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Applications to Queueing Theory: M/G/1 Queue
( )tN ω : number of arrivals during the time interval [0 ]t, .  

1 2( ) ( )Z Z …ω ω, , : service times of customers who depart first, second, …  
( )tY ω : number of customers in the system (waiting or being served at time t )  

Assumptions:  
♣ { 0} ( )tN N t P a= ; ≥ ∼   
♣ 1 2 i i dZ Z … φ, , . . . ∼   

 

 Consider the future of Y  from a time T  of a departure onward.  
 Define nX  as the number of customers in the system just after the instant of the

thn  departure.  
 

Theorem: X  is a MC with the transition matrix  
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Proof:  We need to show         { }1 0n nP X j X … X+ = | , , = { }1n nP X j X+ = |  
             

{ }1n nP X j X i+ = | = = 1

0 0
0 1

0 otherwise

j

j i

q i j
q i j i+ −

= , ≥⎧
⎪ > , ≥ −⎨
⎪
⎩

 

 Let T  the time of the thn  departure.  
 Let 1nZ Z +=  the service time of the 1n +  customer.  

 

Then,   1

( ) 1 0
0

n T Z T n
n

S Z S n

X N N X
X

N N X
+

+
+

+ − − , >⎧
= ⎨ − , =⎩

   (S:arrival  time of the n+1 customer )

 

Using Poisson properties:  { } { }0T Z T n ZP N N k X …X T P N k+ − = | , ; = =  
 

{ } { }
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aZ k at k
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 0i =              { } { } { }1 0n n S Z S Z jP X j X P N N j P N j q+ += | = = − = = = =  
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The MC X  is irreducible and aperiodic. If  
  

 [ ] [ ]Zr E N aE Z ab= = =  

then,   
 If 1r >  all states are transient  
 If 1r <  all states are recurrent non-null.  
 If 1r =  all states are recurrent null  

 

Notation:  
kr = 01 kq q− − −"  

r = 0 1 1 2 3 2 3 3( ) ( ) ( )r r q q q q q q+ + = + + + + + + + + +" " " " "  

= 1 2 32 3q q q+ + +"  

 
Proposition: The chain X  is recurrent non-null aperiodic if and only if 1r < .  
 

Proof: We need to show that  
 1 1Pπ π π= ⋅ , ⋅ =  
 

 

0 0 0 1 0 1 0 0 0

0 1 1 1 2 0 0 1 1 11 2 0

0 2 1 2 2 1 3 0 0 2 1 2 2 12 3 0
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q q q q r r

q q q q q r r r
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π π π π π π π π π

= + =⎫
⎪= + + = +⎪⇒⎬= + + + = +⎪
⎪⎭# #
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Applications to Queueing Theory: M/G/1 Queue
 Summing all equations ( 0 01q r= − , 0 1 2r r r r= + + +" )  

 0 0 0
1 1

(1 ) ( )j j
j j

r r r rπ π π
∞ ∞

= =

− ⋅ = + −∑ ∑  

If 1r < , then we obtain  0 0
1 0

1
1 1j j

j j

r
r r

π π π π
∞ ∞

= =

= ⇒ =
− −∑ ∑  

The condition 1 1π ⋅ =  is satisfied with 0 1 rπ = −    
 

Theorem: The limits ( ) lim ( )n
nj P i jπ →∞= ,  exist j E∀ ∈  and are independent of the

initial state i .  
• If 1r ≥ , then ( ) 0j jπ = , ∀ .  
• If 1r < , then  
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where jkS  is the set of all k -tuples 1( )ka … a= , ,a  of integers 1ia ≥  with 1 ka a j+ ="
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Applications to Queueing Theory: M/G/1 Queue
 More on the recurrent non-null case  
Having the limiting distributions , we can compute [ ]nE X , ( )nVar X etc., in the limit
n→∞ .  
Instead:  

1n n n nX X M U+ = + −  

where  

01 1 ( )n nU X= −  

nM  is the number of arrivals during the 1n +  th service.  

0lim [ ] 1 lim [1 ( )] 1 lim { 0} 1 (0)n n nn n n
E U E X P X r a bπ

→∞ →∞ →∞
= − = − = = − = = ⋅  

[ ]nE M = r=a·b 

2[ ]nE M = 2 2 2 2 2[ ]ZE E N Z E aZ a Z a b a c⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤| = + = ⋅ +⎣ ⎦  

2c = 2 2

0
[ ] ( )E Z t d tφ

∞
= ∫  

V(X)=σ2=E(X-E(X))2=E(X2)-E(x)2 => E(X2) = E(x)2 +V(x)



7

Applications to Queueing Theory: M/G/1 Queue
  2 2 2 2

1 2 2 2n n n n n n n n n nX X M U X M X U M U+ = + + + − −  

But  
 2

n nU U=  ( nU  takes values 1, 0)  
 n n nX U X=  (If 0nX > , then 1nU = , else if 0nX = , then 0nU = )  

so that,  
 2 2 2

1 2 2 2n n n n n n n n nX X M U X M X M U+ = + + + − −  

Taking expectations of both sides we obtain  
 2 2 2

1[ ] [ ] [ ] [ ] 2 [ ] [ ] 2 [ ] 2 [ ] [ ]n n n n n n n n nE X E X E M E U E X E M E X E M E U+ = + + + − −
and by letting n→∞   
 2 2 2 20 2 2 2ab a c ab qab q a b= + + + − −  

where     
2 2

lim [ ]
(2 2 )nn

a cq E X ab
ab→∞

= = +
−

 

Knowing the statistics of nX  we can find the statistics of nV , ( nW ), as n→∞   
 n n nV W Z= +  

where  
 nV  is the total time spent in the system  
 nW  is teh waiting time spent by the thn  customer.  
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What if 1r ≥ ?  
Consider ( )kf j  the probability starting from state k j+ , the MC X never enters in
the set {0 1 }… k, , ,   

( )kf j  is the maximal solution of the system  0 1h Q h h= ⋅ , ≤ ≤  
where Q  is the matrix obtained from P by deleting all rows and columns
corresponding to the states {0 1 }… k, , , .  

 

1 2 3

0 1 2

0 1

q q q
q q q

Q
q q

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"
"
%

 

Q  does not depend on k , therefore 0( ) ( )kf j f j=  for all j k, .  
Lemma: The probability that X  never enters {0 1 }… k, , ,  starting from k j+ is the
same as the probability ( )f j  that X  never enters 0  starting from j .   
Theorem: Let ( )f j  be the probability that the queue, starting with j customers
never becomes empty. Then,  
 ( ) 1 1 2jf j j …β= − , = , ,  

where β  is the smallest number in [0 1],  satisfying  2
0 1 2q q qβ β β= + + +"  

The β  is strictly less than one if and only if the traffic intensity 1r > . Therefore, X
is transient if and only if 1r > .   



9

Applications to Queuing Theory: G/M/1 Queue
Exponentially distributed service times exp( )a∼   
i.i.d. interarrival times φ∼ .  

In this case  
0

( ) ( )
at n

n
e atq d t
n

φ
−∞

=
!∫  

is the probability that the server completes exactly n  services during an interarrival
time (provided that there are that many customers).  
 

Define: nr = 1 2n nq q+ ++ +"  

r = 0 1 21 nn
nq r r r∞

=
= + + +∑ "  

r  is the expected number of services which the server is capable of completing during
an iterarrival time. It can be proved that  

 1r ≥  Server can keep up with arrivals (recurrent)  
 1r <  Queue size increases to infinity (transient)  

 

If nX  is the number of customers present in the system just before the time nT of the
thn  arrival, then  

Theorem: { }nX X n N= ; ∈  is a MC with {0 1 2 }E …= , , , ,

0 0

1 1 0

2 2 1 0

r q
r q q

P
r q q q

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠# # # # %
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Applications to Queuing Theory: G/M/1 Queue
 
 
Proof: Let 1nM +  be the number of services completed during the th1n + interarrival
time 1[ )n nT T +, . Then,  
 1 11n n nX X M+ += + −  
 

But 1nM +  is conditionally independent of the past history before nT given the present
number nX . If 1n nZ T T+= −   

 { }1

( ) 1

( ), 1

0 otherwise

aZ k

n

aZ m

n n n
m k

e aZ X k
k

e aZP M k X Z X k
m

−

−∞

+
=

⎧
+ >⎪ !⎪

⎪
= | = + =⎨

!⎪
⎪
⎪
⎩

∑  

Taking expectations with respect to Z , which is independent of nX , we obtain  

 { }1 1 1
0 otherwise

k

n n k

q k i
P M k X i r k i+ −

≤⎧
⎪= | = = = +⎨
⎪
⎩

 

Equation 1 11n n nX X M+ += + −  and the previous one provide matrix P   



11

Applications to Queuing Theory: G/M/1 Queue
 Theorem: X  is recurrent non-null if and only if 1r > . If 1r > ,  
  
 0( ) lim ( ) lim { }n

nn n
j i j P X j X iPπ

→∞ →∞
= , = = | =  

and  
 ( ) (1 ) 0 1 2jj j …π β β= − , = , , ,  
where β  is the unique number satisfying  
 2

0 1 2q q qβ β β= + + +"  

If 1r ≤  then ( ) 0jπ =  for all j .   
 
 

Proof: X  is recurrent non-null if and only if  
 1 1Pν ν ν= ⋅ , ⋅ =  
has a solution.  

 

0 1 0 2 0 3 0

2 1 3 1

3 2

1 0 0 1 1 2 2 3 3

2 0 1 1 2 2 3 3 4

q q q
q q

q
q q q q
q q q q

ν ν ν ν
ν ν

ν
ν ν ν ν ν
ν ν ν ν ν

= + + +
+ + +

+ +
= + + + +
= + + + +

"
"
"
"
"
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Applications to Queuing Theory: G/M/1 Queue
 

 

0 1 0 2 0 3 0

2 1 3 1

3 2

1 0 0 1 1 2 2 3 3

2 0 1 1 2 2 3 3 4

q q q
q q

q
q q q q
q q q q

ν ν ν ν
ν ν

ν
ν ν ν ν ν
ν ν ν ν ν

= + + +
+ + +

+ +
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Let 0 1( ) 1 2jf j j …ν ν −= + + , = , ," . Then,  
 

 
1 2 3

0 1 2

0 1

(1) (1) (2) (3)
(2) (1) (2) (3)
(3) (2) (3)

f q f q f q f
f q f q f q f f Q f
f q f q f

= + + +⎧ ⎫
⎪ ⎪= + + + ⇒ = ⋅⎨ ⎬
⎪ ⎪= + +⎩ ⎭

"
"
"

 

We are interested in a solution satisfying  

 
0

lim ( ) 1jj j
f j ν

∞

→∞
=

= =∑  

Q  was obtained from P  by deleting th0  row and column. Such an f exists if and
only if X  is transient which means that 1r > . In this case ( ) 1 jf j β= − . Solving for
ν  we obtain  
 0 1(1) 1 (2) (1) (1 )f f f …ν β ν β β= = − , = − = − ,  
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Applications to Queuing Theory: G/M/1 Queue
 Theorem: X  is transient if and only if 1r < . If 1r < , the probability ( )f j that the queue

starting with j  customers never becomes empty is given by  
 ( ) (0) (1) ( ) 1 2f j j j …π π π= + + + , = , ,"  
where the ( )jπ  are those found in the M/G/1 case.   
Proof:  

 f  is the solution to the system h Q h= , 0 1h≤ ≤ .  
 Q  is the matrix obtained from P  by deleting the th0  row and column.  

The equations for h Q h=  are ( ( ) jf j h= )  

 

1 0 2 1 1

0 3 1 2 2 12

0 4 1 3 2 2 3 13

h q h q h
h q h q h q h
h q h q h q h q h

= +
= + +
= + + +
#

 

If we define …. 
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If we define 0 0 1q hπ = , 1 0 1(1 )q hπ = − , and let  
 1 2 3j j jh h j …π −= − , = , ,  

then the first of the previous equations along with 0 0 1q hπ = , implies the equations  

 0 0 0 0 1

1 0 1 1 0 21

q q
q q q

π π π
π π π π

= +
= + +

 

and subtracting the equation for 1jh −  from the one for jh  yields  

 2 2 0 2 1 1 2 0 3

3 0 3 1 2 2 1 3 0 43

q q q q
q q q q q

π π π π π
π π π π π π

= + + +
= + + + +

 

In other words, π  satisfies Pπ π=  with P  the transition matrix in the M/G/1 case, and we
are interested in the solution  
 lim 1j jjj

P hπ π π= , = =∑  

 
 Such a solution exists if and only if 1r < .  
 The solution π  is connected to h  by the relation  0j jh π π= + +"  
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Special case M/M/1
 
We can consider this queue as a special case of M/G/1 or G/M/1. In the sequel we use
G/M/1. Now the interarrival distribution is given by:    

 ( ) 1 0tt e tλφ −= − , ≥  
 

To compute the limiting distribution of X  (queue size just before the thn arrival, we find
first β , where  

             
0

k
k

k
qβ β

∞

=

= =∑ ( )
0 0

at ke atk t
kk

e dtλβ λ
−∞∞ −

!=∑ ∫ = (1 )

0

at t
a ae e dtβ λ λ

λ βλ
∞ − − −

+ −=∫  

 

The previous equation becomes or (1 )( ) 0ab
a a
λβ β λ

λ β
= − − =

+ −
 

with solutions 1β =  and a
λβ = . When 1ar λ= > , the smallest solution is 

a
λβ =  

So we have                    { }lim 1 0 1
j

nn
P X j j …

a a
λ λ

→∞

⎛ ⎞⎛ ⎞= = − , = , ,⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

It turns out that { }lim 1 0 1
j

tt
P Y j j …

a a
λ λ

→∞

⎛ ⎞⎛ ⎞= = − , = , ,⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

for the queue size tY  at time t .   

and { }lim 1 0 1
j

nn
P X j j …

a a
λ λ

→∞

⎛ ⎞⎛ ⎞= = − , = , ,⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

for the queue size nX  just after the thn  departure.  
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Birth and Death Processes 

Introduction to Stochastic Processes (Erhan Cinlar)
Ch. 8.6
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Birth Death Process: The steady-state

must converge to have a steady-state



The steady-state
The process is transient if and only if the embedded MC is transient.
For a recurrent chain, equals 1
(every state j is certainly visited starting from initial state i)
For the embedded MC (gambler’s ruin), it holds that

Can be equal to one for               only if

Transformed to the birth and death rates

Furthermore, the infinite series must converge 
to have a steady-state distribution

•If S1<¶ and S2=¶ the BD process is positive recurrent 
•If S1=¶ and S2=¶, it is null recurrent
•If S2<¶, it is transient
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Birth Death Process: The steady-state

must converge to have a steady-state

j j j ja bλ μ→ →  
 

A limiting distribution exists iff  0 1 1

0 1 1 2

1 i
i

i i i

a a ac
b b b

ν
∞

−

= =

⋅
= = + < ∞

⋅∑ ∑ "
"

 

 

If c < ∞ , then the limiting distribution is  
0 1 1

1 2

1 0
( )

1i

i

j
cj a a a j

c b b b

π
−

⎧ =⎪⎪= ⎨ ⋅⎪ ≥
⋅ ⋅⎪⎩

"
"
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Example: queue.M M/ /∞

There are infinitely many servers so that no customer ever waits. 

Arrivals form a Poisson process with rate α  

Service times are exponential with mean 1/b 

 

 

,r ac e r
b

= < ∞ =  

( ) 0 1
r je rj j …
j

π
−

= , = , ,
!

     (Poisson with parameter r )  

 
[ ]E Y r=  

R

R

R...

0

1

2

k-1

k

α0 = α

α1 = α

α2 = α

αk-1 = α

b2 = 2b

b1 = b

b3 = 3b

bk = kb

bk-1 = (k-1)b αk-2 = α

k+1

k+2

αk = α

ak+1 = α

αk+2 = α

bs+2 = (k+2)b

bk+1 = (k+1)b

bk+3 = (k+3)b
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Example: queue.

0 0

1 1 1 1

2 2 2 2 2 2

a a
b a b a
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Example: queue.M M s/ / /∞
There are s  servers, and the waiting room is of infinite size. 

Arrivals form a Poisson process with rate α  

Service times are exponential with mean 1/b 

 

If there are i s<  customers in the system, then i servers are busy
working independently of each other 
If i s≥ , then all s -servers are busy   

 

Therefore,  

0 1 1 2 12 s sa a a b b b b … b sb b sb …+= = = ; = , = , , = , = ,"  

 
♣ A limiting distribution exists if and only if 1a

sbr = < .  
 

R

R

R

...
s
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Example: queue.M M s/ / /∞

0 1 1 2 12 s sa a a b b b b … b sb b sb …+= = = ; = , = , , = , = ,"

0

1

2

s-1

s

α0 = α

α1 = α

α2 = α

αs-1 = α

b2 = 2b

b1 = b

b3 = 3b

bs = sb

bs-1 = (s-1)b αs-2 = α

S+1

S+2

αs = α

as+1 = α

αs+2 = α

bs+2 = sb

bs+1 = sb

bs+3 = sb

1

1

1 , 1
! !(1 )

i i s ss

i

s r s r ac r
i s r sb

−

=

= + + = <
−∑

1 0

1( ) 0
!

1
!

j j

s j

j
c
s rj j s
c j
s r s j
c s

π

⎧
=⎪

⎪
⎪⎪= < <⎨
⎪
⎪

≤⎪
⎪⎩

( )2
1[ ]

! 1

s ss r rE Y sr
s cr

= +
−

( )2
1[ ]

! 1

s
s

q
s rE Y r

c s r
=

−
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Example: queue.M M s/ / /∞
An arriving customer is permitted to balk: if he finds the system
too crowded, he may leave, but once he joins the system he
cannot change his mind later.  
Suppose the probability of joining 
 the queue is  ip  if there are 
 i -customers in the system 
 at the time of arrival.  

s

R

R

R

...
pi

1-pi

i

Ιf the queue size at time t  is tY i= , and if there were  
no service completions during [ ]t t u, + , then the probability 
 that there are no additions to the queue during [ ]t t u, +  is  

0

* (1 )

0 0

( (1 ))( ) (1 )

n
x

n

i i

x e
n

nau n
au p ap un au aui

i
n n

au pe au p e e e e
n n

∞

=

=
!

−∞ ∞
− −− −

= =

∑
−

− = = =
! !∑ ∑

��	�


 

 

0

1

2

s-1

s

α0 = αp0

α1 = α p1

α3 = α p2

αs-1 = α ps-1

b2 = 2b

b1 = b

b3 = 3b

bs = sb

bs-1 = (s-1)b αs-2 = α ps-2

S+1

S+2

αs = α ps

as+1 = α ps+1

αs+2 = α ps+2

bs+2 = sb

bs+1 = sb

bs+3 = sb
 

Hence, 0 0 1 1

1 2 1 22
i i

s s s

a ap a ap …a ap
b b b b … b sb b b sb+ +

= , = , =

= , = , , = , = = ="
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tY  is a special birth-death process, where  

0 1 2 1 2a a a a b b b= = = = ; = = =" "  

The parameter a
br =  is called traffic intensity.  

If 1a
br = < , then there is a limiting distribution, which is  

1 0
1( )

1
1

j

j

j
cj c

ra j
cb

π

⎧ =⎪⎪= , =⎨ −⎪ ≥
⎪⎩

  Thus, ( ) (1 ) jj r rπ = − , j=0, 1, … 

Example: queue.
Customers arrive according to a Poisson process with rate a , 
service times are exponential with mean 1

b , there is a single 
server and infinite queues are permissible.  
 
 
tY  is the number of customers in the system at time t .  
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Example: queue.
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Example: queue. 1M M m/ / /
Exactly as the previous case with the difference that the “waiting”
room has finite capacity 1m − .  

0

1

2

3

m-1

m

α0 = α

α1 = α

α2 = α

α3 = α
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bm = b

bm-1 = b αm-2 = α

tY  is the number of customers in the system at time t .  
 
Starting with less than m customers, the total number in the system
cannot exceedm . A customer arriving to find m or more
customers in the system leaves and never returns.  
 

0 1 1 1 1 20m m ma a a a a a b b b− += = = = ; = = = ; = = =" " "  

 
States 1 2m m …+ , + ,  are all transient. 
The {0 1 }C … m= , , ,  is a recurrent irreducible set.  

R

m-1
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Example: queue.1M M m/ / /
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Example: queue. 1M M m/ / /
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• Suppose there are m  machines serviced by one repairman. 
• Each machine runs without failure, independent of all others, an exponential 

time with mean 1
a   

• When it fails, it waits until the repairman can come to repair it,  and the 
repair itself takes an exponential distributed  amount of time with mean 1

b . 
• Once repaired, the machine is as good as new.  

 
 

Example: Machine repair problem. 

M1

M2
...

R

Mm
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• Let tY  be the number of failed machines at time t   
• If tY i= , then there are m i

Example: Machine repair problem. 

−  machines working, and 
the time until the next failure is exponential with
parameter ( )m i a−  (if no machines are repaired in the
meantime).  

Hence,  
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