Applications to Queueing Theory
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Ch.5.5,5.6



Applications to Queueing Theory: M/G/1 Queue

N, (@) : number of arrivals during the time interval [0,7].
Z,(w),Z,(w),...: service times of customers who depart first, second, ...
Y (w) : number of customers in the system (waiting or being served at time ¢)

Assumptions:
& N={N;t>0}~ P(a)
* Z2.72,,. 1id.~¢

= Consider the future of ¥ from a time 7' of a departure onward.
= Define X, as the number of customers in the system just after the instant of the

n™ departure.

Theorem: X is a MC with the transition matrix

9 49 49 4%
9 49 49 4
s L tk
P 9% 4@ 9 ’ qk:jo %CM(O, k=0.1,...
9 4 k!
9




Proof: We need to show R SN R M S R = XY

q; i=0,7=0
@R e S o L ST
0  otherwise

= Let T the time of the n" departure.
* Let Z=Z,, the service time of the n+1 customer.
Xn+(NT+Z_NT)_19 Xn>0

Then, X ,, = (S:arrival time of the n+1 customer )
NS+Z I NS’ X, =0

n

Using Poisson properties: ~ P{N,,, — N, =k|X,..X;T} =P{N, =k}

g, = P{N, =k} =E[P{N, =k|Z}]= E{eazgjz)k}: j:#dcé(t)
= =0 R =N XS = OV R N, = =i ="PAN 5= jilhEig)
= i>0 P{X, . =j|X,=i}="PiN,,, — N, =j+1-i}
=P =j+1—i}:{qj(+)1’i’ j::i



Applications to Queueing Theory: M/G/1 Queue

The MC X is irreducible and aperiodic. If
r=E[N,]=aE[Z]=ab

then,

= [f r>1 all states are transient

= [f r <1 all states are recurrent non-null.
= [f =1 all states are recurrent null

Notation:
G e )
r=r+r+-o=(q+qg, +q;t) (g H gy +) (g +) +o

=q,+2q, +3q; +--

Proposition: The chain X is recurrent non-null aperiodic if and only if » <1.
Proof: We need to show that

=T P r-1=1
— \ —
Ty = Toqo t+ 7019, g, = ol
G| —— TToq, T 74, + 7,9, [aug T4y = Toh + 74N
T, = T4, tmq,t7,q +74, Ty = ThLTE, + THn

J & 4



Applications to Queueing Theory: M/G/1 Queue

Summing all equations (g, =1-r,, r=r,+r+r, +---)

(1—7‘0)°Z7Z'j :ﬂ0r+(r—r0)27rj
J=1 =1

J

: = r = 1
If » <1, then we obtain Zﬂ'j = T Z o — 70
j_l 1—7" j:() 1—1"

The condition 7-1=1 is satisfied with 7, =1-r

Theorem: The limits 7z(j)=1lim,__ P"(i,j) exist Vj € E and are independent of the

initial state i.
o Ifr>1,then 7(j)=0, e
e If r<l1,then

D l1-r

(1) = (1-r)2
qo

; k+1
(]
z(j+1) = (l—r)z (—j Z FiThsir
k=1\ 4o

aes

where S, is the set of all k -tuples a =(q,,...,a,) of integers a, 21 with a +---q, = j



Applications to Queueing Theory: M/G/1 Queue

More on the recurrent non-null case
Having the limiting distributions , we can compute E[X,], Var(X,) etc., in the limit

n— oo,
Instead:

Xn+1 :Xn +Mn _Un
where
U, =1-1,(X,)
M 1is the number of arrivals during the n +1 th service.

ImE[U, |=1-ImE[] (X )]=1-lImP{X, =0} =1-72(0)=r=a-b

n—»0 n—>®

E[M ]=r=a-b

n

E[M]1=E|E[N;|Z]|=E|aZ+a’Z*|=a-b+a’c’

n

& = E[Z%]= j: £2dd(t)

V(X)=02=E (X-E(X))2=E(X2)-E(x)2 => E(X2) £ E(x)2 *V(x 6



Applications to Queueing Theory: M/G/1 Queue

XZ

n+l

=X +M>+U’ +2X M, -2X U, -2M U,
But
= U?=U, (U, takes values 1, 0)
= XU, =X (If X,>0,then U =1,elseif X, =0, then U, =0)
so that,
X2

n+l

=X +M' +U +2X M, -2X -2M U,
Taking expectations of both sides we obtain
E[X, 1= E[X, ]+ E[M,]+ E[U,]1+2E[X,]E[M,]- 2E[ X,]- 2E[M ]E[U, ]
and by letting n — o
O=ab+a’c’ +ab+2gab—2q—2a’b’

where q=limE[Xn]:ab+i
n—>e0 (2—-2ab)
Knowing the statistics of X, we can find the statistics of V , (W), as n — o
Vo=W,+2,
where

= ) 1is the total time spent in the system

= WV is teh waiting time spent by the n" customer.



Whatif »>1?
Consider f,(j) the probability starting from state k+ j, the MC X never enters in

the set {0,1,....k}
f.(j) 1s the maximal solution of the system h=Q-#h, 0<h<l1
where O 1is the matrix obtained from P by deleting all rows and columns

corresponding to the states {0,1,...,k}.

9 49 4;
0= 9 49 49
9, 4,

O does not depend on k, therefore f,(j)= f,(j) forall j,k.

Lemma: The probability that X never enters {0,1,...,k} starting from k+ j is the
same as the probability f(j) that X never enters 0 starting from ;.

Theorem: Let f(j) be the probability that the queue, starting with ; customers
never becomes empty. Then,

f(H=1-p4, i — 10258
where £ is the smallest number in [0,1] satisfying S=gq, +¢q,B+q,p +-
The p is strictly less than one if and only if the traffic intensity » > 1. Therefore, X
is transient if and only if » > 1.



Applications to Queuing Theory: G/M/1 Queue

Exponentially distributed service times ~ exp(a)
1.1.d. interarrival times ~ ¢ .

In thiscase ¢, = _[OOO %dﬂt)

1s the probability that the server completes exactly n services during an interarrival
time (provided that there are that many customers).

Define: r =q,,,+q,.,+

r = Lingu=tr + i Ak
r 1s the expected number of services which the server is capable of completing during
an iterarrival time. It can be proved that

= r2>1 Server can keep up with arrivals (recurrent)

= <1 Queue size increases to infinity (transient)

If X* is the number of customers present in the system just before the time 7 of the
n™ arrival, then

)
N4 4

Theorem: X* ={X ;ne N} isaMC with E={0,1,2,..} ,P* =|
LR d s di g,




Applications to Queuing Theory: G/M/1 Queue

Proof: Let M, be the number of services completed during the n+1" interarrival
time [T ,T ). Then,
X*

n+l = X: g 1 _Mn+l
But M, .,

number X . If Z=T

n+l

is conditionally independent of the past history before 7, given the present

=1

e—aZ (ClZ)k
k!

X +1>k

P{M —k|X*Z}—<ie_aZ(“Z)m X:+1=k
n+l n? " = il n >

0 otherwise

"

Taking expectations with respect to Z , which is independent of X, we obtain
q, k<i
P =Nl = R =
0 otherwise

Equation X, =X +1-M,  , and the previous one provide matrix P~

10



Applications to Queuing Theory: G/M/1 Queue

Theorem: X~ is recurrent non-null if and only if »>1.If » > 1,
77 (j)=1lim p*"(i, j) =lim P"{X =j| X, =i}

and
T (jH=A-p)p, =10 1820
where [ is the unique number satisfying
B =q, +QllB+q2ﬂ2 Al
If <1 then 7*(j)=0 forall ;.

Proof: X~ is recurrent non-null if and only if
VA= 2P v-1=1

has a solution.

Kom " 5 @“WVo T DYy T 4V, T
i L TR Ve

i ] WS

L LSS A e 7 R i [ s = 74 e
Vol 0G0V G, TS GV g5V

11



Applications to Queuing Theory: G/M/1 Queue

L= QY GOV A
TS Sl el S

eI S

SR ke SO N R e T
Vo W=l Vet W\ el QoM NN G,

Let f(j)=vy+--+v,, j=L2,... Then,

f(l) = %f(l) i %f(z) 25 Q3f(3) ok
U2)E T ado./ R Ti gW (2) SR (N oty = =10
el = g (Z) st giaE) ™

We are interested in a solution satisfying
hmf(]) :ZV]' =1
joo 0

O was obtained from P by deleting 0" row and column. Such an f exists if and

only if X is transient which means that » > 1. In this case f(j)=1-’. Solving for
v we obtain

vo=fM=1-4, v=/Q)-fD)=1-F)p,...

12



Applications to Queuing Theory: G/M/1 Queue

Theorem: X~ is transient if and only if » <1. If » <1, the probability /() that the queue
starting with j customers never becomes empty is given by

D=2 +z)+--+72(), j=L2,..
where the 7(j) are those found in the M/G/1 case.
Proof:

" f7 is the solution to the system A=0"h, 0<h<1.

= (" is the matrix obtained from P* by deleting the 0" row and column.
The equations for h=Q"h are ( f7(j)=h,)
b= qh, + qh
h = qh + qh + qh
hy = qh, + qh + qh + qh

If we define ....

13



If we define 7, = q,h,, 7, = (1—¢q,)h,, and let
7Z'j=hj—h e e S

then the first of the previous equations along with 7, = g4, , implies the equations

j-1>

= G070 T 407
= 47T TG TGy,
and subtracting the equation for 4, , from the one for /4, yields
1% = 4,70 T 4,70 T G, 7Ty T 4y 7Ty
Ty = 37Ty T G370 4,7, + 4,7 T g7y

In other words, & satisfies 7 = 7z P with P the transition matrix in the M/G/1 case, and we
are interested in the solution

7w =rP, Zﬂjzlimhjzl
: J
J

= Such a solution exists if and only if » <1.
= The solution 7 is connected to # by the relation 4, =7z, +---+ 7,

14



Special case M/M/1

We can consider this queue as a special case of M/G/1 or G/M/1. In the sequel we use
G/M/1. Now the interarrival distribution is given by:

P =1—e % =0

To compute the limiting distribution of X* (queue size just before the n™ arrival, we find
first £, where

- S N e k[® e (at) 4 -t AERE (I " e ™
BEDS a¥h = D jo e _jo e deMdt =
k=0

The previous equation becomes £ = A or (1-4)A—-ab)=0
A+a—-af

with solutions =1 and f=4%. When r =< >1, the smallest solution is £ = &

a
J
So we have limP{Xn* :j}: l—iJ(iJ A =08,
n—»0 a a
: , 7N (2 Sy , :
It turns out that limP{Y, = j} =/ 1-=| = |, ,j=0,l,...for the queue size ¥, at time ¢.
t— a a
. . A AY TS "
and lim P {X = ]} ={1-—1—1, Jj =0,1,...for the queue size X, justafter the n~ departure
n— a)\ a
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Birth and Death Processes

Introduction to Stochastic Processes (Erhan Cinlar)
Ch. 8.6
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Birth Death Process: The steady-state

% A 4
. TR e ’ T
[ —Xo Ao 0 0 0 VI, .
H1 - ()\1 + ,U.l) )\1 0 0 0 0
0 H2 e (}42 + ,U.*z) }1.2 0 0 0
Q -2 0 0 13 — (/\3 -+ ,U:_J.) A3 [V gd !,
0 0 0 Ha =N Agetpd)= A
The steady-state follows from 7Q) = 0
3 1 > [l e o
05w T =
1+ Z.? 1 Hm—D Hm+1 1+ Z.? =1 ]'_'[m_D Hm+1
__ o0 Tl s
¥y = 521 [Tn=o 757 must converge to have a steady-state

17



The steady-state

The process 1s transient if and only if the embedded MC is transient.
For a recurrent chain, rij; = Pr[T; < oo|Xo = i] equals 1

(every state j 1s certainly visited starting from initial state 1)

For the embedded MC (gambler’s ruin), it holds that

ZJ m_l 32

N— 1 k qm
k=0 llm=1 p,,

Pr[Ty < oo|Xg =j] =1 —

Can be equal to one for N — oo only if imy o D et im = oo

Transformed to the birth and death rates Xy = 3 7°2 P =g

T

Furthermore, the infinite series Z1 = > o0, [/ 22— Z-H- must converge
to have a steady-state distribution

oIf X,<co and 2,=oo the BD process 1s positive recurrent
o[f X,=c0 and X,=o0, it 1s null recurrent
oIf X,<oo, 1t 1s transient



Birth Death Process: The s’ready-s’ra’re

1 H um >
ny = = i 'LL'H =

]'-I_ZJ 1]._.[m I.'}.u,mil 1+Z 11_.[m ﬂ.um,rl

=322 Hm_o om-must converge to have a steady-state

A, —>a, pu,—>b,

A limiting distribution exists iff ¢ = Z v, =1+ Z A b : ‘Z—l < o0
i=1
[ 1
bl j=0
If ¢ < oo, then the limiting distribution is 7(j)=y € )
(e R | > 1
c-b -b,-b, J

19



Example: M /M /oo queue.

There are infinitely many servers so that no customer ever waits.
Arrivals form a Poisson process with rate o

Service times are exponential with mean 1/b

A A

; a
ei=le Rton, Wil
b
Ndlei® 47 , , .
W)= o j=0,1,.. (Poisson with parameter r)
J!
ElY]=r



Example: A /M /oo queue.

—ar a, —a a
0 D a, R, a
b, =D a8 2h ) hala
a n=0);!:ex
a, - a a’ 5 o ]/-i RS N
c=1+) 1L Hq4y— = Y— = ¢
- b b, i g = !
f i _
\ Ca'e : =
7r(])=<a g o : , oLy wZ(j)=—=
| O a _r e e j!
G, ¥ DS ey Dl R
> sk
e = Y= ST P = B — = e o =g
= ’ j=1 e J' g1l (] i~ 1)' k=0 k!
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Example: M /M /s/ooqueue.

There are s servers, and the waiting room is of infinite size.
Arrivals form a Poisson process with rate a

Service times are exponential with mean 1/b

1 A

If there are i <s customers in the system, then i servers are busy
working independently of each other
If i > s, then all s-servers are busy

Therefore,

a,=a,=-=a;, b=5bb,=2b,...b =sb,b_ =sb,...

s+l

& A limiting distribution exists if and only if » =4 <1.

22




Example: M /M /s/ooqueue.

aO = al = — a, bl =
s—1 Sil"i Ssrs
c=1+ :
Eai e Te)
ol
Cal j=0
C
1 i
EU)=<—Sf 0<j<s
CF
1 s%7/
-l §S<J
c s!
s'r’ r I
E[X] =sr+ i
st (1-r) ¢
1 s’ v
ElY |=——7F°

2b,..,b. = sb,b

\
\

bs+3= sb Os2= O

23



Example: M /M /s/ooqueue.

An arriving customer is permitted to balk: if he finds the system

too crowded, he may leave, but once he joins the system he
cannot change his mind later.

Suppose the probability of | Jommg
the queue is p, if there are

i -customers 1n the system
at the time of arrival. p. -

—_—

1-pl

If the queue size at time ¢ 1s ¥, =i, and 1f there were

no service completions during [#,7+u], then the probability
that there are no additions to the queue during [z, +u] 1s

2 e “(au b au(l— : Y —apu
Z ( ) (1 p) =1 auz( ( p)) = eaue ( pi):e D;
n=0 n' 5 b,
=ap,,a, = ap,,...a; = ap, bs+3= sb Os+2 = O Ps+2
Hence

b b,b,=2b,...b =sb,b_ =b, =--=sb 24



Example: M /M /1/00 queve.

Customers arrive according to a Poisson process with rate a,
service times are exponential with mean -, there is a single

server and infinite queues are permissible.
> o

Y 1s the number of customers in the system at time ¢.

Y. 1s a special birth-death process, where

aozalzazz---:a; b1:b2::b

The parameter » =4 is called traffic intensity.

If »=4<1, then there 1s a limiting distribution, which 1s

L g 1
7(j) = acj e Thus, z(j)=(1-r)7',j=0, 1, ...
N
Lch’ v e
E[Y ]= ElY |=

o= (1=7)

25



Example: M /M /1/c0 queue.
=Yer a, —a a
b S i—=a =D a bR =a=b'"¥%q
Q: 1 1 1 1 .
bz z_bz a, b —a-b a
a-.-a. - -a. a © a. 0 . r<l1 1
= s e — = B, S
J i=1 bl.bz.“bi i= bl ;bl i;.:r 1_”'
—2(1—7") ]:O
C .
4 o S
ﬂ(])_<a0-al---a - ) o ik .>1> or 7(j)=1-r)r
= r)— = r)r! >
cbb,b %
o0 o0 . 0 ]/‘
= jr J(d=r)z’ ==Y jr'=0=r)r
2 /M2 2 = T
E[Yq]zz(j_l)ﬂ-j:z(j_l)(l_r)’”j:(l_’”)’"zz (j-Dr'™
J=2 t=" -
=1 = r)rzi kr*t = (1- r)r2 1 = - 26
T W-T5) " " (T



Example: M /M /1/m queue.

Exactly as the previous case with the difference that the “waiting”
room has finite capacity m —1.

> ®—>
H_/

m-1

Y 1s the number of customers in the system at time ¢.

Starting with less than m customers, the total number in the system
cannot exceedm . A customer arriving to find m or more
customers in the system leaves and never returns.

G=6="=4,,=4,,.4,=4,,=

States m+1,m+ 2, ... are all transient.
The C ={0,1,...,m} 1s a recurrent irreducible set.




Example: M /M /1/m queue.

—a a
b —a-b a
a —=
A b —a-b a
b -b
r#l 1_ Vm+1
= 1-r
1—r .
~ l_rm+l -] M O
1-r o’ 1—r .

28



Example: M /M /1/m queue.

=
—a a
—a a
y : b —a-b a
bl _al_bl d,
—a,— a
) 2 2 /) b _a_b a
b —-b
o0 m ai m . r=1
C=Zvl.=z —i=Zr’ — m+l
i=0 par S
1 1
e c m+l
TN .
] aO'al.“aj—l 1 a] 1 . 2
Gl FRED ] ) e Ci]
or 72'(])2;,7712]20
m+1

e o S [ = e e ) i 29



Example: Machine repair problem.

e Suppose there are m machines serviced by one repairman.
e Each machine runs without failure, independent of all others, an exponential

time with mean ﬁ

e When it fails, it waits until the repairman can come to repair it, and the
repair itself takes an exponential distributed amount of time with mean .

e Once repaired, the machine 1s as good as new.

A

M1

M2

e

A\ 4
@

30



Example: Machine repair problem.

e LetY be the number of failed machines at time ¢

e If Y =i, then there are m—i machines working, and

the time until the next failure is exponential with
parameter (m —i)a (if no machines are repaired in the

meantime).
Hence,
® aO :ma,al :(m_l)a9”’9am—l =a, (am :am+1 :...:O)
. bl = b2 =g o o) f=— b

Limiting distribution:

z(j):pm(m—l)---(m—j)(%j DA E=AONI. T 71

18 1< bGrDE
where ;_;m(m_l)m(m_l)(gj

31
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