), \quad k = 0, 1, \dots$$

Proof: We need to show

$$P\{X_{n+1} = j \mid X_0, ..., X_n\} = P\{X_{n+1} = j \mid X_n\}$$

$$P\{X_{n+1} = j \mid X_n = i\} = \begin{cases} q_j & i=0, j \ge 0\\ q_{j+1-i} & i>0, j \ge i-1\\ 0 & \text{otherwise} \end{cases}$$

- Let T the time of the n^{th} departure.
- Let $Z = Z_{n+1}$ the service time of the n+1 customer.

Then,
$$X_{n+1} = \begin{cases} X_n + (N_{T+Z} - N_T) - 1, & X_n > 0 \\ N_{S+Z} - N_S, & X_n = 0 \end{cases}$$
 (S:arrival time of the n+1 customer)

Using Poisson properties: $P\{N_{T+Z} - N_T = k \mid X_0, ..., X_n; T\} = P\{N_Z = k\}$

$$q_{k} = P\{N_{Z} = k\} = E\left[P\{N_{Z} = k \mid Z\}\right] = E\left[\frac{e^{-aZ}(aZ)^{k}}{k!}\right] = \int_{0}^{\infty} \frac{e^{-at}(at)^{k}}{k!} d\phi(t)$$

• i = 0 $P\{X_{n+1} = j \mid X_n = 0\} = P\{N_{S+Z} - N_S = j\} = P\{N_Z = j\} = q_j$

•
$$i > 0$$
 $P\{X_{n+1} = j \mid X_n = i\} = P\{N_{T+Z} - N_T = j+1-i\}$

$$= P\{N_{Z} = j+1-i\} = \begin{cases} q_{j+1-i}, & j \ge i-1\\ 0, & j < i-1 \end{cases}$$

The MC X is irreducible and aperiodic. If

$$r = E[N_Z] = aE[Z] = ab$$

then,

- If r > 1 all states are transient
- If r < 1 all states are recurrent non-null.
- If r = 1 all states are recurrent null

Notation:

$$r_{k} = 1 - q_{0} - \dots - q_{k}$$

$$r = r_{0} + r_{1} + \dots = (q_{1} + q_{2} + q_{3} + \dots) + (q_{2} + q_{3} + \dots) + (q_{3} + \dots) + \dots$$

$$= q_{1} + 2q_{2} + 3q_{3} + \dots$$

Proposition: The chain X is recurrent non-null aperiodic if and only if r < 1. <u>Proof:</u> We need to show that

$$\pi = \pi \cdot P, \qquad \pi \cdot 1 = 1$$

$$\begin{array}{ccccc} \pi_{0} &= & \pi_{0}q_{0} + \pi_{1}q_{0} \\ \pi_{1} &= & \pi_{0}q_{1} + \pi_{1}q_{1} + \pi_{2}q_{0} \\ \pi_{2} &= & \pi_{0}q_{2} + \pi_{1}q_{2} + \pi_{2}q_{1} + \pi_{3}q_{0} \\ \vdots & & \vdots \end{array} \right\} \xrightarrow{\pi_{1}q_{0}} \begin{array}{c} \pi_{1}q_{0} &= & \pi_{0}r_{0} \\ \pi_{2}q_{0} &= & \pi_{0}r_{1} + \pi_{1}r_{1} \\ \Rightarrow \\ \pi_{3}q_{0} &= & \pi_{0}r_{2}\pi_{1}r_{2} + \pi_{2}r_{1} \\ \vdots & & \vdots \end{array}$$

Applications to Queueing Theory: M/G/1 Queue Summing all equations $(q_0 = 1 - r_0, r = r_0 + r_1 + r_2 + \cdots)$

$$(1-r_0) \cdot \sum_{j=1}^{\infty} \pi_j = \pi_0 r + (r-r_0) \sum_{j=1}^{\infty} \pi_j$$

If r < 1, then we obtain

$$\sum_{j=1}^{\infty} \pi_j = \frac{r}{1-r} \pi_0 \implies \sum_{j=0}^{\infty} \pi_j = \frac{1}{1-r} \pi_0$$

The condition $\pi \cdot 1 = 1$ is satisfied with $\pi_0 = 1 - r$

Theorem: The limits $\pi(j) = \lim_{n \to \infty} P^n(i, j)$ exist $\forall j \in E$ and are independent of the initial state *i*.

- If $r \ge 1$, then $\pi(j) = 0$, $\forall j$.
- If r < 1, then

$$\pi(0) = 1-r$$

$$\pi(1) = (1-r)\frac{r_0}{q_0}$$
:

$$\pi(j+1) = (1-r) \sum_{k=1}^{j} \left(\frac{1}{q_0}\right)^{k+1} \sum_{\mathbf{a} \in S_{jk}} r_{a_1} r_{a_2} \cdots r_{a_k}$$

where S_{jk} is the set of all k-tuples $\mathbf{a} = (a_1, ..., a_k)$ of integers $a_i \ge 1$ with $a_1 + \cdots + a_k = j$

5

More on the recurrent non-null case

Having the limiting distributions, we can compute $E[X_n]$, $Var(X_n)$ etc., in the limit

 $n \rightarrow \infty$. Instead:

$$X_{n+1} = X_n + M_n - U_n$$

where

 $U_n = 1 - 1_0(X_n)$

 M_n is the number of arrivals during the n+1 th service.

 $\lim_{n \to \infty} E[U_n] = 1 - \lim_{n \to \infty} E[1_0(X_n)] = 1 - \lim_{n \to \infty} P\{X_n = 0\} = 1 - \pi(0) = r = a \cdot b$

 $E[M_n] = \mathbf{r} = \mathbf{a} \cdot \mathbf{b}$

$$E[M_n^2] = E\left[E[N_Z^2 \mid Z]\right] = E\left[aZ + a^2Z^2\right] = a \cdot b + a^2c^2$$
$$c^2 = E[Z^2] = \int_0^\infty t^2 d\phi(t)$$

 $V(X) = \sigma^2 = E(X - E(X))^2 = E(X^2) - E(X)^2 = E(X^2) = E(X^2)^2 + V(X)^2$

$$X_{n+1}^{2} = X_{n}^{2} + M_{n}^{2} + U_{n}^{2} + 2X_{n}M_{n} - 2X_{n}U_{n} - 2M_{n}U_{n}$$

But

• $U_n^2 = U_n (U_n \text{ takes values } 1, 0)$

• $X_n U_n = X_n$ (If $X_n > 0$, then $U_n = 1$, else if $X_n = 0$, then $U_n = 0$)

so that,

$$X_{n+1}^{2} = X_{n}^{2} + M_{n}^{2} + U_{n} + 2X_{n}M_{n} - 2X_{n} - 2M_{n}U_{n}$$

Taking expectations of both sides we obtain

 $E[X_{n+1}^2] = E[X_n^2] + E[M_n^2] + E[U_n] + 2E[X_n]E[M_n] - 2E[X_n] - 2E[M_n]E[U_n]$ and by letting $n \to \infty$

$$0 = ab + a^{2}c^{2} + ab + 2qab - 2q - 2a^{2}b^{2}$$
$$q = \lim_{n \to \infty} E[X_{n}] = ab + \frac{a^{2}c^{2}}{(2 - 2ab)}$$

where

Knowing the statistics of X_n we can find the statistics of V_n , (W_n) , as $n \to \infty$ $V_n = W_n + Z_n$

where

- V_n is the total time spent in the system
- W_n is teh waiting time spent by the n^{th} customer.

What if $r \ge 1$?

Consider $f_k(j)$ the probability starting from state k + j, the MC X never enters in the set $\{0, 1, ..., k\}$

 $f_k(j)$ is the maximal solution of the system $h = Q \cdot h$, $0 \le h \le 1$

where Q is the matrix obtained from P by deleting all rows and columns corresponding to the states $\{0, 1, ..., k\}$.

$$Q = \begin{pmatrix} q_1 & q_2 & q_3 & \cdots \\ q_0 & q_1 & q_2 & \cdots \\ q_0 & q_1 & \cdots \\ & & \ddots \end{pmatrix}$$

Q does not depend on k, therefore $f_k(j) = f_0(j)$ for all j,k.

Lemma: The probability that X never enters $\{0,1,...,k\}$ starting from k+j is the same as the probability f(j) that X never enters 0 starting from j.

Theorem: Let f(j) be the probability that the queue, starting with j customers never becomes empty. Then,

$$f(j) = 1 - \beta^{j}, \qquad j = 1, 2, \dots$$

where β is the smallest number in [0,1] satisfying $\beta = q_0 + q_1\beta + q_2\beta^2 + \cdots$ The β is strictly less than one if and only if the traffic intensity r > 1. Therefore, X is transient if and only if r > 1.

Exponentially distributed service times $\sim \exp(a)$ i.i.d. interarrival times $\sim \phi$.

In this case
$$q_n = \int_0^\infty \frac{e^{-at}(at)^n}{n!} d\phi(t)$$

is the probability that the server completes exactly n services during an interarrival time (provided that there are that many customers).

Define:
$$r_n = q_{n+1} + q_{n+2} + \cdots$$

 $r = \sum_{n=1}^{\infty} nq_n = r_0 + r_1 + r_2 + \cdots$

r is the expected number of services which the server is capable of completing during an iterarrival time. It can be proved that

- $r \ge 1$ Server can keep up with arrivals (recurrent)
- r <1 Queue size increases to infinity (transient)

If X_n^* is the number of customers present in the system just before the time T_n of the n^{th} arrival, then

Theorem:
$$X^* = \{X_n^*; n \in N\}$$
 is a MC with $E = \{0, 1, 2, ...\}, P^* = \begin{pmatrix} r_0 & q_0 \\ r_1 & q_1 & q_0 \\ r_2 & q_2 & q_1 & q_0 \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$

9

<u>Proof:</u> Let M_{n+1} be the number of services completed during the $n+1^{\text{th}}$ interarrival time $[T_n, T_{n+1})$. Then,

$$X_{n+1}^{\star} = X_n^{\star} + 1 - M_{n+1}$$

But M_{n+1} is conditionally independent of the past history before T_n given the present number X_n^* . If $Z = T_{n+1} - T_n$

$$P\{M_{n+1} = k \mid X_n^{\star}, Z\} = \begin{cases} \frac{e^{-aZ} (aZ)^k}{k!} & X_n^{\star} + 1 > k\\ \sum_{m=k}^{\infty} \frac{e^{-aZ} (aZ)^m}{m!} & X_n^{\star} + 1 = k\\ 0 & \text{otherwise} \end{cases}$$

Taking expectations with respect to Z, which is independent of X_n^* , we obtain

$$P\{M_{n+1} = k \mid X_n^* = i\} = \begin{cases} q_k & k \le i \\ r_{k-1} & k = i+1 \\ 0 & \text{otherwise} \end{cases}$$

Equation $X_{n+1}^{\star} = X_n^{\star} + 1 - M_{n+1}$ and the previous one provide matrix P^{\star}

Theorem: X^* is recurrent non-null if and only if r > 1. If r > 1,

$$\pi^{*}(j) = \lim_{n \to \infty} P^{*}(i, j) = \lim_{n \to \infty} P^{*} \{ X_{n}^{*} = j \mid X_{0}^{*} = i \}$$

and

$$\pi^*(j) = (1 - \beta)\beta^j, \qquad j = 0, 1, 2, \dots$$

where β is the unique number satisfying

$$\beta = q_0 + q_1\beta + q_2\beta^2 + \cdots$$

If $r \leq 1$ then $\pi^*(j) = 0$ for all j.

<u>Proof:</u> X^* is recurrent non-null if and only if $v = v \cdot P^*, \quad v \cdot 1 = 1$

has a solution.

$$\begin{array}{rclrcl}
\nu_{0} &= & q_{1}\nu_{0} &+ q_{2}\nu_{0} &+ q_{3}\nu_{0} &+ \cdots \\
& & + q_{2}\nu_{1} &+ q_{3}\nu_{1} &+ \cdots \\
& & + q_{3}\nu_{2} &+ \cdots \\
\nu_{1} &= q_{0}\nu_{0} &+ q_{1}\nu_{1} &+ q_{2}\nu_{2} &+ q_{3}\nu_{3} &+ \cdots \\
\nu_{2} &= q_{0}\nu_{1} &+ q_{1}\nu_{2} &+ q_{2}\nu_{3} &+ q_{3}\nu_{4} &+ \cdots
\end{array}$$

$$\begin{aligned}
 \nu_0 &= & q_1 \nu_0 + q_2 \nu_0 + q_3 \nu_0 + \cdots \\
 + q_2 \nu_1 + q_3 \nu_1 + \cdots \\
 + q_3 \nu_2 + \cdots \\
 \nu_1 &= q_0 \nu_0 + q_1 \nu_1 + q_2 \nu_2 + q_3 \nu_3 + \cdots
 \end{aligned}$$

$$v_2 = q_0v_1 + q_1v_2 + q_2v_3 + q_3v_4 + \cdots$$

Let $f(j) = v_0 + \dots + v_{j-1}$, $j = 1, 2, \dots$ Then,

$$\begin{cases} f(1) = q_1 f(1) + q_2 f(2) + q_3 f(3) + \cdots \\ f(2) = q_0 f(1) + q_1 f(2) + q_2 f(3) + \cdots \\ f(3) = q_0 f(2) + q_1 f(3) + \cdots \end{cases} \implies f = Q \cdot f$$

We are interested in a solution satisfying

$$\lim_{j \to \infty} f(j) = \sum_{j=0}^{\infty} v_j = 1$$

Q was obtained from *P* by deleting 0th row and column. Such an *f* exists if and only if *X* is transient which means that r > 1. In this case $f(j) = 1 - \beta^j$. Solving for *v* we obtain

$$v_0 = f(1) = 1 - \beta, \quad v_1 = f(2) - f(1) = (1 - \beta)\beta,..$$

Theorem: X^* is transient if and only if r < 1. If r < 1, the probability $f^*(j)$ that the queue starting with j customers never becomes empty is given by

$$f^{\star}(j) = \pi(0) + \pi(1) + \dots + \pi(j), \qquad j = 1, 2, \dots$$

where the $\pi(j)$ are those found in the M/G/1 case.

Proof:

- f^* is the solution to the system $h = Q^*h$, $0 \le h \le 1$.
- Q^* is the matrix obtained from P^* by deleting the 0th row and column. The equations for $h = Q^*h$ are $(f^*(j) = h_j)$

$$h_{1} = q_{0}h_{2} + q_{1}h_{1}$$

$$h_{2} = q_{0}h_{3} + q_{1}h_{2} + q_{2}h_{1}$$

$$h_{3} = q_{0}h_{4} + q_{1}h_{3} + q_{2}h_{2} + q_{3}h_{1}$$

$$\cdot$$

If we define

If we define $\pi_0 = q_0 h_1$, $\pi_1 = (1 - q_0) h_1$, and let

$$\pi_j = h_j - h_{j-1}, \qquad j = 2, 3, \dots$$

then the first of the previous equations along with $\pi_0 = q_0 h_1$, implies the equations

 $\pi_0 = q_0 \pi_0 + q_0 \pi_1$ $\pi_1 = q_1 \pi_0 + q_1 \pi_1 + q_0 \pi_2$

and subtracting the equation for h_{i-1} from the one for h_i yields

$$\pi_2 = q_2 \pi_0 + q_2 \pi_1 + q_1 \pi_2 + q_0 \pi_3$$

$$\pi_3 = q_3 \pi_0 + q_3 \pi_1 + q_2 \pi_2 + q_1 \pi_3 + q_0 \pi_3$$

In other words, π satisfies $\pi = \pi P$ with P the transition matrix in the M/G/1 case, and we are interested in the solution

$$\pi = \pi P,$$
 $\sum_{j} \pi_{j} = \lim_{j} h_{j} = 1$

- Such a solution exists if and only if r < 1.
- The solution π is connected to h by the relation $h_j = \pi_0 + \dots + \pi_j$

Special case M/M/1

We can consider this queue as a special case of M/G/1 or G/M/1. In the sequel we use G/M/1. Now the interarrival distribution is given by:

$$\phi(t) = 1 - e^{-\lambda t}, \qquad t \ge 0$$

To compute the limiting distribution of X^* (queue size just before the n^{th} arrival, we find first β , where

$$\beta = \sum_{k=0}^{\infty} q_k \beta^k = \sum_{k=0}^{\infty} \beta^k \int_0^\infty \frac{e^{-at} (at)^k}{k!} \lambda e^{-\lambda t} dt = \int_0^\infty e^{-at(1-\beta)} \lambda e^{-\lambda t} dt = \frac{\lambda}{\lambda + a - a\beta}$$

The previous equation becomes $\beta = \frac{\lambda}{\lambda + a - a\beta}$ or $(1 - \beta)(\lambda - ab) = 0$

with solutions $\beta = 1$ and $\beta = \frac{\lambda}{a}$. When $r = \frac{a}{\lambda} > 1$, the smallest solution is $\beta = \frac{\lambda}{a}$

So we have
$$\lim_{n \to \infty} P\{X_n^* = j\} = \left(1 - \frac{\lambda}{a}\right) \left(\frac{\lambda}{a}\right)^j, \qquad j = 0, 1, \dots$$

It turns out that $\lim_{t \to \infty} P\{Y_t = j\} = \left(1 - \frac{\lambda}{a}\right) \left(\frac{\lambda}{a}\right)^j$, j = 0, 1, ... for the queue size Y_t at time t.

and $\lim_{n \to \infty} P\{X_n = j\} = \left(1 - \frac{\lambda}{a}\right) \left(\frac{\lambda}{a}\right)^j$, j = 0, 1, ... for the queue size X_n just after the n^{th} departure.

Birth and Death Processes

Introduction to Stochastic Processes (Erhan Cinlar) Ch. 8.6

The steady-state follows from $\pi Q = 0$

$$\pi_0 = \frac{1}{1 + \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}} \qquad \pi_j = \frac{\prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}}{1 + \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}} \quad j \ge 1$$

 $\Sigma_1 = \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}$ must converge to have a steady-state

The steady-state

The process is transient if and only if the embedded MC is transient. For a recurrent chain, $r_{ij} = \Pr[T_j < \infty | X_0 = i]$ equals 1 (every state j is certainly visited starting from initial state i) For the embedded MC (gambler's ruin), it holds that

$$\Pr\left[T_0 < \infty | X_0 = j\right] = 1 - \frac{\sum_{k=0}^{j-1} \prod_{m=1}^{k} \frac{q_m}{p_m}}{\sum_{k=0}^{N-1} \prod_{m=1}^{k} \frac{q_m}{p_m}}$$

Can be equal to one for $N \to \infty$ only if $\lim_{N\to\infty} \sum_{k=0}^{N-1} \prod_{m=1}^k \frac{q_m}{p_m} = \infty$ Transformed to the birth and death rates $\sum_2 = \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\mu_m}{\lambda_m} = \infty$

Furthermore, the infinite series $\Sigma_1 = \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}$ must converge to have a steady-state distribution

If Σ₁<∞ and Σ₂=∞ the BD process is positive recurrent
If Σ₁=∞ and Σ₂=∞, it is null recurrent
If Σ₂<∞, it is transient

Birth Death Process: The steady-state

$$\pi_0 = \frac{1}{1 + \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}} \quad \pi_j = \frac{\prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}}{1 + \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}} \quad j \ge 1$$

 $\Sigma_1 = \sum_{j=1}^{\infty} \prod_{m=0}^{j-1} \frac{\lambda_m}{\mu_{m+1}}$ must converge to have a steady-state

$$\lambda_j \to a_j \quad \mu_j \to b_j$$

A limiting distribution exists iff $c = \sum_{i=0}^{\infty} v_i = 1 + \sum_{i=1}^{\infty} \frac{a_0 \cdot a_1 \cdots a_{i-1}}{b_1 \cdot b_2 \cdots b_i} < \infty$

If $c < \infty$, then the limiting distribution is $\pi(j) = \begin{cases} \frac{1}{c} & j = 0\\ \frac{a_0 \cdot a_1 \cdots a_{i-1}}{c \cdot b_1 \cdot b_2 \cdots b_i} & j \ge 1 \end{cases}$

Example: $M/M/\infty$ queue.

There are infinitely many servers so that no customer ever waits. Arrivals form a Poisson process with rate α Service times are exponential with mean 1/b

$$c = e^r < \infty, \quad r = \frac{a}{b}$$

 $\pi(j) = \frac{e^{-r}r^j}{j!}, \qquad j = 0, 1, \dots$ (Poisson with parameter r)

E[Y] = r

Example: $M/M/\infty$ queue.

 $Q = \begin{pmatrix} -a_0 & a_0 \\ b_1 & -a_1 - b_1 & a_1 \\ b_2 & -a_2 - b_2 & a_2 \\ & & & \ddots \end{pmatrix} = \begin{pmatrix} -a & a & & & \\ b & -a - b & a & & \\ & 2b & -a - 2b & a & \\ & & & \ddots \end{pmatrix}$ $c = 1 + \sum_{i=1}^{\infty} \frac{a_0 \cdot a_1 \cdots a_{i-1}}{b_1 \cdot b_2 \cdots b_i} = 1 + \sum_{i=1}^{\infty} \frac{a^i}{i!b^i} = \sum_{i=0}^{\infty} \frac{r^i}{i!} = e^x$ $\pi(j) = \begin{cases} \frac{1}{c} = \frac{1}{e^r} & j = 0\\ \frac{a_0 \cdot a_1 \cdots a_{j-1}}{c \cdot b_1 \cdot b_2 \cdots b_j} = \frac{1}{e^r} \frac{a^j}{j! b^j} = \frac{r^j}{e^r j!} & j \ge 1 \end{cases} \quad \text{or} \quad \pi(j) = \frac{r^j}{e^r j!} \\ j \ge 1 & j \ge 1 \end{cases}$ $E[Y] = \sum_{j=0}^{\infty} j \pi_{j} = \sum_{j=1}^{\infty} j \frac{r^{j}}{e^{r} j!} = e^{-r} r \sum_{j=1}^{\infty} \frac{r^{j-1}}{(j-1)!} = e^{-r} r \sum_{k=0}^{\infty} \frac{r^{k}}{k!} = e^{-r} r e^{r} = r$

Example: $M/M/s/\infty$ queue.

There are *s* servers, and the waiting room is of infinite size. Arrivals form a Poisson process with rate α Service times are exponential with mean 1/b

If there are i < s customers in the system, then *i* servers are busy working independently of each other If $i \ge s$, then all *s*-servers are busy

Therefore,

 $a_0 = a_1 = \dots = a; \quad b_1 = b, b_2 = 2b, \dots, b_s = sb, b_{s+1} = sb, \dots$

A limiting distribution exists if and only if $r = \frac{a}{sb} < 1$.

S

R

R

$$\begin{array}{c} \mathsf{Example:}\; M/M/s/\infty \,\mathsf{queue.} \\ a_{0} = a_{1} = \cdots = a; \quad b_{1} = b, b_{2} = 2b, \dots, b_{s} = sb, b_{s+1} = sb, \dots \\ c = 1 + \sum_{i=1}^{s-1} \frac{s^{i}r^{i}}{i!} + \frac{s^{s}r^{s}}{s!(1-r)}, \quad r = \frac{a}{sb} < 1 \\ \pi(j) = \begin{cases} \frac{1}{c} & j = 0 \\ \frac{1}{c} & j! = 0 \\ \frac{1}{c} & s! & s \leq j \end{cases} \\ \mathbf{b}_{s+1} = (s-1)b \quad \alpha_{s+2} = \alpha \\ \mathbf{b}_{s+1} = sb \quad \alpha_{s} = \alpha \\ \mathbf{b}_{s+1} = sb \quad \alpha_{s} = \alpha \\ \mathbf{b}_{s+2} = sb \quad \alpha_{s+1} = \alpha \\ \mathbf{b}_{s+2} = sb \quad \alpha_{s+2} = \alpha \\ \mathbf{b}_{s+3} = sb \quad \alpha_{s+2} = \alpha \end{cases}$$

Example: $M/M/s/\infty$ queue.

An arriving customer is permitted to balk: if he finds the system too crowded, he may leave, but once he joins the system he cannot change his mind later. Suppose the probability of joining the queue is p_i if there are *i*-customers in the system at the time of arrival. p_i $1-p_i$ R b_s

 $b_1 = b$ $\alpha_0 \models \alpha p_0$ $b_2 = 2b$ αp_1 α_1 $b_3 = 3b$ $\alpha_3 = \alpha p_2$ $b_{s-1} = (s-1)b$ $\alpha_{s-2} = \alpha p_{s-2}$ $\alpha_{s-1} = \alpha p_{s-1}$ $b_s = sb$ αps $b_{s+1} = sk$ αs $b_{s+2} = s$ $a_{s+1} = \alpha p_{s+1}$ $b_{s+3} = sb$ $\alpha_{s+2} = \alpha p_{s+2}$

If the queue size at time t is $Y_t = i$, and if there were no service completions during [t, t+u], then the probability that there are no additions to the queue during [t, t+u] is

$$\sum_{n=0}^{\infty} \frac{e^{-au} (au)^n}{n!} (1-p_i)^n = e^{-au} \sum_{n=0}^{\infty} \frac{(au(1-p_i))^n}{n!} = e^{-au} e^{au(1-p_i)} = e^{-ap_iu}$$

Hence, $a_0 = ap_0, a_1 = ap_1, \dots a_i = ap_i$ $b_1 = b, b_2 = 2b, \dots, b_s = sb, b_{s+1} = b_{s+2} = \dots = sb$

24

Example: $M/M/1/\infty$ queue.

E

Customers arrive according to a Poisson process with rate a, service times are exponential with mean $\frac{1}{b}$, there is a single server and infinite queues are permissible.

 Y_t is the number of customers in the system at time t.

 Y_t is a special birth-death process, where

 $a_0 = a_1 = a_2 = \dots = a;$ $b_1 = b_2 = \dots = b$

The parameter $r = \frac{a}{b}$ is called traffic intensity. If $r = \frac{a}{b} < 1$, then there is a limiting distribution, which is

$$\pi(j) = \begin{cases} \frac{1}{c} & j = 0\\ \frac{a^{j}}{cb^{j}} & j \ge 1 \end{cases}, \quad c = \frac{1}{1 - r}$$

Thus,
$$\pi(j) = (1-r)r^{j}$$
, $j=0, 1, ...$
 $[Y] = \frac{r}{(1-r)}$, $E[Y_q] = \frac{r^2}{(1-r)}$

$$Example: M/M/1/\infty \quad queue.$$

$$Q = \begin{pmatrix} -a_0 & a_0 \\ b_1 & -a_1 - b_1 & a_1 \\ b_2 & -a_2 - b_2 & a_2 \end{pmatrix} = \begin{pmatrix} -a & a \\ b & -a - b & a \\ b & -a - b & a \end{pmatrix}$$

$$C = 1 + \sum_{i=1}^{n} \frac{a_0 \cdot a_1 \cdots a_{i-1}}{b_1 \cdot b_2 \cdots b_i} = 1 + \sum_{i=1}^{n} \frac{a^i}{b^i} = \sum_{i=0}^{\infty} \frac{a^i}{b^i} = \sum_{i=0}^{\infty} r^i \stackrel{r<1}{=} \frac{1}{1 - r}$$

$$d_0 = \begin{cases} \frac{1}{c} = (1 - r) & j = 0 \\ \frac{a_0 \cdot a_1 \cdots a_{j-1}}{c \cdot b_1 \cdot b_2 \cdots b_i} = (1 - r) \frac{a^j}{b^j} = (1 - r) r^j \quad j \ge 1 \end{cases}$$

$$E[Y] = \sum_{j=0}^{\infty} j \pi_j = \sum_{j=1}^{\infty} j (1 - r) r^j = (1 - r) r \sum_{j=1}^{\infty} j r^{j-1} = (1 - r) r \frac{1}{(1 - r)^2} = \frac{r}{(1 - r)}$$

$$E[Y_q] = \sum_{j=2}^{\infty} (j - 1) \pi_j = \sum_{j=2}^{\infty} (j - 1) (1 - r) r^j = (1 - r) r^2 \sum_{j=2}^{\infty} (j - 1) r^{j-2}$$

$$= (1 - r) r^2 \sum_{k=1}^{\infty} k r^{k-1} = (1 - r) r^2 \frac{1}{(1 - r)^2} = \frac{r^2}{(1 - r)}$$

• /

. 1

Example: M/M/1/m queue.

Exactly as the previous case with the difference that the "waiting" room has finite capacity m-1.

 Y_t is the number of customers in the system at time t.

Starting with less than m customers, the total number in the system cannot exceed m. A customer arriving to find m or more customers in the system leaves and never returns.

$$a_0 = a_1 = \dots = a_{m-1} = a; \quad a_m = a_{m+1} = \dots = 0; \quad b_1 = b_2 = \dots = b$$

States m + 1, m + 2, ... are all transient. The $C = \{0, 1, ..., m\}$ is a recurrent irreducible set.

Example: Machine repair problem.

- Suppose there are *m* machines serviced by one repairman.
- Each machine runs without failure, independent of all others, an exponential time with mean $\frac{1}{a}$
- When it fails, it waits until the repairman can come to repair it, and the repair itself takes an exponential distributed amount of time with mean $\frac{1}{b}$.
- Once repaired, the machine is as good as new.

Example: Machine repair problem.

- Let Y_t be the number of failed machines at time t
- If $Y_t = i$, then there are m-i machines working, and the time until the next failure is exponential with parameter (m-i)a (if no machines are repaired in the meantime).

Hence,

•
$$a_0 = ma, a_1 = (m-1)a, ..., a_{m-1} = a; \quad (a_m = a_{m+1} = \dots = 0)$$

• $b_1 = b_2 = \cdots = b$

Limiting distribution:

$$\pi(j) = pm(m-1)\cdots(m-j)\left(\frac{a}{b}\right)^{j}, \quad j = 0, 1, ..., m$$

where $\frac{1}{p} = \sum_{i=0}^{m} m(m-1)\cdots(m-i)\left(\frac{a}{b}\right)^{i}$

$$b_{1} = \begin{pmatrix} b & \alpha_{0} \\ 0 & m & \alpha \\ b_{2} = \begin{pmatrix} b & \alpha_{1} \\ 0 & 1 \\ 0 &$$