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ABSTRACT

In this paper, a class of interconnected multi-user
packet communication networks is considered. The com-
mon characteristic for all members of that class is the
existence of a central node which accepts and processes
packets originating from more than one multi-acces com-
munication network. The queueing problem that appears in
the central node is studied under various approximations of
the input traffic to this node. Simulation results are also
provided.

L. INTRODUCTION

A lot of work has been done towards the direction of
developing communication protocols that determine how a
single common resource can be efficiently shared by a
large population of users. By now, it is well known that
fixed assignment techniques are not appropriate for a sys-
tem with large population of bursty users. In the latter
case, random access protocols are more efficient and many
of them have been suggested [1], [2]. Usually, the amount
of information transmitted per time is of fixed length,
called a packet. In most of the systems, time is divided
into slots of length equal to the time needed for a packet
transmission (slotted systems).

The deployment of a large number of multi-user ran-
dom access communication networks, brought up the ques-
tion of how packets whose destination is another network,
should be handled. Thus, the issue of network interconnec-
tion or multi-hop packet transmission, arises, [3], [4], [5].

A problem that arises when networks are intercon-
nected is how a random access protocol operates in the
presence of a node that forwards exogenous traffic coming
from other networks. This problem can be avoided by
assigning a separate channel to the exogenous traffic. In
the latter case, the operation of the network is not affected
by the exogenous traffic and the problem of optimum allo-
cation of the available resources (channels) arises. The
latter issue has been discussed in [3], where the objective is
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to maximize the throughput of the interconnected net-
works. In [3], delay analysis was not performed mrd only
simulation results were obtained.

In the next section, some systems of intercopnected
networks are described. In section III, the general qi
problem that appears in a central node under
approximations of the input traffic to this node, is studied.
In the last section, results for the mean time that a packet
spends in the central node under the approximations are
provided and they are compared with those obtained from
the simulation of the actual systems.

'II. SYSTEMS OF INTERCONNECTED NETWORKS

We consider a system of two or three packet radio
slotted communication networks that operate on the same
or neighboring areas (Fig. 1). The users of each network
can be either static or mobile.

The obvious structure for the above systems would be
the one which assigns a central node to each network. This
node receives and retransmits packets coming from the
specific network. All networks are assumed to operate in
different frequency bandwidths to avoid interference. Thus,
the number of different channels that are needed is twice
the number of the networks (uplinks, downlinks). The cen-
tral nodes are interconnected via a backbone network
which may operate under a fixed or non-fixed assignment
protocol. Packets that are destined outside their network
are forwarded by these nodes according to the backbone
protocol. The backbone network may use wired or radio
channels. In the latter case, a frequency bandwidth should
be assigned for that purpose.

A probably more efficient structure for the systems
described above is the one in which all networks use a
common central node. Each network has its own uplink but
the downlink is the same for all of them. This structure
saves some downlink channels and offers an efficient solu-
tion to the problem of the network interconnection. In fact,
the latter is provided almost for free. The packet delay in
the common central node turns out to be insignificant due
to throughput limitation of the random access protocols.
The latter implies that the individually per network
assigned downlink channels could be idle most of the time.
Another approach to increase the utilization of the indivi-



dual downlinks could be to decrease the transmission rate
through these channels. However, this would also increase
the packet delay compared to the one induced by a com-
mon central node, due to the non-statistical multiplexing of
the packets that come from different networks.

Another system of interest is the one in which all net-
works are separated but the packet destination is another
network. Then, a satellite or the input to a transmission line
could serve as a common central node (Fig. 2). This
configuration is actually a two-hop communication system
and can be part of a larger multi-hop system. The work that
appears in this paper can be extended to such large multi-
hop systems.

A common characteristic of all systems described
before is the presence of a central node which is fed by the
outputs of more than one random access slotted communi-
cation systems. The queueing problem which appears in the
central node is hard to analyze. The quantity of interest is
the mean time that a packet spends in the central node. The
latter quantity is calculated in the next section under vari-
ous approximations of the input streams to the node, which
are the processes of the successfully transmitted packets
within the networks.

II. THE QUEUEING PROBLEM

We consider a discrete time single server queueing
system that is fed by N independent input streams (Fig. 3).
The service time, T, is constant and equal to one, which is
the distance between successive arrival points. The service
time policy implies that arriving and departing packets
have the same length. The first in - first out policy is
adopted and the buffer size is infinite.

When successive arrivals in each input stream are
independent, the above queueing system has been studied,
[6], and the mean time, Dy, that a customer spends in the
system was then found to be given by the follomng expres-
sion.
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where @, is the probability of an arrival at the input of the
queue, and corresponds to the mean arrival rate of the Ber-
noulli process that describes the arrival streams.

If the arrival process is a first order ergodic Markov
chain with state space S = {0, 1}, where 1 corresponds
an arrival and O to the absence of such an event, then
average time, Dy, that a customer spends in the system is
given by the expression below, ["7], [8].
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where Y, = P(1/1) - P (1/0) and where o is the arrival rate
given by the expression

_ P/
Oy = -
P( /) denotes conditional probability.

In this section, it is assumed that each input stream is
described by a finite-state Markov chain. The cardinality of
the state space of the Markov chain associated with the i
stream is denoted by M;. The arrival process of each input
aueamoomsponds!hentoamappingﬁbmaﬁnitc-state
Markov chain onto the set {0,1}, where 1 represents a sin-
gle arrival and where O represents no arrival. In this case,
as it will be shown, the average time that a customer
spends in the system can be obtained from the solution of
M;xM3ax - -+ xMy linear equations.

Clearly, the Markov arrival system described in [7] is
a special case of the general system considered in this
paper. In [7], the underlying Markov chain has two states
only, and actually coincides with the arrival process. The
closed form solution obtained in [7], for the average time



that a customer spends in the system, does not extend to the
case where multi-state Markov chains are present. The two
state Markov model gives rise to a second order equation,
whose roots are used in the derivation of the closed form
solution. This procedure does not extend to a larger state
space Markov model, since then expressions for the roots
of high order equations would be needed.

The queueing system with Bernoulli arrivals, is also a
special case of the system considered in this paper. In that
case, the arrival process coincides with the underlying Mar-
kov process and the state transition probabilities are prop-
erly selected. Then, Dy can be derived from the solution of
4 linear equations.

The arrival processes {a}}j»0,1=1,2, - , N, are
assumed to be synchronized discrete time processes, and at
most one arrival can occur in each input line per unit time.
The time separation between successive possible arrival
points is constant and equal to one. The arrival processes

{al}j0,i=1,2, ---, N, represent the output processes of

S
2 >

single

——

server

Ne—
 Figure 3.

multi-user random access slotted communication networks,
where the arrival points coincide then with the ends of
slots. It is obvious that we can have at most one packet
arrival per input stream and per unit time. More than one
arrivals (from different input streams) that occur at the
same arrival point are served in a randomly chosen order.
Let {X];}jzo denote a discrete time ergodic Markov
process associated with th?\'1 il input stream, with finite
state space S' = {6}, - -+ ©; '}. Letalso a; be a stationary
mapping rule from the set S; onto the set {0, 1}, where 1
corresponds to an arrival and O to the absence of such an
event. Then the arrival process of the i input stream is

{al}po = {aitxh}po = {ai(xD), 2 x]), -+ }.

7 From the description of the arrival process it is implied that
successive arrivals from the same input stream are not
independent, but they are governed by an underlqug finite
state Markov chain, {xi};>o , and a stationary mapping rule
q;.

In this system, it is assumed that the processes

{X{}jzo, i=1,2, ---, N, are mutually independent and
thus the arrival processes {al}j20,i=1,2, -+, N, are
also independent. If {b/};>o ={b% b!, --- } is the pro-
cess that describes the total arrivals occuring at a single
arrival point, then

. N .
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i=1
andb €{0, 1,2, -+, N}

Referring to the interconnected multi-user random
access communication networks, we may define {x} }jz0 to0
be the process that describes the state of th i channel at
the end of a slot. Let us consider a ternary ghannel state
space

st={0, 1, 2},

where 0, 1 and 2, respectively, denote that 0, 1} or more
than 1 packets attempted packet transmission in a single
slot. Since a packet appears in the output process|only if it
is the only one transmitted within the corresponding slot,
the arrival process {a{}j>0 can be clearly describgd via the
mapping
Gh={l I x=1

al(xl) _{0 if i'} = 0’ 2

The process {i{}jzo is controlled by the deployed
random-access algorithm, and is generally non-Markov.
However, this process can be approximated by a Markov
process {X{}jzo which has the same state space as {i{}jzo
and is ergodic within the stability region of the random-
access algorithm.

Let m; (k) and p;(k, j), k,j € S', denote the steady state
and the transition probabilities of the ergodic Markov
chain, {x{};>0,i=1,2, -+, N. Let also p"(j ; ¥) denote
the joint probability that there are j packets in the system at
the n™ arrival point (arrivals at that point are included) and
the states of the Markov chains are y;, y2, ** , ¥n»
where ¥ =(y1,¥2, - ,yn). The vector ¥ describes the
state of a new ergodic Markov chain that is generated by
the N independent Markov chains described before, with
steady state and transition probabilities n(y) and p(x, ¥)
respectively, and with state space S = S!xS%x - - - xSN.

The operation of the system can be descibed by an N
+ 1 dimensional (infinite state space) Markov chain imbed-
ded at the arrival points, with state space T = ( 0, 1, 2,
-+ )xS and state probabilities given by the following
equations

N
P'G:N=3 ™ G+1-Tatx);D pE Y , j2N+
XeS i=1
“or (3)
) j+1
PGP=Y T M &OpE +

k=1 XeFuq
+ X 0D p R, 0SSN,
XeF,

where
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Fy = {x=(x, x, xN) &S E ai(x)=v}. (4
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There are totally M;xMpx - -+ xMy equations given by
(3) foraﬁxed_] and all y € S, where M is the cardinality of
S i=1,2, ,N.

The original assumption concerning the ergodicity of
the Markov chains associated with the input sl:rcsms
imphes the ergodicity of the arrival processes {a; }j>p, i =
2, ---,N. Thelamtogeﬁermdnheweﬂkmwncondi
tion, [9],

N .
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imply that the Markov chain described in (3) is ergodic and
there exist steady state (equilibrium) probabilities. Thus,
we can consider the limit of the equations in (3) as n
approaches infinity and obtain similar equations for the
steady state probabilities.

By considering the generating functions of the steady
state probabilities given by (3) and manipulating the result-
ing equations, we obtain the following system of linear
equations

N
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where P(z ; ¥) is the generating function of the steady state
distribution of the N+1 dimensional imbedded Markov
chain. :

From the independence of the Markov chains associ-
ated with the input streams and the state description of the
imbedded N+1 dimensional Markov chain, it is obvious
that
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If P(z) is the generating function of the distribution of the
number of packets in the system, then
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where P'(z 3 Y 'y'£§, can be derived by differentiating (6)
and are given by

P'(z;§)=§ T | (v=1)2"2 [Pz;; ) + (z-1)p(0; D] +

v=0 X¢F,
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foryes.
Since P'(1) is the average number of packets in the system,
Q, from (8b) we have that
Q= 2_ P a1y . (10)
¥es

PU;9, Ye-§, are in fact the solutions of the following
M;x -+ xMy dimensional linear system of equations,
whichueobtainedfrom(9)bysettingz-l :

PQ;y= z po [(v—l)P(l;i)+P'(1;I)+__

v=03%eF,
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where
P(l;ﬂ=m®=ﬁﬁm) (12)
_The M;x --- My linear equations with respect to

y &S that appear in (11) are linearly dependent. This is
usually the case when the equations have been derived
from the state transition descnpuon of a Markov chain. By
summing up the equations in (11), solving with respect to
P'(1), and using L’ Hospital’s rule we obtain an additional
linear equation with respect to P'(1;7), yeS, wich is
linearly independent from those in (11) and is given by

E )> [2(v-1)1='{1;i)+(v-1)(v—2)P(1;m+
v=0 XeF, _ '

+2(v-1) p(0; X ﬂ =0. (13)

By summing up the equations in (9) solving with
respect to P(1), and using L’ Hospital’s rule, we calculate
the steady state probability that there is no packet in the
system, denoted by pg. As it was expected it was found
that

N
Po"l - E li(li li(xx)’ﬂ)- ué
=l xeS ’

By substituting (7b), (12) and (14) into (11) and (13)
and solving the Mjx -+ xMy dimensional linear system
of equations that consists of (13) and any
M;x -+ xMy — 1 equations taken from (11), we compute
P(1;X) , XeS. Then, the average number of packets in
the system can be computed by (10).

The average time, D, that a packet spends in the sys-
tem can be obtained by using Little’s formula and it is
given by

S - S o
T X mlx: Ili(mi)-l) 2 (15)
i=l xe8 :

The denominator in the above expression oomtponds to



the total input traffic to the queueing system.

'IV. RESULTS AND CONCLUSIONS

As an example, we consider systems of networks in
which a binary feedback (c/nc) limited sensing collision
resolusion algorithm is deployed. A description of this
algorithm whose maximum stable throuput is .36, can be
found in [10], [11]. The steady state and state transition
probabilities of the output process of such networks have
been calculated in [12].

The values of the mean time that a packet spends in
the central node under the various approximations on the
input traffic to the central node (i.e. the output traffic from
the networks), are shown in Tables 2 and 3. The simulation
results of the actual system together with the network
induced packet delay, [10], appear there as well. It can be
observed that the 3-state Markov model performs very
well, especially when the total traffic to the central node is
less than .99. For input per stream traffic less than .25, all
examined models give good results for practical purposes.
When the network traffic increases beyond .25, the number
of collisions within a network becomes significant. In the
latter case only the 3-state Markov model performs well

A = Poisson input rate to a network

A Indep, | 2-Markov | 3-Markov | Sim. | Net, Del
.10 1.06 1.02 1.03 1.00 1.97
.20 1.08 1.17 1.09 1.02 3.33
25 1.25 1.14 1.03 1.05 5.30
.30 1.37 1.23 1.10 1.12 11.38
.33 1.48 1.31 1.21 1.21 30.00
.35 1.58 1.41 1.31 1.30 87.70

" Table 1.(N=2)

A Indep. | 2-Markov | 3-Markov | Sim._ | Net Del.
.10 1.14 1.0S 1.06 1.02 1.97
.20 1.50 1.24 1.37 1.21 3.33
25 2.00 1.55 1.91 1.70 5.30
.30 4.00 2.82 4.24 427 11.38
31 5.43 3.74 5.94 6.25 15.00
.32 9.00 6.03 10.16 11.37 20.00
.33 | 34.00 22.34 39.87 48.89 30.00

“Table 2.(N=3)

since it is the only one of the suggested models which can
distinguish between idle and collided slots.

The results show that the packet delay in the central

node is of the order of one slot (2 networks), or less than a
third of the network induced packet delay (3 networks).

Thus, the usage of a single downlink in the networks of
Fig. 1, is justified. The additional delay is small compared
to the network induced delay. Furthermore, the frequency
bandwidth that is saved can be used to increase the
throughput/delay performance of the system.

In a two-hop environment in which the network topo-
logies that are shown in Fig. 1 and Fig. 2 are present, the
3-state Markov model can be used to approximate the
procces of the successfully transmitted packets within 2
network. Then, the packet delay in the central node can be
calculated by following the procedures described in this
paper. The queueing system that has been analyzed, can
also model a central node which accepts and processes
packets coming from any number of networks, and whose
destination is another network. In this case, it is assumed
that only a portion of the successfully transmitted packets
within a network are forwarded to the central node, whose
total input traffic must be less than one packet per packet
length.
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